首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 823 毫秒
1.
Apolipoprotein E, the major brain lipid-binding protein, is expressed in humans as three common isoforms (E2, E3 and E4). Previous studies revealed that the allele apolipoprotein E4 is a major genetic risk factor of Alzheimer's disease and that traumatic brain injury is associated with increased risk for developing this disease. Furthermore, it has been suggested that the effects of traumatic head injury and apolipoprotein E4 in Alzheimer's disease are synergistic. To test the hypothesis that the apolipoprotein E genotype affects susceptibility to brain injury, we subjected transgenic mice, expressing either human apolipoprotein E3 or human apolipoprotein E4 on a null mouse apolipoprotein E background and apolipoprotein E-deficient knockouts, to closed head injury and compared mortality, neurological recovery and the extent of brain damage of the survivors. More than 50% of the transgenic mice expressing human apolipoprotein E4 died following closed head injury, whereas only half as many of the transgenic mice expressing human apolipoprotein E3, and of the control and apolipoprotein E-deficient mice died during this period (P<0.02). A neurological severity score used for clinical assessment of the surviving mice up to 11 days after closed head injury revealed that the four mouse groups displayed similar severity of damage at 1h following injury. At three and 11 days post-injury, however, the neurological severity scores of the transgenic mice expressing human apolipoprotein E3 were significantly lower than those of the other three groups whose scores were similar, indicating better recovery of the transgenic mice expressing human apolipoprotein E3. Histopathological examination of the mice performed 11 days post-injury revealed, consistent with the above neurological results, that the size of the damaged brain area of the transgenic mice expressing human apolipoprotein E3 was smaller than that of the other head-injured groups.These findings show that transgenic mice expressing human apolipoprotein E4 are more susceptible than those expressing apolipoprotein E3 to closed head injury. We suggest that this effect is due to both a protective effect of apolipoprotein E3 and an apolipoprotein E4-related pathological function.  相似文献   

2.
The apolipoprotein E epsilon4 allele contributes to the genetic susceptibility underlying a large proportion (~40-60%) of typical, sporadic Alzheimer disease. Apolipoprotein E deficient mice made transgenic for human apolipoprotein E epsilon4 accumulate excess cerebral amyloid when compared to similarly prepared mice expressing human apolipoprotein E epsilon3. Therefore, it is important to search for relevant interactions(s) between apolipoprotein E epsilon4 and Abeta in order to clarify the biological role for apolipoprotein E epsilon4 in Alzheimer disease. Using a thioflavine T (ThT)-based assay, we have investigated the effects of native human apolipoprotein E isoforms on the kinetics of Abeta fibrillogenesis. No obvious profibrillogenic activity was detected in Abeta1-40-based assays of any native apolipoprotein E isoform. However, when ThT assays were repeated using Abeta1-42, modest, but statistically significant, profibrillogenic activity was detected in both apolipoprotein E epsilon3- and apolipoprotein E epsilon4-containing media and was similar in magnitude for the two isoforms. These data demonstrate that native apolipoprotein E possesses "pathological chaperone"-type activity for Abeta: in other words, the data indicate that a chaperone-like misfolding reaction can occur between native apolipoprotein E and Abeta. However, the equipotent activities of the apolipoprotein E epsilon3 and epsilon4 isoforms suggests the possibility that either extended co-incubation of apolipoprotein E and Abeta, or, perhaps, the inclusion in the reaction of other fibrillogenesis-modulation co-factors (such as metal ions, or inflammatory mediators such as reactive oxygen species, alpha2-macroglobulin, apolipoprotein J, etc.) may be required for modeling in vitro the apolipoprotein E-isoform-specific-regulation of extracellular Abeta accumulation that occurs in vivo. Alternatively, other events, such as differential apolipoprotein E-isoform-mediated clearance of Abeta or of apolipoprotein E/Abeta complexes may underlie apolipoprotein E-isoform-dependent Abeta accumulation.  相似文献   

3.
Previous studies suggest that traumatic brain injury is associated with increased risk factor for developing Alzheimer's disease. Furthermore, the extent of the risk seems to be most pronounced in Alzheimer's disease patients who carry the ε4 allele of apolipoprotein E, suggesting a connection between susceptibility to head trauma and the apolipoprotein E genotype. Apolipoprotein E-deficient mice provide a useful model for investigating the role of this lipoprotein in neuronal maintenance and repair. In the present study apolipoprotein E-deficient mice and a closed head injury experimental paradigm were used to examine the role of apolipoprotein E in brain susceptibility to head trauma and in neuronal repair. Apolipoprotein E-deficient mice were assessed up to 40 days after closed head injury for neurological and cognitive functions, as well as for histopathological changes in the hippocampus. A neurological severity score used for clinical assessment revealed more severe motor and behavioural deficits in the apolipoprotein E-deficient mice than in the controls, the impairment persisting for at least 40 days after injury. Performance in the Morris water maze, which tests spatial memory, showed a marked learning deficit of the apolipoprotein E-deficient mice when compared with injured controls, which was apparent for at least 40 days. At this time, histopathological examination revealed overt neuronal cell death bilaterally in the hippocampus of the injured apolipoprotein E-deficient mice.

The finding that apolipoprotein E-deficient mice exhibit an impaired ability to recover from closed head injury suggests that apolipoprotein E plays an important role in neuronal repair following injury and highlights the applicability of this mouse model to the study of the cellular and molecular mechanisms involved.  相似文献   


4.
The apolipoprotein E ε4 allele contributes to the genetic susceptibility underlying a large proportion (~40–60%) of typical, sporadic Alzheimer disease. Apolipoprotein E deficient mice made transgenic for human apolipoprotein E ε4 accumulate excess cerebral amyloid when compared to similarly prepared mice expressing human apolipoprotein E ε3. Therefore, it is important to search for relevant interactions(s) between apolipoprotein E ε4 and Aβ in order to clarify the biological role for apolipoprotein E ε4 in Alzheimer disease. Using a thioflavine T (ThT)-based assay, we have investigated the effects of native human apolipoprotein E isoforms on the kinetics of Aβ fibrillogenesis. No obvious profibrillogenic activity was detected in Aβ1-40-based assays of any native apolipoprotein E isoform. However, when ThT assays were repeated using Aβ1-42, modest, but statistically significant, profibrillogenic activity was detected in both apolipoprotein E ε3- and apolipoprotein E ε4-containing media and was similar in magnitude for the two isoforms. These data demonstrate that native apolipoprotein E possesses "pathological chaperone"-type activity for Aβ: in other words, the data indicate that a chaperone-like misfolding reaction can occur between native apolipoprotein E and Aβ. However, the equipotent activities of the apolipoprotein E ε3 and ε4 isoforms suggests the possibility that either extended co-incubation of apolipoprotein E and Aβ, or, perhaps, the inclusion in the reaction of other fibrillogenesis-modulation co-factors (such as metal ions, or inflammatory mediators such as reactive oxygen species, α2-macroglobulin, apolipoprotein J, etc.) may be required for modeling in vitro the apolipoprotein E-isoform-specific-regulation of extracellular Aβ accumulation that occurs in vivo. Alternatively, other events, such as differential apolipoprotein E-isoform-mediated clearance of Aβ or of apolipoprotein E/Aβ complexes may underlie apolipoprotein E-isoform-dependent Aβ accumulation.  相似文献   

5.
Apolipoprotein E (apoE) is a 34 kDa glycoprotein with three distinct isoforms in the human population (apoE2, apoE3 and apoE4) known to play a major role in differentially influencing risk to, as well as outcome from, disease and injury in the central nervous system. In general, the apoE4 allele is associated with poorer outcomes after disease or injury, whereas apoE3 is associated with better responses. The extent to which different apoE isoforms influence degenerative and regenerative events in the peripheral nervous system (PNS) is still to be established, and the mechanisms through which apoE exerts its isoform-specific effects remain unclear. Here, we have investigated isoform-specific effects of human apoE on the mouse PNS. Experiments in mice ubiquitously expressing human apoE3 or human apoE4 on a null mouse apoE background revealed that apoE4 expression significantly disrupted peripheral nerve regeneration and subsequent neuromuscular junction re-innervation following nerve injury compared with apoE3, with no observable effects on normal development, maturation or Wallerian degeneration. Proteomic isobaric tag for relative and absolute quantitation (iTRAQ) screens comparing healthy and regenerating peripheral nerves from mice expressing apoE3 or apoE4 revealed significant differences in networks of proteins regulating cellular outgrowth and regeneration (myosin/actin proteins), as well as differences in expression levels of proteins involved in regulating the blood-nerve barrier (including orosomucoid 1). Taken together, these findings have identified isoform-specific roles for apoE in determining the protein composition of peripheral nerve as well as regulating nerve regeneration pathways in vivo.  相似文献   

6.
Apolipoprotein E genotype is an important risk factor of Alzheimer's disease, which is associated with the degeneration of distinct brain neuronal systems. In the present study we employed apolipoprotein E-deficient mice and human apolipoprotein E3 and apolipoprotein E4 transgenic mice on a null mouse apolipoprotein E background, to examine the extent to which distinct brain neuronal systems are affected by apolipoprotein E and the isoform specificity of this effect. This was pursued by histological and autoradiographic measurements utilizing neuron specific presynaptic markers. The results thus obtained revealed significant reductions in the levels of brain cholinergic and noradrenergic nerve terminals in young apolipoprotein E-deficient mice and no changes in brain dopaminergic nerve terminals. These cholinergic and noradrenergic presynaptic derangements were ameliorated similarly in human apolipoprotein E3 and apolipoprotein E4 transgenic mice. In the case of the cholinergic system, this resulted in complete reversal of the presynaptic deficits, whereas in the case of the noradrenergic neurons the amelioration was partial.These findings suggest that brain cholinergic and noradrenergic neurons are markedly more dependent on brain apolipoprotein E than brain dopaminergic neurons and that the isoform specificity of these effects is not apparent at a young age under non-challenged conditions.  相似文献   

7.
To investigate the relationship between the three isoforms of apolipoprotein E (E2, E3 and E4) and the integrity of the synaptic circuitry in the dentate gyrus of the hippocampus, we have estimated the synapse per neuron ratio and mean apposition zone area per synapse at the electron microscope level in the dentate gyrus of apolipoprotein E knockout and human apolipoprotein E transgenic mice aged six to 24months. During ageing, only in human apolipoprotein E4 mice was there a decrease in synapse per neuron ratio, accompanied by an increase in synaptic size. When these mice were compared with human apolipoprotein E2, apolipoprotein E knockout and wild-type mice at old age, they displayed the lowest synapse per neuron ratio, but similar apposition zone area. In contrast, as in our previous study, aged apolipoprotein E knockout mice did not show any sign of synaptic degeneration.The functional consequences of such morphological changes remain to be determined. However, if such age-related loss of synapses occurred in the brain of Alzheimer apolipoprotein E4 patients, they might be additive to pathological processes and could contribute to greater cognitive impairment.  相似文献   

8.
The 4 allele of apolipoprotein E gene is a major risk factor for Alzheimer's disease. However, the mechanism by which the E4 isoform of apolipoprotein E increases the risk of Alzheimer's disease is poorly understood. To determine whether the isoform-specific effects of apolipoprotein E may be mediated via clearance of bound β-amyloid, we examined the uptake of β-amyloid 1–40 into Chinese hamster ovary cells in the presence or absence of the apolipoprotein E isoforms E2, E3 and E4. Apolipoprotein E2 and E3 treatments were associated with higher association of β-amyloid with cells as compared to treatment with E4. Heparin blocked the association of β-amyloid with cells, as did an antibody to one of the apolipoprotein E receptors (the low-density lipoprotein receptor-related protein).

Thus, the apolipoproteins E2 and E3, but not E4, may play important roles in the clearance of β-amyloid from the extracellular space via the low-density lipoprotein receptor-related protein.  相似文献   


9.
10.
Apolipoprotein E (apoE) modifies glial activation and the CNS inflammatory response in an isoform-specific manner. Peptides derived from the receptor-binding region of apoE have been demonstrated to maintain the functional activity of the intact protein, and to improve histological and functional deficits after closed head injury. In the current study, APOE2, APOE3, and APOE4 targeted replacement (TR) mice expressing the human apoE protein isoforms (apoE2, apoE3 and apoE4) were used in a clinically relevant model of closed head injury to assess the interaction between the humanized apoE background and the therapeutic apoE mimetic peptide, apoE(133-149). Treatment with the apoE-mimetic peptide reduced microglial activation and early inflammatory events in all of the targeted replacement animals and was associated with histological and functional improvement in the APOE2TR and APOE3TR animals. Similarly, brain beta amyloid protein (Abeta)(1-42) levels were increased as a function of head injury in all of the targeted replacement mice, while treatment with apoE peptide suppressed Abeta(1-42) levels in the APOE2TR and APOE3TR animals. These results suggest a pharmacogenomic interaction between the therapeutic effects of the apoE mimetic peptide and the human apoE protein isoforms. Furthermore, they suggest that administration of apoE-mimetic peptides may serve as a novel therapeutic strategy for the treatment of acute and chronic neurological disease.  相似文献   

11.
Apolipoprotein E (apoE) is the major apolipoprotein in the brain and is known for its important role in plasticity and neurodegeneration. We show that apoE dose-dependently increases intracellular free Ca2+ in rat hippocampal astrocytes and neurons. This effect varies with isoforms in the order E4>E3>E2. It is insensitive to blockade of action potentials by tetrodotoxin or inhibition of binding of apoE by heparinase, by the LRP ligand lactoferrin and by low density lipoprotein. ApoE evoked Ca2+-increases are blocked in zero [Ca]o and by the Ca-channel antagonists nickel and ω-Agatoxin-IVa but not by nifedipine and ω-Conotoxin-GVIa, demonstrating an isoform-specific activation of P/Q type Ca2+-channels. This novel mechanism is discussed with respect to Alzheimer's disease, that is linked for most cases to the apoE ε-allelic variation (ε4 > ε3 > ε2).  相似文献   

12.
Ji Y  Gong Y  Gan W  Beach T  Holtzman DM  Wisniewski T 《Neuroscience》2003,122(2):305-315
Dendritic spines are postsynaptic sites of excitatory input in the mammalian nervous system. Apolipoprotein (apo) E participates in the transport of plasma lipids and in the redistribution of lipids among cells. A role for apoE is implicated in regeneration of synaptic circuitry after neural injury. The apoE4 allele is a major risk factor for late-onset familial and sporadic Alzheimer's disease (AD) and is associated with a poor outcome after brain injury. ApoE isoforms are suggested to have differential effects on neuronal repair mechanisms. In vitro studies have demonstrated the neurotrophic properties of apoE3 on neurite outgrowth. We have investigated the influence of apoE genotype on neuronal cell dendritic spine density in mice and in human postmortem tissue. In order to compare the morphology of neurons developing under different apoE conditions, gene gun labeling studies of dendritic spines of dentate gyrus (DG) granule cells of the hippocampus were carried out in wild-type (WT), human apoE3, human apoE4 expressing transgenic mice and apoE knockout (KO) mice; the same dendritic spine parameters were also assessed in human postmortem DG from individuals with and without the apoE4 gene. Quantitative analysis of dendritic spine length, morphology, and number was carried out on these mice at 3 weeks, 1 and 2 years of age. Human apoE3 and WT mice had a higher density of dendritic spines than human E4 and apoE KO mice in the 1 and 2 year age groups (P<0.0001), while at 3 weeks there were no differences between the groups. These age dependent differences in the effects of apoE isoforms on neuronal integrity may relate to the increased risk of dementia in aged individuals with the apoE4 allele. Significantly in human brain, apoE4 dose correlated inversely with dendritic spine density of DG neurons cell in the hippocampus of both AD (P=0.0008) and aged normal controls (P=0.0015). Our findings provide one potential explanation for the increased cognitive decline seen in aged and AD patients expressing apoE4.  相似文献   

13.
Heart protein expression related to age and sex in mice and humans   总被引:1,自引:0,他引:1  
Cardiovascular diseases are known to manifest different clinical symptoms in men and women. Basically this is due to gender-specific genotypes and sexual hormones. We studied gender specificity on the protein expression level in the mouse and human heart, with particular emphasis on the age-dependency of sex-specific protein expression. We first studied the heart proteome in female and male mice at 14 and 100 weeks of age using two-dimensional electrophoresis and mass spectrometry. Protein pattern comparison in young and old mice revealed 7 and 22 protein spots with sex-related expression profiles, respectively. Four proteins co-changed in both age groups. The variant protein spots were identified and revealed 10 distinct proteins and several isoforms thereof: alpha1-antitrypsin (3 isoforms), apolipoprotein A2 (2 isoforms), apolipoprotein A4 (3 isoforms), apolipoprotein E, apolipoprotein J (3 isoforms), carbonic anhydrase 2 (6 isoforms), desmin, nitrilase 1, peroxiredoxin 2 and Rho GDP dissociation inhibitor alpha (2 isoforms). More sex-related proteins were detected in old than in young mice. Through 2DE protein pattern and immunoblot comparisons, six of the variant proteins detected in mice were also observed to change in an age- and sex-dependent manner in the human heart. The age and/or gender-related proteins and species differences in this regard are discussed in terms of cardiovascular disease.  相似文献   

14.
We investigated the effect of the noradrenergic neurotoxin, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) (1 or 3 x 50 mg/kg, intraperitoneally), on hippocampal, cortical and cerebellar noradrenaline levels after recovery of one, five and 11 months in control and apolipoprotein E-deficient mice. Apolipoprotein E-deficient mice had lower hippocampal noradrenaline levels than control mice. DSP-4-lesioned control mice had a more extensive recovery of hippocampal and cortical noradrenaline levels than DSP-4-lesioned apoE-deficient mice after five months' survival. Furthermore, the hippocampal noradrenaline levels after five and 11 months and cortical noradrenaline levels after five months of recovery had slightly recovered in control but not in apolipoprotein E-deficient mice treated with a single dose of DSP-4 compared with mice treated with three doses of DSP-4. These results show that apolipoprotein E-deficient mice have impaired recovery capacity in their locus coeruleus neurons.  相似文献   

15.
The mechanism linking the APOE4 gene with increased susceptibility for Alzheimer's disease (AD) and poorer outcomes following closed head injury and stroke is unknown. One potential link is activation of the innate immune system in the CNS. Our previously published data demonstrated that apolipoprotein E regulates production of nitric oxide, a critical cytoactive factor released by immune active macrophages. To determine if immune regulation is different in the presence of apolipoprotein E4 compared to apolipoprotein E3, we have measured NO production by peritoneal and CNS macrophages (microglia) cultured from transgenic mice that only express the human apoE4 or apoE3 protein isoform. Significantly more NO was produced in APOE4 mice compared to APOE3 transgenic mice that only express human apoE3 protein. Similarly, monocyte derived macrophages from humans carrying APOE4 gene alleles also produce significantly greater NO than those individuals with APOE3. The mechanism for this isoform-specific difference in NO production is not known and multiple sites in the NO production pathway may be affected. Expression of inducible nitric oxide synthase (iNOS) mRNA and protein are not significantly different between the APOE3 and APOE4 mice, suggesting that induction of iNOS is not a primary cause of the increased NO production in APOE4 animals. One alternative regulatory mechanism that demonstrates isoform specificity is arginine transport, which is greater in microglia from APOE4 transgenic mice compared to microglia from APOE3 mice. Increased transport is consistent with an increased production of NO and may reflect a direct or indirect effect of the APOE genotype on microglial arginine uptake and microglial activation in general. Overall, greater NO production in APOE4 carriers where characteristically high levels of oxidative/nitrosative stress are found in diseases such as AD provides a mechanism that potentially explains the genetic association between APOE4 and human diseases.  相似文献   

16.

OBJECTIVE:

Apolipoprotein E4 may benefit children during early periods of life when the body is challenged by infection and nutritional decline. We examined whether apolipoprotein E4 affects intestinal barrier function, thereby improving short-term growth and long-term cognitive outcomes in Brazilian shantytown children.

METHODS:

A total of 213 Brazilian shantytown children with below-median height-for-age z-scores (HAZ) received 200,000 IU of retinol (every four months), zinc (40 mg twice weekly), or both for one year, with half of each group receiving glutamine supplementation for 10 days. Height-for-age z-scores, weight-for-age z-scores, weight-for-height z-scores, and lactulose:mannitol ratios were assessed during the initial four months of treatment. An average of four years (range 1.4-6.6) later, the children underwent cognitive testing to evaluate non-verbal intelligence, coding, verbal fluency, verbal learning, and delayed verbal learning. Apolipoprotein E4 carriage was determined by PCR analysis for 144 children.

RESULTS:

Thirty-seven children were apolipoprotein E4(+), with an allele frequency of 13.9%. Significant associations were found for vitamin A and glutamine with intestinal barrier function. Apolipoprotein E4(+) children receiving glutamine presented significant positive Pearson correlations between the change in height-for-age z-scores over four months and delayed verbal learning, along with correlated changes over the same period in weight-for-age z-scores and weight-for-height z-scores associated with non-verbal intelligence quotients. There was a significant correlation between vitamin A supplementation of apolipoprotein E4(+) children and improved delta lactulose/mannitol. Apolipoprotein E4(-) children, regardless of intervention, exhibited negative Pearson correlations between the change in lactulose-to-mannitol ratio over four months and verbal learning and non-verbal intelligence.

CONCLUSIONS:

During development, apolipoprotein E4 may function concomitantly with gut-tropic nutrients to benefit immediate nutritional status, which can translate into better long-term cognitive outcomes.  相似文献   

17.
Microglia are a primary cellular component of the CNS innate immune system. Their response to conserved pathogen motifs is inherent and leads to the release of cytoactive factors that impact surrounding neurons and glia. The microglial response is modified by the local tissue environment and by "global" factors such as gender. Exposure to estrogen and testosterone, in general, down regulate microglia and peripheral macrophage function, promoting an anti-inflammatory phenotype. Other global factors, however, can "override" the gender-based effects demonstrated by estrogen or testosterone. Apolipoprotein E (APOE) genotype and the expression of specific isoforms of apolipoprotein E differentially regulate microglial and peripheral macrophage function. Our studies have shown that the presence of the APOE4 gene, a known risk factor for AD and other neurodegenerative diseases, promotes a pro-inflammatory macrophage phenotype in neonatal microglia. However, in adult mice, the APOE genotype-specific effect depends on gender. Peritoneal macrophages from female adult APOE3 and APOE4 targeted replacement mice do not demonstrate an APOE genotype-specific response, whereas adult male APOE4 targeted replacement mice show enhanced macrophage responsiveness compared to adult male APOE3 mice. At least part of the altered macrophage response in APOE4 male mice may be due to differences in androgen receptor sensitivity to testosterone. These data re-enforce the concept that classical activation in macrophages has multiple levels of regulation, dictated by competing or synergistic factors and genotype.  相似文献   

18.
The accumulation of tubular aggregates in type II skeletal muscle fibres and fibrillo-granular inclusions in hippocampal protoplasmic astrocytes are characteristic lesions of apolipoprotein E deficient mice. Moreover these inclusions reacted immunocytochemically with an antibody specific to fragment 17-24 of the published sequence of Alzheimer's amyloid peptide. In an effort to evaluate the role of apolipoprotein E in the formation of these abnormal structures, we examined the tibialis anterior muscle and the hippocampus of several groups of animals including: (i) apolipoprotein E "knockout" mice which had been whole body irradiated with 1200 rads and bone marrow replenished with apolipoprotein E sufficient marrow; and (ii) three transgenic murine strains that had been genetically engineered to express either human apolipoprotein E2, E3 or E4 protein on an apoE deficient background. The results of this study showed that the presence of murine apolipoprotein E (even in subnormal levels in the serum) in irradiated bone marrow replenished mice and in all three (E2, E3 or E4) human apoE transgenic strains was sufficient to prevent the aggregation of sarcoplasmic tubules in the tibialis anterior type II muscle fibres. Similarly apolipoprotein E "knockout" bone marrow replenished mice and all three transgenic strains expressing the different human apolipoprotein E alleles reduced the number of the astrocytic inclusions in the hippocampus to levels not significantly different to those observed in control C57Bl6J animals.The data obtained in this study indicate that neurological and neuromuscular abnormalities found in apoE deficient mice are reversed when apoE protein is replaced in the circulation, either by bone marrow transplantation of normal apoE sufficient marrow, or by gene therapy with the apoE gene, albeit of human origin and irrespective of the allele used.  相似文献   

19.
The human APOE4 allele is associated with an early age of onset and increased risk of Alzheimer's disease (AD). Apolipoprotein E is secreted as part of a high-density lipoprotein-like particle by glial cells in the brain for the primary purpose of transport of lipophilic compounds involved in the maintenance of synapses. Previous studies examining synaptic integrity in the amygdala of human apoE targeted replacement (TR) mice showed a decrease in spontaneous excitatory synaptic activity, dendritic arbor, and spine density associated with apoE4 compared with apoE3 and apoE2 in adult male mice. In the present study, we assessed how APOE genotype affects synaptic integrity of amygdala neurons by comparing electrophysiological and morphometric properties in human apoE3, E4, and E2/4 TR mice at the age of 18–20 months. In contrast to adult mice, we found that aged apoE4 TR mice exhibited the highest level of excitatory synaptic activity compared with other cohorts. Additionally, apoE4 mice had significantly greater spontaneous inhibitory activity than all other cohorts. Taken together, there was a significant interaction between genotypes when comparing inhibition relative to excitation; there was a simple main effect of frequency type with an imbalance toward inhibition in apoE4 mice but not in apoE3 or apoE2/4 mice. These results suggest that apoE isoforms differentially influence synaptic transmission throughout the life span, where aging coupled with apoE4 expression, results in an imbalance in maintaining integrity of synaptic transmission.  相似文献   

20.
Apolipoprotein E isoforms may have differential effects on a number of pathological processes underlying Alzheimer's disease. Recent studies suggest that the amount, rather than the type, of apolipoprotein E may also be an important determinant for Alzheimer's disease. Therefore, understanding the regulated synthesis of apolipoprotein E is important for determining its role in Alzheimer's disease.We show here that in rat primary hippocampal astrocyte cultures, dibutyryl-cAMP increased apolipoprotein E secretion with time in a dose-dependent manner (to 177% at 48 h) and that retinoic acid potentiated this effect (to 298% at 48 h). Dibutyryl-cAMP also gave a rapid, albeit transient, increase of apolipoprotein E mRNA expression (to 200% at 1 h). In contrast, the protein kinase C activator phorbol 12-myristate 13-acetate decreased both apolipoprotein E secretion (to 59% at 48 h) and mRNA expression (to 22% at 1 h). Phorbol 12-myristate 13-acetate also reversed the effects of dibutyryl-cAMP. Apolipoprotein E secretion was also modulated by receptor agonists for the adenylyl cyclase/cAMP pathway. Isoproterenol (50 nM, a beta-adrenoceptor agonist) enhanced, while clonidine (250 nM, an alpha2-adrenoceptor agonist) decreased, secreted apolipoprotein E. We also analysed the effects of agonists for the phospholipase C/protein kinase C pathway. Arterenol (1 microM, an alpha1-adrenoceptor agonist) and serotonin (2.5 microM) enhanced, whereas carbachol (10 microM, an acetylcholine muscarinic receptor agonist) decreased secreted apolipoprotein E. The effects of these non-selective receptor agonists were modest, probably due to effects on different signalling pathways. Arterenol also potentiated the isoproterenol-mediated increase. We also show that phorbol 12-myristate 13-acetate and dibutyryl-cAMP have opposite effects on nerve growth factor, as compared to apolipoprotein E, secretion, suggesting that the results obtained were unlikely to be due to a general effect on protein synthesis.We conclude that astrocyte apolipoprotein E production can be regulated by factors that affect cAMP intracellular concentration or activate protein kinase C. Alterations in these signalling pathways in Alzheimer's disease brain may have consequences for apolipoprotein E secretion in this disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号