共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
CD4+CD25+T细胞在CD8+T细胞抗肿瘤免疫中的调节作用 总被引:2,自引:0,他引:2
实验旨在研究CD4^+CD25^+T细胞在CD8^+T细胞抗肿瘤免疫中的调节作用。将小鼠脾脏中分离的单个核细胞分为两组.即去除CD4^+CD25^+T细胞组和未去除CD4^+CD25^+T细胞组,测定树突状细胞提呈的肿瘤抗原多肽刺激不同T细胞增殖活性、细胞因子IFN一1分泌,以及多肽特异性CD8^+T细胞对同源性胃癌细胞株MFC的杀伤活性。结果显示预先去除未致敏T细胞中的CD4^+CD25^+T细胞,所诱导的特异性CD8^+CTL对肿瘤细胞免疫应答增强,表现为反应性T细胞对树突状细胞提呈的肿瘤抗原多肽增殖反应增强,IFN-γ分泌量提高及CD8+T细胞对MFC杀伤活性增强。这些结果表明。预先去除未致敏T细胞中的CD4^+CD25^+T细胞,肿瘤抗原多肽修饰的树突状细胞肿瘤疫苗效能可明显增加。CD4^+CD25^+T细胞在CD8^+T细胞抗肿瘤免疫中起下调作用。 相似文献
3.
Upregulation of CD4 on CD8+ T cells: CD4dimCD8bright T cells constitute an activated phenotype of CD8+ T cells 总被引:4,自引:0,他引:4
Yvonne B Sullivan Alan L Landay Jerome A Zack Scott G Kitchen Lena Al-Harthi 《Immunology》2001,103(3):270-280
Aside from an intermediate stage in thymic T-cell development, the expression of CD4 and CD8 is generally thought to be mutually exclusive, associated with helper or cytotoxic T-cell functions, respectively. Stimulation of CD8+ T cells, however, induces the de novo expression of CD4. We demonstrate that while superantigen (staphylococcal enterotoxin B, SEB) and anti-CD3/CD28 costimulation of purified CD8+ T cells induced the expression of CD4 on CD8+ T cells by 30 and 17%, respectively, phytohaemagglutinin (PHA) stimulation did not induce CD4 expression on purified CD8+ T cells but significantly induced the expression of both CD4 on CD8 (CD4dimCD8bright) and CD8 on CD4 (CD4brightCD8dim) T cells in unfractionated peripheral blood mononuclear cells (PBMC). The level of the PHA-mediated induction of CD4dimCD8bright and CD4brightCD8dim was at 27 and 17%, respectively. Depletion of CD4+ T cells from PBMC abrogated this PHA-mediated effect. Autologous CD4+ and CD8+ T-cell co-cultures in the presence of PHA induced this CD4dimCD8bright T-cell expression by 33%, demonstrating a role for CD4 cells in the PHA-mediated induction of the double positive cells. The induction of CD4dimCD8bright was independent of a soluble factor(s). Phenotypic analysis of CD4dimCD8bright T cells indicated significantly higher levels of CD95, CD25, CD38, CD69, CD28, and CD45RO expression than their CD8+CD4- counterparts. CD4dimCD8bright T cells were also negative for CD1a expression and were predominantly T-cell receptor (TCR) alphabeta cells. Our data demonstrate that CD4dimCD8bright T cells are an activated phenotype of CD8+ T cells and suggest that CD4 upregulation on CD8+ T cells may function as an additional marker to identify activated CD8+ T cells. 相似文献
4.
Tuberculosis continues to cause considerable human morbidity and mortality worldwide, particularly in people coinfected with HIV. The emergence of multidrug resistance makes the medical treatment of tuberculosis even more difficult. Thus, the development of a tuberculosis vaccine is a global health priority. Here we review the data concerning the role of CD8+ T cells in immunity to tuberculosis and consider how CD8+ T cells can be elicited by vaccination. Many immunization strategies have the potential to elicit CD8+ T cells and we critically review the data supporting a role for vaccine-induced CD8+ T cells in protective immunity. The synergy between CD4+ and CD8+ T cells suggests that a vaccine that elicits both T-cell subsets has the best chance at preventing tuberculosis. 相似文献
5.
《Trends in immunology》2022,43(6):415-416
6.
Peripheral blood mononuclear cells of HIV-infected patients contain CD8 T cells that form conjugates with and kill HIV-infected autologous CD4 T cells 下载免费PDF全文
Ehud Chorin Orit Gal-Garber Yael Yagel Dan Turner Boaz Avidor Gideon Berke David Hassin 《Immunology》2015,144(3):412-421
Peripheral blood mononuclear cells (PBMC) of untreated, HIV-infected patients contain HIV-specific CD8 T cells as well as their corresponding targets, HIV-infected CD4 T cells. To determine if CD4 T-cell depletion in HIV-infected patients may result from autologous CD8–CD4 T-cell interaction, CD8 and CD4 T cells procured from PBMC of acute and chronic untreated HIV-infected patients were sorted and co-incubated. Formation of CD8-CD4 T-cell conjugates was observed by fluorescence microscopy. Apoptosis of CD4 T cells in conjugation was recorded by digitized images and was further observed and measured by FACS using Annexin staining. Perforin expression in the CD8 T cells was measured using intracellular monoclonal perforin antibody staining. HIV DNA in the conjugated CD4 T cells was detected by in situ PCR. We found that 6·1 ± 0·5% of CD4 T cells from acute HIV-infected patients and 3·0 ± 0·5% from chronic HIV-infected patients formed CD8–CD4 T-cell conjugates. Annexin binding and cell morphology typical of apoptosis were observed in the conjugated CD4 T cells. The majority of CD8 T cells that had conjugated to CD4 T cells expressed perforin. The conjugated CD4 T cells exhibited nuclear HIV DNA. CD8 T cells and HIV-infected CD4 T cells, both procured from the PBMC of untreated HIV-infected patients, form conjugates. Apoptotic lytic activity has been observed in the conjugated CD4 T cells. We propose that CD4 T-cell annihilation in HIV-infected patients results, at least in part, from the interactions of perforin-rich CD8 T cells with autologous, HIV-infected CD4 T cells. 相似文献
7.
Chronic antigenic stimulation leads to gradual accumulation of late-differentiated, antigen-specific, oligoclonal T cells, particularly within the CD8(+) T-cell compartment. They are characterized by critically shortened telomeres, loss of CD28 and/or gain of CD57 expression and are defined as either CD8(+) CD28(-) or CD8(+) CD57(+) T lymphocytes. There is growing evidence that the CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell population plays a significant role in various diseases or conditions, associated with chronic immune activation such as cancer, chronic intracellular infections, chronic alcoholism, some chronic pulmonary diseases, autoimmune diseases, allogeneic transplantation, as well as has a great influence on age-related changes in the immune system status. CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell population is heterogeneous and composed of various functionally competing (cytotoxic and immunosuppressive) subsets thus the overall effect of CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell-mediated immunity depends on the predominance of a particular subset. Many articles claim that CD8(+) CD28(-) (CD8(+) CD57(+)) T cells have lost their proliferative capacity during process of replicative senescence triggered by repeated antigenic stimulation. However recent data indicate that CD8(+) CD28(-) (CD8(+) CD57(+)) T cells can transiently up-regulate telomerase activity and proliferate under certain stimulation conditions. Similarly, conflicting data is provided regarding CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell sensitivity to apoptosis, finally leading to the conclusion that this T-cell population is also heterogeneous in terms of its apoptotic potential. This review provides a comprehensive approach to the CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell population: we describe in detail its origins, molecular and functional characteristics, subsets, role in various diseases or conditions, associated with persistent antigenic stimulation. 相似文献
8.
Alexander-Miller MA 《Immunologic research》2005,31(1):13-24
The primary goal of vaccination is the establishment of protective immunity. Thus there has been significant effort put toward
the identification of attributes of the immune response that are associated with optimal protection. Although the number of
virus-specific cells elicited is unquestionably important, recent studies have identified an additional parameter, functional
avidity, as critical in determining the efficiency of viral clearance. T-cell avidity is a measure of the sensitivity of a
cell to peptide antigen. High-avidity cells are those that can recognize antigen-presenting cells (APC) bearing very low levels
of peptide antigen, whereas low-avidity cells require much higher numbers of peptide major histocompatibility complex (MHC)
complexes in order to become activated or exert effector function. We are only now beginning to gain insights into the molecular
control of avidity and the signals required for the optimal activation, expansion, and retention of high-avidity cells in
vivo. This review summarizes the current knowledge regarding CD8+ T-cell avidity and explores some of the important issues that are, as of yet, unresolved. 相似文献
9.
目的 探讨小鼠脾脏CD8 T细胞的免疫磁珠负性分选方法,并对分选后所得细胞进行纯度、活力及功能检测.方法 以免疫磁珠负性分选法从小鼠脾脏细胞中分离CD8 T细胞,流式细胞术检测所得细胞的纯度,台盼蓝检测细胞活力并用ConA刺激检测增殖能力. 结果 经过流式细胞仪测定免疫磁珠负性分选后的小鼠脾脏CD8 T细胞纯度达到(91.6±3.6)%,台盼兰染色细胞活力为(94.9±3.2)%,ConA刺激72 h后有(56.3±1.7)%的细胞增殖.结论 免疫磁珠负性分选法能够分选出高纯度的CD8 T细胞,并且不影响分选靶细胞的细胞活力和功能. 相似文献
10.
Rådinger M Bossios A Alm AS Jeurink P Lu Y Malmhäll C Sjöstrand M Lötvall J 《Allergy》2007,62(12):1410-1418
BACKGROUND: The mechanisms of the distant stimulation of the bone marrow (BM) after airway allergen exposure remain largely obscure. T cells have been implicated in allergic airway inflammation but their role in allergen-induced BM eosinophilopoiesis is poorly understood. The aim of this study was to determine the role of CD4(+) and CD8(+) T cells in allergen-induced BM eosinophilopoiesis. METHODS: Ovalbumin (OVA)-sensitized wild type (WT), CD4 knockout (CD4-/-) and CD8 knockout (CD8-/-) mice were exposed intranasally to OVA or saline. Bromo-deoxyuridine (BrdU) was used to label newly produced cells. Bone marrow, blood and bronchoalveolar lavage (BAL) were sampled 24 h after the final exposure. Immunostaining for newly produced eosinophils (i.e. BrdU(+)/MBP(+)) and BM eosinophil progenitor [CD34(+)/CD45(+)/interleukin-5 (IL-5)Ralpha(+)] cells was performed. RESULTS: The number of newly produced BM eosinophils (BrdU(+)/MBP(+) cells) was significantly reduced in allergen exposed CD4-/- or CD8-/- mice compared with allergen exposed WT mice, which was followed by a subsequent decrease in newly produced blood and airway eosinophils. Furthermore, BM eosinophil progenitors were significantly reduced in allergen exposed CD4-/- and CD8-/- mice compared with WT mice. Finally, serum IL-5 and Bronchoalveolar lavage fluid eotaxin-2 levels were abolished in allergen exposed CD4-/- mice to levels seen in saline exposed WT mice. CONCLUSIONS: These data suggests that both CD4(+) and CD8(+) T cells have a regulatory role in allergen-induced BM eosinophilopoiesis, whereas CD4(+) T cells are obligatory for allergen-induced airway eosinophilia. The subsequent traffic of eosinophils to the airways is likely to be at least partly regulated by a CD4(+) T-cell-dependent local airway eotaxin-2 production. 相似文献
11.
《Immunology today》1994,15(3):107-110
During an immune response, peripheral T cells develop into functionally distinct subpopulations that effect cell-mediated immunity and regulate humoral immune responses through the secretion of specific cytokines. Recent data suggest that CD8 T cells, which have long been regarded simply as cytotoxic cells, play a more active role in the regulation of the immune response. In this article, Mike Kemeny and colleagues suggest that there are functionally distinct subsets of CD8 T cells that produce different combinations of cytokines and appear to play an important part in determining the pattern of cytokines produced by CD4 T cells and the isotype of immunoglobulins expressed by B cells. 相似文献
12.
Larissa K. Martin Andrea Schub Stefan Dillinger Andreas Moosmann 《European journal of immunology》2012,42(11):2901-2912
The importance of human herpesvirus 6 (HHV‐6) species as human pathogens is increasingly appreciated. However, we do not understand how infection is controlled in healthy virus carriers, and why control fails in patients with disease. Other persistent viruses are under continuous surveillance by antigen‐specific T cells, and specific T‐cell repertoires have been well characterized for some of them. In contrast, knowledge on HHV‐6‐specific T‐cell responses is limited, and missing for CD8+ T cells. Here we identify CD8+ T‐cell responses to HHV‐6B, the most widespread HHV‐6 species, in healthy virus carriers. HHV‐6B‐specific CD8+ T‐cell lines and clones recognized HLA‐A2‐restricted peptides from the viral structural proteins U54 and U11, and displayed various antigen‐specific antiviral effector functions. These CD8+ T cells specifically recognized HHV‐6B‐infected primary CD4+ T cells in an HLA‐restricted manner, produced antiviral cytokines, and killed infected cells, whereas HHV‐6A‐infected cells were not recognized. Thus, HHV‐6B‐specific CD8+ T cells are likely to contribute to control of infection, overcoming the immunomodulatory effects exerted by the virus. Potentially, HHV‐6‐associated disease could be addressed by active or passive immunotherapy that reconstitutes virus‐specific CD8+ T‐cell responses. 相似文献
13.
Alloantigen-induced regulatory CD8+CD103+ T cells 总被引:1,自引:0,他引:1
Regulatory T cells (Tregs) appear of great importance in the balance between alloreactivity and tolerance and subsets of both CD4(+) and CD8(+) T cells have been recognized to function as regulatory T cells after allogenic transplantation. Among the CD8(+) T-cell subsets, the CD103(+) cells were most recently identified as regulatory. In this review, we describe their phenotypical and functional properties, as well as their relevance for the alloimmune response in vivo. These CD8(+)CD103(+) Tregs are generated within mixed lymphocyte cultures (MLCs) and are elevated by additional transforming growth factor-beta. Interestingly, myeloid dendritic cells are the responsible cell type for induction of CD103(+) Tregs. Allostimulated CD8(+)CD103(+) Tregs display an antigen-experienced effector phenotype with limited effector functions such as cytotoxicity and interferon-gamma production and show a reduced proliferation capacity after restimulation. Beside this anergic phenotype, CD8(+)CD103(+) Tregs are able to suppress alloreactive effector T cells. Through intracellular cytokine staining and transwell assays, we showed that the mechanism of suppression is cytokine independent, but close cell-cell contact is required for suppression. 相似文献
14.
A. U. Engela C. C. Baan N. H. R. Litjens M. Franquesa M. G. H. Betjes W. Weimar M. J. Hoogduijn 《Clinical and experimental immunology》2013,174(3):449-458
CD28/B7 co-stimulation blockade with belatacept prevents alloreactivity in kidney transplant patients. However, cells lacking CD28 are not susceptible to belatacept treatment. As CD8+CD28− T-cells have cytotoxic and pathogenic properties, we investigated whether mesenchymal stem cells (MSC) are effective in controlling these cells. In mixed lymphocyte reactions (MLR), MSC and belatacept inhibited peripheral blood mononuclear cell (PBMC) proliferation in a dose-dependent manner. MSC at MSC/effector cell ratios of 1:160 and 1:2·5 reduced proliferation by 38·8 and 92·2%, respectively. Belatacept concentrations of 0·1 μg/ml and 10 μg/ml suppressed proliferation by 20·7 and 80·6%, respectively. Both treatments in combination did not inhibit each other''s function. Allostimulated CD8+CD28− T cells were able to proliferate and expressed the cytolytic and cytotoxic effector molecules granzyme B, interferon (IFN)-γ and tumour necrosis factor (TNF)-α. While belatacept did not affect the proliferation of CD8+CD28− T cells, MSC reduced the percentage of CD28− T cells in the proliferating CD8+ T cell fraction by 45·9% (P = 0·009). CD8+CD28− T cells as effector cells in MLR in the presence of CD4+ T cell help gained CD28 expression, an effect independent of MSC. In contrast, allostimulated CD28+ T cells did not lose CD28 expression in MLR–MSC co-culture, suggesting that MSC control pre-existing CD28− T cells and not newly induced CD28− T cells. In conclusion, alloreactive CD8+CD28− T cells that remain unaffected by belatacept treatment are inhibited by MSC. This study indicates the potential of an MSC–belatacept combination therapy to control alloreactivity. 相似文献
15.
16.
实验旨在研究CD4+CD25+T细胞在CD8+T细胞抗肿瘤免疫中的调节作用。将小鼠脾脏中分离的单个核细胞分为两组,即去除CD4+CD25+T细胞组和未去除CD4+CD25+T细胞组,测定树突状细胞提呈的肿瘤抗原多肽刺激不同T细胞增殖活性、细胞因子IFN-γ分泌,以及多肽特异性CD8+T细胞对同源性胃癌细胞株MFC的杀伤活性。结果显示预先去除未致敏T细胞中的CD4+CD25+T细胞,所诱导的特异性CD8+CTL对肿瘤细胞免疫应答增强,表现为反应性T细胞对树突状细胞提呈的肿瘤抗原多肽增殖反应增强,IFN-γ分泌量提高及CD8+T细胞对MFC杀伤活性增强。这些结果表明,预先去除未致敏T细胞中的CD4+CD25+T细胞,肿瘤抗原多肽修饰的树突状细胞肿瘤疫苗效能可明显增加。CD4+CD25+T细胞在CD8+T细胞抗肿瘤免疫中起下调作用。 相似文献
17.
B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes 总被引:79,自引:0,他引:79
CD28/B7 costimulation has been implicated in the induction and progression of autoimmune diseases. Experimentally induced models of autoimmunity have been shown to be prevented or reduced in intensity in mice rendered deficient for CD28 costimulation. In sharp contrast, spontaneous diabetes is exacerbated in both B7-1/B7-2-deficient and CD28-deficient NOD mice. These mice present a profound decrease of the immunoregulatory CD4+CD25+ T cells, which control diabetes in prediabetic NOD mice. These cells are absent from both CD28KO and B7-1/B7-2KO mice, and the transfer of this regulatory T cell subset from control NOD animals into CD28-deficient animals can delay/prevent diabetes. The results suggest that the CD28/ B7 costimulatory pathway is essential for the development and homeostasis of regulatory T cells that control spontaneous autoimmune diseases. 相似文献
18.
19.
Activated CD4+ CD25+ T cells suppress antigen-specific CD4+ and CD8+ T cells but induce a suppressive phenotype only in CD4+ T cells 总被引:4,自引:0,他引:4
CD4(+) CD25(+) regulatory T cells are increasingly recognized as central players in the regulation of immune responses. In vitro studies have mostly employed allogeneic or polyclonal responses to monitor suppression. Little is known about the ability of CD4(+) CD25(+) regulatory T cells to suppress antigen-specific immune responses in humans. It has been previously shown that CD4(+) CD25(+) regulatory T cells anergize CD4(+) T cells and turn them into suppressor T cells. In the present study we demonstrate for the first time in humans that CD4(+) CD25(+) T cells are able to inhibit the proliferation and cytokine production of antigen specific CD4(+) and CD8(+) T cells. This suppression only occurs when CD4(+) CD25(+) T cells are preactivated. Furthermore, we could demonstrate that CD4(+) T-cell clones stop secreting interferon-gamma (IFN-gamma), start to produce interleukin-10 and transforming growth factor-beta after coculture with preactivated CD4(+) CD25(+) T cells and become suppressive themselves. Surprisingly preactivated CD4(+) CD25(+) T cells affect CD8(+) T cells differently, leading to reduced proliferation and reduced production of IFN-gamma. This effect is sustained and cannot be reverted by exogenous interleukin-2. Yet CD8(+) T cells, unlike CD4(+) T cells do not start to produce immunoregulatory cytokines and do not become suppressive after coculture with CD4(+) CD25(+) T cells. 相似文献
20.
CD8+ T cells in autoimmunity 总被引:1,自引:0,他引:1
Mounting evidence shows that CD8(+) T cells contribute to the initiation, progression and regulation of several pathogenic autoimmune responses in which these cells were not previously thought to play a major role. CD8(+) T cells can kill target cells directly, by recognizing peptide-MHC complexes on target cells, or indirectly, by secreting cytokines capable of signaling through death receptors expressed on the target cell surface. Autoreactive CD8(+) T cells can also contribute to autoimmunity by releasing cytokines capable of increasing the susceptibility of target cells to cytotoxicity, or by secreting chemokines that attract other immune cells to the site of autoimmunity. Autoreactive CD8(+) T cells can also downregulate autoimmune responses. Recent important advances include a mechanistic understanding of events leading to the activation and recruitment of autoreactive CD8(+) T cells in certain autoimmune responses and a greater appreciation of the diverse roles that these T cells play in autoimmunity. 相似文献