首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
目的随着医学图像数据的急剧增长,建立从医学图像中自动分割特定解剖结构的算法。方法首先,获取的脑图像体数据集通过与参考体数据集的配准,使对应层图像包含与参考数据相似的解剖结构;然后利用训练得到的统计形状模型自动定位、分割指定的解剖结构。结果实验表明这种算法能取得良好的分割结果。结论本文提出的基于互信息的图像配准和统计形状模型的分割算法,能够实现从体数据中自动定位解剖结构所在的图像位置并分割出目标结构。  相似文献   

2.
背景:由于人体解剖结构的复杂性、组织器官形状的不规则性及不同个体间的差异性,所以比较适合用多重分形来分析.目的:采用多重分形理论对医学图像进行图像分割.方法:采用基于容量测度的多重分形谱计算及基于概率测度的多重分形谱计算方法对图像进行分割.对于待处理图片分别进行传统的区域生长分割,max容量测度图像分割,sum容量测度图像分割,概率测度图像分割等4种分割,并加入噪声后再进行同样的分割处理作为比较.结果与结论:采用的两种基于多重分形谱的计算法中,基于容量测量的多重分形谱计算方法的关键是定义合适的测度μα;基于概率测度的多重分形谱计算方法的关键是定义合适的归一化概率Pi,不同的测度(概率)和不同的阈值对结果的影像比较大.基于概率测度的方法对噪声比较敏感,但是在滤过噪声时对图像象素大小变化比较大、比较复杂的图像有较好的分割效果.实验表明基于多重分形谱的医学图像分割方法在选择合适的测度(概率)和阈值时是可行的,特别是在较为复杂的图像处理中对于纹理和边缘的区别上有较大的优势,在准确地分割的同时能保留更多的细节,具有重要的实际意义.同时,多重分形也可以作为一种图像的特征,为特征提取多提供一种有力的数据.  相似文献   

3.
背景:基于马尔科夫随机场的图像分割算法已经成为医学图像分割的重要方法,其中,Gibbs场先验参数的取值对分割精度有很大的影响.目的:根据脑部MR图像的成像特点,探讨Gibbs场先验参数的估计方法,从而提高图像分割的精度.方法:通过对脑部MR图像的统计分析,得到图像高斯噪声的方差与Gibbs场先验参数的对应关系.然后在基于马尔可夫随机场图像分割算法的迭代过程中,根据高斯分布的方差估计值,用插值方法估计Gibbs场先验参数.结果与结论:通过对模拟脑部MR图像和临床脑部MR图像分割实验,表明该方法比传统的设定Gibbs场先验参数为某一常数的方法有更精确的图像分割能力,并且实现了图像的自适应分割,具有方法简单、运算速度快、稳健性好的特点.  相似文献   

4.
蚁群算法在磁共振图像分割中的应用   总被引:1,自引:0,他引:1  
研究一种智能的图像分割方法并且把这种分割方法应用到磁共振的图像分割中,对目前应用的图像分割方法进行比较后提出了一种基于蚁群的磁共振图像分割方法。最后将算法应用到颅脑磁共振的图像分割当中,实验结果表明新算法具有很强的噪声和模糊边界的检测能力。该算法的提出对磁共振研究和临床应用都有很大的理论和实践意义。  相似文献   

5.
海马结构的磁共振图像分割方法   总被引:4,自引:0,他引:4       下载免费PDF全文
1 海马结构MR图像分割的目的和意义 图像分割(image segmentation)是指根据区域的相似性以及区域间的不同,将一幅图像分割成若干互不交迭区域的过程.海马结构的图像分割就是在图像上把海马结构的边界找出来,使其成为一个连通、闭合区域的过程.海马结构体积测量(volume measurement)在颞叶癫痫、老年性痴呆、遗忘综合征、精神分裂症等神经系统疾病的临床诊断、治疗、疗效评价及计算机辅助诊断(CAD)等方面有重要的应用价值[1].海马结构(hippocampal formation)的图像分割是海马结构体积测量、三维重建的关键和基础.因此,海马结构的图像分割在临床上具有重要意义.临床上使用的分割方法主要还是以人工分割为主,因此研究适用于海马结构MR图像分割的方法有很广的临床应用价值[2,3].  相似文献   

6.
医学超声图像分割是图像处理中的一项关键技术.文章以胆结石超声图像为例,介绍一种新的弱边缘超声图像自动分割算法.首先采用基于直方图凹度分析的闽值分割方法确定Snake模型的初始蛇,再基于Snake模型结合贪婪算法对图像进行目标分割.实验结果表明该算法对弱边缘现象较为严重的医学超声图像进行目标分割时,定位准确,分割效果良好,足一种全自动的超声医学图像分割方法.  相似文献   

7.
神经网络技术及其在医学图像处理中的应用   总被引:1,自引:0,他引:1  
神经网络技术是模拟生物神经系统的原理而构成的一种新型智能信息处理技术,已成功应用于疾病预报、方剂配伍等医学领域。近年来,在医学图像处理与分析领域,神经网络技术也得到了广泛应用。本文就神经网络技术在医学图像分割、医学图像配准以及基于医学图像的计算机辅助诊断技术等方面的应用及其研究进展进行综述,阐述具有代表性的技术和算法。  相似文献   

8.
目前,医学图像作为临床检测以及放疗引导的重要参考依据,在医学的发展中起着关键作用。医学图像主要包括计算机断层扫描(CT)、核磁共振(MRI)、X射线、超声(US)等,超声相对前三者价格较低,对软组织成像效果较好且对人体基本无伤害,在现阶段应用已越来越广泛。超声图像分割对后期图像分析有很大的作用,可以给临床诊断及放疗摆位等提供一定的参考,本文就超声图像的分割的传统方法、基于形变模型的分割方法和结合深度学习方法的研究情况进行阐述。  相似文献   

9.
数字图像处理在组织工程及生物医学工程研究领域的应用十分普遍。近年来,伴随着医学影像技术的快速发展,医学成像设备在越来越多的医学领域里被应用,同时医学图像  相似文献   

10.
为了准确诊断肺癌转移,本文应用深度学习技术对肺癌患者颈部淋巴结超声图像病灶区域进行分割,提出了一种用于超声图像分割的级联注意力UNet网络,该级联结构是将注意力UNet与EfficientNet相结合的二阶段分割网络,第一阶段为粗分割,第二阶段为细分割,编码器采用EfficientNet-B5作为主干网,图像多尺度输入;提出了适用于小目标、小样本场景的新损失函数;试验结果表明,本文提出的级联结构网络在肺癌患者颈部淋巴结超声图像分割中网络性能优异,Dice系数达到0.95,较其他UNet方法具有更优的分割性能。  相似文献   

11.
Supervised deep learning needs a large amount of labeled data to achieve high performance. However, in medical imaging analysis, each site may only have a limited amount of data and labels, which makes learning ineffective. Federated learning (FL) can learn a shared model from decentralized data. But traditional FL requires fully-labeled data for training, which is very expensive to obtain. Self-supervised contrastive learning (CL) can learn from unlabeled data for pre-training, followed by fine-tuning with limited annotations. However, when adopting CL in FL, the limited data diversity on each site makes federated contrastive learning (FCL) ineffective. In this work, we propose two federated self-supervised learning frameworks for volumetric medical image segmentation with limited annotations. The first one features high accuracy and fits high-performance servers with high-speed connections. The second one features lower communication costs, suitable for mobile devices. In the first framework, features are exchanged during FCL to provide diverse contrastive data to each site for effective local CL while keeping raw data private. Global structural matching aligns local and remote features for a unified feature space among different sites. In the second framework, to reduce the communication cost for feature exchanging, we propose an optimized method FCLOpt that does not rely on negative samples. To reduce the communications of model download, we propose the predictive target network update (PTNU) that predicts the parameters of the target network. Based on PTNU, we propose the distance prediction (DP) to remove most of the uploads of the target network. Experiments on a cardiac MRI dataset show the proposed two frameworks substantially improve the segmentation and generalization performance compared with state-of-the-art techniques.  相似文献   

12.
目的 探讨医学图像背景分割的方法.方法 首先采用常规的自适应阈值方法对图像背景进行分割,但效果不理想;接着对医学图像的特点进行分析,最后采用背景拟合设定阈值进行分割.结果 实现了医学图像背景的分割.结论 实验表明上述方法能够非常有效地分割医学图像背景.  相似文献   

13.
Unsupervised domain adaptation (UDA) has been a vital protocol for migrating information learned from a labeled source domain to facilitate the implementation in an unlabeled heterogeneous target domain. Although UDA is typically jointly trained on data from both domains, accessing the labeled source domain data is often restricted, due to concerns over patient data privacy or intellectual property. To sidestep this, we propose “off-the-shelf (OS)” UDA (OSUDA), aimed at image segmentation, by adapting an OS segmentor trained in a source domain to a target domain, in the absence of source domain data in adaptation. Toward this goal, we aim to develop a novel batch-wise normalization (BN) statistics adaptation framework. In particular, we gradually adapt the domain-specific low-order BN statistics, e.g., mean and variance, through an exponential momentum decay strategy, while explicitly enforcing the consistency of the domain shareable high-order BN statistics, e.g., scaling and shifting factors, via our optimization objective. We also adaptively quantify the channel-wise transferability to gauge the importance of each channel, via both low-order statistics divergence and a scaling factor. Furthermore, we incorporate unsupervised self-entropy minimization into our framework to boost performance alongside a novel queued, memory-consistent self-training strategy to utilize the reliable pseudo label for stable and efficient unsupervised adaptation. We evaluated our OSUDA-based framework on both cross-modality and cross-subtype brain tumor segmentation and cardiac MR to CT segmentation tasks. Our experimental results showed that our memory consistent OSUDA performs better than existing source-relaxed UDA methods and yields similar performance to UDA methods with source data.  相似文献   

14.
15.
《Medical image analysis》2014,18(3):591-604
Labeling a histopathology image as having cancerous regions or not is a critical task in cancer diagnosis; it is also clinically important to segment the cancer tissues and cluster them into various classes. Existing supervised approaches for image classification and segmentation require detailed manual annotations for the cancer pixels, which are time-consuming to obtain. In this paper, we propose a new learning method, multiple clustered instance learning (MCIL) (along the line of weakly supervised learning) for histopathology image segmentation. The proposed MCIL method simultaneously performs image-level classification (cancer vs. non-cancer image), medical image segmentation (cancer vs. non-cancer tissue), and patch-level clustering (different classes). We embed the clustering concept into the multiple instance learning (MIL) setting and derive a principled solution to performing the above three tasks in an integrated framework. In addition, we introduce contextual constraints as a prior for MCIL, which further reduces the ambiguity in MIL. Experimental results on histopathology colon cancer images and cytology images demonstrate the great advantage of MCIL over the competing methods.  相似文献   

16.
Semi-supervised learning has greatly advanced medical image segmentation since it effectively alleviates the need of acquiring abundant annotations from experts, wherein the mean-teacher model, known as a milestone of perturbed consistency learning, commonly serves as a standard and simple baseline. Inherently, learning from consistency can be regarded as learning from stability under perturbations. Recent improvement leans toward more complex consistency learning frameworks, yet, little attention is paid to the consistency target selection. Considering that the ambiguous regions from unlabeled data contain more informative complementary clues, in this paper, we improve the mean-teacher model to a novel ambiguity-consensus mean-teacher (AC-MT) model. Particularly, we comprehensively introduce and benchmark a family of plug-and-play strategies for ambiguous target selection from the perspectives of entropy, model uncertainty and label noise self-identification, respectively. Then, the estimated ambiguity map is incorporated into the consistency loss to encourage consensus between the two models’ predictions in these informative regions. In essence, our AC-MT aims to find out the most worthwhile voxel-wise targets from the unlabeled data, and the model especially learns from the perturbed stability of these informative regions. The proposed methods are extensively evaluated on left atrium segmentation and brain tumor segmentation. Encouragingly, our strategies bring substantial improvement over recent state-of-the-art methods. The ablation study further demonstrates our hypothesis and shows impressive results under various extreme annotation conditions.  相似文献   

17.
Deep convolutional neural networks (CNNs) have been widely used for medical image segmentation. In most studies, only the output layer is exploited to compute the final segmentation results and the hidden representations of the deep learned features have not been well understood. In this paper, we propose a prototype segmentation (ProtoSeg) method to compute a binary segmentation map based on deep features. We measure the segmentation abilities of the features by computing the Dice between the feature segmentation map and ground-truth, named as the segmentation ability score (SA score for short). The corresponding SA score can quantify the segmentation abilities of deep features in different layers and units to understand the deep neural networks for segmentation. In addition, our method can provide a mean SA score which can give a performance estimation of the output on the test images without ground-truth. Finally, we use the proposed ProtoSeg method to compute the segmentation map directly on input images to further understand the segmentation ability of each input image. Results are presented on segmenting tumors in brain MRI, lesions in skin images, COVID-related abnormality in CT images, prostate segmentation in abdominal MRI, and pancreatic mass segmentation in CT images. Our method can provide new insights for interpreting and explainable AI systems for medical image segmentation. Our code is available on: https://github.com/shengfly/ProtoSeg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号