Methods: The equilibrium model expresses the effective regional heat transfer coefficient in terms of cutaneous heat flux, skin temperature, and temperature at the center of the extremity. It applies at steady states and provides a ratio of the heat transfer coefficients before and after an intervention. In contrast, the heat flow model provides a time-dependent estimate of the heat transfer coefficient in terms of ambient temperature, skin temperature, and temperature at the center of the extremity.
Results: Each model was applied to data acquired in a previous evaluation of heat balance during anesthesia induction. The relation between the ratio of steady state regional heat transfer coefficients calculated using each model was linear. The effective heat transfer coefficient for the forehead (a core site) decreased approximately 20% after induction of anesthesia. In contrast, heat transfer coefficients in the six tested extremity sites more than doubled. 相似文献
Methods: Thirty-six healthy, nonsmoking women were randomized to breathe 100, 80, or 60% oxygen for 5 min during the induction of general anesthesia. Ventilation was then withheld until the oxygen saturation, assessed by pulse oximetry, decreased to 90%. Atelectasis formation was studied with computed tomography.
Results: Atelectasis in a transverse scan near the diaphragm after induction of anesthesia and apnea was 9.8 +/- 5.2 cm2 (5.6 +/- 3.4% of the total lung area; mean +/- SD), 1.3 +/- 1.2 cm2 (0.6 +/- 0.7%), and 0.3 +/- 0.3 cm2 (0.2 +/- 0.2%) in the groups breathing 100, 80, and 60% oxygen, respectively (P < 0.01). The corresponding times to reach 90% oxygen saturation were 411 +/- 84, 303 +/- 59, and 213 +/- 69 s, respectively (P < 0.01). 相似文献
Methods: Eighteen pigs were intravenously anesthetized and mechanically ventilated. Regional blood flow in the superior mesenteric artery was measured with ultrasound transit time flowmetry. Microcirculatory blood flow was continuously measured with a six-channel laser Doppler flowmetry system in the mucosa and the muscularis of the stomach, jejunum, and colon. Eleven pigs were assigned to the sepsis group, while seven animal served as sham controls. Sepsis was induced with fecal peritonitis, and intravenous fluids were administered after 240 min of sepsis to alter hypodynamic sepsis to hyperdynamic sepsis.
Results: In the control group, all monitored flow data remained stable throughout the study. During the hypodynamic phase of sepsis, cardiac output, superior mesenteric artery flow, and microcirculatory blood flow in the gastric mucosa decreased by 45%, 51%, and 40%, respectively, compared to baseline (P < 0.01 in all). Microcirculatory blood flow in the muscularis of the stomach, jejunum, and colon decreased by 55%, 64%, and 70%, respectively (P < 0.001 in all). In contrast, flow in the jejunal and colonic mucosa remained virtually unchanged. During the hyperdynamic phase of sepsis, there was a threefold increase in cardiac output and superior mesenteric artery flow. Blood flow in the gastric, jejunal, and colonic mucosa also increased (22%, 24%, and 31% above baseline, respectively). Flow in the muscularis of the stomach returned to baseline, while in the jejunum and colon, flow in the muscularis remained significantly below baseline (55% and 45%, respectively, P < 0.01). 相似文献
Methods: Mothers and children (aged 2-12 yr) undergoing outpatient, elective surgery and general anesthesia were enrolled in this study (n = 289 dyads). Items to assess motivation for parental presence during induction were selected by experts in anesthesiology, psychology, and child development; mothers completed the resulting 14-item measure as well as assessments of anxiety and coping style. Children's anxiety and compliance was assessed during induction of anesthesia. Factor analysis was performed, and maternal motivation was then examined against children's anxiety during induction of anesthesia.
Results: Factor analysis resulted in four scales with a total variance of 72.3%: MPPIA-Desire, MPPIA-Hesitancy, MPPIA-Anxiety, and MPPIA-Preparation. Analysis supported the reliability (0.89-0.94) and validity of the MPPIA. The authors found that mothers with high MPPIA-Desire and low MPPIA-Hesitancy had children with significantly higher anxiety (P < 0.0001) during induction of anesthesia, as compared with mothers with low MPPIA-Desire and MPPIA-Hesitancy. The authors also found that highly motivated mothers reported significantly higher levels of anxiety (P = 0.007). 相似文献
Methods: Twenty ASA physical status patients (four groups, five in each) anesthetized with either isoflurane or halothane (1 MAC) during normo- or hypocapnia (PaCO2 5.6 or 4.2 kPa (42 or 32 mmHg)) were investigated with a two-dimensional CBF measurement (CBFxenon, intravenous133 xenon washout technique) and a three-dimensional method for measurement of the regional CBF (rCBF) distribution with single photon emission computer-aided tomography (SPECT;99m Tc-HMPAO). In the presentation of SPECT data, the mean CBF of the brain was defined as 100%, and all relative flow values are related to this value.
Results: The mean CBFxenon level was significantly influenced by the PaCO2 as well as by the anesthetic used. At normocapnia, patients anesthetized with halothane had a mean CBFxenon of 40 plus/minus 3 (SE) ISI units. With isoflurane, the flow was significantly (P < 0.01, 33 plus/minus 3 ISI units) less than with halothane. Hypocapnia decreased mean CBFxenon (P < 0.0001) during both anesthetics (halothane 24 plus/minus 3, isoflurane 13 plus/minus 2 ISI units). The effects on CBFxenon, between the anesthetics, differed significantly (P < 0.01) also during hypocapnia. There were significant differences in rCBF distribution measured between the two anesthetics (P < 0.05). During isoflurane anesthesia, there was a relative increase in flow values in subcortical regions (thalamus and basal ganglia) to 10-15%, and in pons to 7-10% above average. Halothane, in contrast, induced the highest relative flow levels in the occipital lobes, which increased by approximately 10% above average. The rCBF level was increased approximately 10% in cerebellum with both anesthetics. Changes in PaCO2 did not alter the rCBF distribution significantly. 相似文献
Methods: Healthy women undergoing minor gynecologic surgery were randomly assigned to receive 2.5 [mu]g/kg scopolamine or 10 [mu]g/kg atropine intramuscularly (n = 50/group). In both groups, anesthesia was induced and maintained with propofol as a 2.5-mg/kg bolus, followed by 12 mg [middle dot] kg-1 [middle dot] h-1 as a continuous infusion and 70% nitrous oxide in oxygen. Two interviews regarding dreaming activity and characteristics were conducted at 20 min and 6 h after surgery.
Results: None of the patients in the scopolamine group and 47% of the patients in the atropine group reported the occurrence of dreams 20 min after recovery. The results were similar at 6 h: 6% of the scopolamine group and 43% of the atropine group reported dream activity. No differences in sedation or anesthetic requirements were found. 相似文献
Methods: In a porcine model (n = 9) in which clinical conditions for anesthesia and microvascular surgery were simulated, latissimus dorsi free flaps were transferred to the lower extremity. Total blood flow in the flaps was measured using ultrasound flowmetry and microcirculatory flow was measured using laser Doppler flowmetry. The effects of sodium nitroprusside and phenylephrine were studied during local infusion through the feeding artery of the flap and during systemic administration.
Results: Systemic sodium nitroprusside caused a 30% decrease in mean arterial pressure, but cardiac output did not change. The total flow in the flap decreased by 40% (P < 0.01), and microcirculatory flow decreased by 23% in the skin (P < 0.01) and by 30% in the muscle (P < 0.01) of the flap. Sodium nitroprusside infused locally into the flap artery increased the total flap flow by 20% (P < 0.01). Systemic phenylephrine caused a 30% increase in mean arterial pressure, whereas heart rate, cardiac output, and flap blood flow did not change. Local phenylephrine caused a 30% decrease (P < 0.01) in the total flap flow. 相似文献
Methods: Fifty-nine asymptomatic asthmatic and 96 nonasthmatic patients of ASA physical status 1 and 2 were studied. All patients received 1.5 micro gram/kg fentanyl, oxygen, followed by either 5 mg/kg thiopental or thiamylal, 1.75 mg/kg methohexital or 2.5 mg/kg propofol, 1.5 mg/kg succinylcholine, tracheal intubation, and inhalational anesthesia. Wheezing was assessed by an independent blinded observer auscultating the lungs at 2 and 5 min postintubation. Data were analyzed by Pearson's chi-squared, Fisher's exact test, and multiple logistic regression with significance set at P < 0.05.
Results: Both asthmatic and nonasthmatic patients who received a thiobarbiturate for induction had a greater incidence of wheezing than did patients receiving propofol. In asthmatic patients, 45% (23, 67) (mean and 95% confidence interval) who received a thiobarbiturate, 26% (8, 44) who received an oxybarbiturate, and none (0, 17) who received propofol wheezed after intubation. In nonasthmatic patients, 16% (3, 28) who received thiobarbiturate and 3% (0, 9) who received propofol wheezed. 相似文献
Methods: Fifteen adult subjects receiving general anesthesia were ventilated first with a combined oral-nasal mask and then with only a nasal mask. The patient's head was maintained in a neutral position, without head extension or lower jaw thrust. Respiratory parameters were recorded simultaneously from both the nasal and oral masks regardless of ventilation approach.
Results: The volume of carbon dioxide removed per breath during nasal mask ventilation (median, 5.0 ml; interquartile range, 3.4-8.8 ml) was significantly larger than that during combined oral-nasal mask ventilation (median, 0.0 ml; interquartile range, 0.0-0.4 ml; P = 0.001); even the peak inspiratory airway pressure during nasal ventilation (16.7 +/- 2.7 cm H2O) was lower than that during combined oral-nasal ventilation (24.5 +/- 4.7 cm H2O; P = 0.002). The expiratory tidal volume during nasal ventilation (259.8 +/- 134.2 ml) was also larger than that during combined oral-nasal ventilation (98.9 +/- 103.4 ml; P = 0.003). 相似文献