首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Topical application of sodium arachidonate (50-200 micrograms/ml) or bradykinin (0.1-10 micrograms/ml) on the brain surface of anesthetized cats caused dose-dependent cerebral arteriolar dilation. This dilation was blocked by 67-100% in the presence of superoxide dismutase and catalase. These enzymes did not affect the changes in arteriolar diameter caused by alterations in arterial blood PCO2, or the arteriolar dilation from topical acetylcholine. Enzymes inactivated by heat had no effect on the vasodilation from arachidonate or bradykinin. Superoxide dismutase alone or catalase alone reduced the dilation during application of 200 micrograms/ml of arachidonate for 15 minutes; they also completely prevented the residual dilation seen 1 hour after washout, as well as the reduction in the vasoconstrictive effects of arterial hypocapnia observed at this time. The results show that superoxide anion radical and hydrogen peroxide, or radicals derived from them, such as the hydroxyl radical, are mediators of the cerebral arteriolar dilation from sodium arachidonate or bradykinin. These radicals are not the endothelium-derived relaxant factor released by acetylcholine. The presence of both superoxide anion radical and hydrogen peroxide is required for the production of the vascular damage seen during prolonged application of high concentrations of sodium arachidonate.  相似文献   

2.
We investigated the interaction between activated cat polymorphonuclear neutrophils (PMNs) and coronary vascular endothelial cells in vitro. It was shown that 1) 90 minutes of low-flow perfusion without reperfusion had no deleterious effects on endothelium-dependent vasodilation, whereas 90 minutes of low-flow perfusion and 20 minutes of reperfusion with a blood cell-free solution induced a 20-25% endothelial dysfunction; 2) activated PMNs produced endothelium-dependent vasoconstriction in coronary artery rings isolated from cat hearts undergoing 90 minutes of low-flow perfusion and 20 minutes of reperfusion with a blood cell-free Krebs-Henseleit solution; 3) addition of the superoxide free radical scavenger, superoxide dismutase (150 micrograms/ml), or an antibody directed against CD18 of PMN adherence glycoprotein complex (MAbR15.7, 20 micrograms/ml) attenuated PMN-induced vasoconstriction significantly, but addition of a hydroxyl radical scavenger [N-(2-mercaptopropionyl)-glycine, 150 micrograms/ml], a cyclooxygenase inhibitor, or a lipoxygenase inhibitor had no protective effect; 4) exposure of rings to a superoxide radical-generating system (i.e., xanthine and xanthine oxidase) produced significant vasoconstriction that was similar to that observed with activated PMNs and was inhibited by superoxide dismutase; and 5) activated PMNs produced a marked coronary endothelial dysfunction characterized by a decreased response to the endothelium-dependent vasodilators acetylcholine and A23187. Addition of either superoxide dismutase or MAbR15.7 protected against endothelial dysfunction. These results indicate that activated PMNs produce significant vasoconstriction and endothelial dysfunction in coronary arteries isolated from low-flow perfusion-reperfused hearts. These effects appear to be mediated primarily by superoxide radicals generated by activated PMNs that either inactivate or inhibit the synthesis and release of endothelium-derived relaxing factor. We conclude that activated PMNs are able to induce endothelial dysfunction by releasing free radicals and possibly other substances.  相似文献   

3.
DESIGN: Arterioles were studied in vivo to determine whether the altered response to endothelium-dependent and -independent vasodilators in one-kidney, one clip (1K1C) hypertensive rats was related to increased vascular tone or precontraction with norepinephrine. METHODS: Acetylcholine, bradykinin and nitroprusside were applied topically to arterioles in the spinotrapezius muscle of 4-week 1K1C hypertensive rats and normotensive control rats. The changes in internal diameter of arcade arterioles in response to four doses of each drug were measured with intravital microscopy before and during superfusion of indomethacin. Arteriolar responses were redetermined during enhancement of vascular tone by superfusion of norepinephrine. RESULTS: Vasodilation in response to acetylcholine, but not to nitroprusside, was reduced in 1K1C rats compared with normotensive rats. Indomethacin decreased the resting arteriolar diameter, but did not alter the response to acetylcholine or nitroprusside. The response to bradykinin, which was partly attenuated after cyclo-oxygenase inhibition, was also reduced in 1K1C rats. The attenuated endothelium-dependent responses in 1K1C rats may have been a result of changes in the synthesis or release of endothelium-derived relaxing factor because the response to the endothelium-independent vasodilator nitroprusside was unchanged. Indomethacin attenuated the vasodilation of bradykinin, which suggests that prostacyclin is involved in this action in vivo. CONCLUSIONS: Precontraction with norepinephrine did not change any of the responses, indicating that the reduced endothelial-dependent responses in hypertensive rats cannot be explained by differences in vascular tone.  相似文献   

4.
The present studies were designed to investigate the interaction between activated polymorphonuclear neutrophils (PMNs) and endothelial regulation of vascular smooth muscle function. Rabbit peritoneal PMNs (4 x 10(3)-4 x 10(5) cells/ml) added to muscle bath chambers containing phenylephrine-precontracted rabbit isolated aortic rings produced no effect on vascular tone. However, when PMNs were activated with the chemotactic peptide, f-met-leu-phe (0.1 microM), PMNs produced concentration-dependent vascular contraction, which was dependent on the presence of the endothelium. Aortic rings denuded of endothelium were unaffected by activated PMNs. Superoxide dismutase (100 units/ml) treatment of tissues blocked completely PMN-induced vascular contraction, whereas mannitol (20 mM) had no significant effect on PMN-induced vascular contraction. Pyrogallol (a generator of superoxide anion) produced a response that was similar to that observed with activated PMNs. Superoxide anion production was measured separately, and the time of peak rate of superoxide anion production corresponded to the time of the maximal vascular contractile responses. Activated PMNs added to vascular tissues undergoing endothelium-dependent relaxation mediated by either acetylcholine or A23187 produced a reversal of vascular relaxation. Furthermore, activated PMNs did not have any effect on endothelium-independent vascular relaxation produced by either isoproterenol or nitroglycerin. The present investigation reveals that activated PMNs can release superoxide anion and produce endothelium-dependent contraction. The endothelium-dependent contraction may be the result of superoxide anion inactivation of endothelium-derived relaxing factor.  相似文献   

5.
E P Wei  H A Kontos 《Hypertension》1990,16(2):162-169
We studied the mechanism of the vasodilator effect of H2O2 on cerebral arterioles and its effect on endothelium-dependent responses to acetylcholine. Topical application of H2O2 (0.1-1 microM) on the brain surface of anesthetized cats equipped with cranial windows induced dose-dependent arteriolar dilation, which was markedly inhibited by topical deferoxamine, showing that it was probably mediated by generation of hydroxyl radical. Higher concentrations of H2O2 (3 microM) also induced dilation, which was unaffected by deferoxamine, indicating the participation of other mechanisms. After topical application of H2O2, endothelium-dependent responses to acetylcholine were eliminated or converted to vasoconstriction, and in bioassay experiments, acetylcholine-mediated endothelium-derived relaxing factor (EDRF) was absent. Superoxide dismutase plus catalase restored the appearance of transferable EDRF after 1 microM H2O2 but not after 3 microM H2O2. Application of H2O2 in the assay window eliminated the responses to nitroprusside and nitric oxide but did not affect responses to adenosine, to EDRF from the donor window, or responses to S-nitroso-L-cysteine. The inhibiting effect of H2O2 on the response to nitroprusside was partially eliminated after topical application of N-acetyl-L-cysteine. The results show that H2O2 inhibits the vasodilator action of nitroprusside and nitric oxide probably because it oxidizes thiols in vascular smooth muscle and prevents the formation of a nitrosothiol. EDRF from acetylcholine and S-nitroso-L-cysteine still produce dilation in the presence of the blockade induced by H2O2. The findings suggest strongly that the EDRF from acetylcholine in cerebral vessels is a nitrosothiol like S-nitroso-L-cysteine.  相似文献   

6.
This study evaluated the possible impairments to endothelium-mediated vasodilation by structural and functional properties of the intestinal arterioles in adult (20-21-week-old) rats after 8-11 days or 7-8 weeks of streptozotocin-induced diabetes. Arteriolar intravascular pressures and luminal diameters were simultaneously measured during iontophoretic application of acetylcholine, bradykinin, and nitroprusside to the outer vessel wall, and passive diameter-pressure relations were obtained during maximal vasodilation. Microvascular pressures and circumference-passive wall tension relations were similar between all diabetic and normal rats and did not appear to significantly influence vasodilation. Both acute and chronic hyperglycemia were associated with near complete suppression of acetylcholine-induced vasodilation in large arterioles, and the threshold dose for vasodilation of intermediate arterioles was approximately 10-fold higher in diabetic rats. In both diabetic groups, dilatory responses to nitroprusside were normal, and in chronically diabetic rats, the relative vasodilation in response to various doses of bradykinin was equivalent to that found in normal rats. These observations indicate that a very specific deficit of acetylcholine-induced endothelium-derived relaxing factor action rapidly develops in intestinal arterioles of diabetic rats, but the arteriolar wall mechanical properties, cGMP-mediated muscle relaxation, and endothelial release of the bradykinin-stimulated relaxing factor are not compromised after 7-8 weeks of chronic hyperglycemia.  相似文献   

7.
High dietary salt intake decreases the endothelium-dependent dilation of skeletal muscle arterioles by inhibiting local nitric oxide (NO) activity without changing vascular smooth muscle responsiveness to NO. Under these conditions, microvascular walls show evidence of oxidative stress, and scavengers of reactive oxygen species (ROS) abolish this oxidative stress and restore normal arteriolar responses to acetylcholine (ACh). We tested the hypothesis that the salt-dependent appearance of microvascular ROS, and accompanying reduction in endothelium-dependent dilation, is due to a decrease in antioxidant enzyme expression or activity. We studied spinotrapezius muscle microvessels in rats fed normal (NS) (0.45%) or high (HS) (7%) salt diets for 4-5 weeks. Western analysis of arteriolar and venular protein showed no difference between groups in the content of superoxide dismutase (Cu/Zn SOD), catalase, or glutathione peroxidase. The catalase inhibitor 3-amino-1,2,4-triazole (3AT) increased arteriolar and venular oxidant activity (assessed by tetranitroblue tetrazolium reduction) by the same amount in both groups, suggesting similar levels of catalase activity. 3AT did not affect arteriolar responses to ACh in either group. The Cu/Zn SOD inhibitor diethyldithiocarbamate increased arteriolar and venular oxidant activity to a lesser extent in HS rats, suggesting reduced Cu/Zn SOD activity in this group. Cu/Zn SOD inhibition decreased arteriolar responses to ACh only in NS rats. These findings suggest that endogenous Cu/Zn SOD preserves the endothelium-dependent control of arteriolar tone in NS rats, and that a reduction in Cu/Zn SOD activity contributes to the loss of arteriolar NO activity in HS rats.  相似文献   

8.
Acetylcholine evokes the simultaneous release of endothelium-derived relaxing and contracting factors in aortas from spontaneously hypertensive rats. Only relaxing factors are released in aortas from normotensive controls. Experiments were designed to determine whether inhibitors of endothelium-dependent relaxations modify endothelium-dependent contractions. Rings of thoracic aortas of normotensive and spontaneously hypertensive rats, with and without endothelium, were suspended in organ chambers for isometric tension recording. Oxyhemoglobin (a scavenger of endothelium-derived relaxing factor) and NG-monomethyl L-arginine (an inhibitor of nitric oxide formation) augmented the contractions to acetylcholine. Methylene blue (an inhibitor of soluble guanylate cyclase) and superoxide dismutase (a scavenger of superoxide anions) did not modify these contractions. The contractions in the presence of oxyhemoglobin or NG-monomethyl L-arginine, like those in untreated rings, were endothelium-dependent; they only occurred in aortas from spontaneously hypertensive rats and were abolished by indomethacin. The contractions to acetylcholine in the presence of oxyhemoglobin were not affected by superoxide dismutase or deferoxamine. These data suggest that endothelium-derived relaxing factor inhibits endothelium-dependent contractions to acetylcholine in the spontaneously hypertensive rat aorta, probably by chemical inactivation of the endothelium-derived contracting factor rather than by stimulation of guanylate cyclase or scavenging of oxygen-derived free radicals.  相似文献   

9.
The adhesion of thrombin-stimulated human blood platelets to either the endothelial surface of intact bovine aorta or cultured bovine aortic endothelial cells was studied to determine the role of endothelium-derived relaxing factor in the regulation of platelet adhesion. Endothelial cells and platelets were pretreated with indomethacin to prevent the formation of prostaglandins. The adhesion of thrombin-stimulated platelets to endothelial cells was reduced by superoxide dismutase and bradykinin. The inhibitory effect of both drugs was abolished by hemoglobin and was absent in strips of bovine aorta where the endothelial cells had been removed by scraping. It is suggested that the effects of bradykinin are mediated by the release of endothelium-derived relaxing factor, which is protected from destruction by superoxide dismutase, and that endothelium-derived relaxing factor contributes to the nonadhesive properties of the vascular endothelium.  相似文献   

10.
Elevated levels of tumor necrosis factor-alpha (TNF), a proinflammatory cytokine, are associated with coronary artery disease. However, it is unclear whether vasodilator function of coronary resistance arterioles is susceptible to TNF. Herein, we examined whether TNF can affect endothelium-dependent nitric oxide (NO)-mediated dilation of coronary arterioles to adenosine and whether inflammatory signaling pathways such as mitogen-activated protein kinases, ceramide sphingolipids, and oxidative stress are involved in the TNF-mediated effect. To eliminate confounding influences associated with in vivo preparations, coronary arterioles from porcine heart were isolated and pressurized without flow for in vitro study. Intraluminal treatment with TNF (1 ng/ml, 90 min) significantly attenuated the NO release and vasodilation to adenosine. This inhibitory effect was not observed in denuded vessels or in the presence of NO synthase inhibitor l-NMMA. Histochemical data showed that superoxide production and JNK phosphorylation in arteriolar endothelial cells was enhanced by TNF. Administration of superoxide scavenger or inhibitors of ceramide-activated protein kinase (dimethylaminopurine), JNK (SP600125 and dicumarol), and xanthine oxidase (allopurinol) reduced superoxide production as well as restored NO release and vasodilation to adenosine. Conversely, the effects of TNF were insensitive to inhibitors of p38 (SB203580), ERK (PD98059), NAD(P)H oxidase (apocynin), or mitochondrial respiratory chain (rotenone). These data indicate that TNF inhibits endothelium-dependent NO-mediated dilation of coronary arterioles by ceramide-induced activation of JNK and subsequent production of superoxide via xanthine oxidase. Because myocardial ischemia augments adenosine production and elevates TNF level, inhibiting adenosine-stimulated endothelial release of NO by TNF could contribute to inadequate regulation of coronary blood flow during the development of ischemic heart disease.  相似文献   

11.
The objective of this study was to elucidate the close similarity in properties between endothelium-derived relaxing factor (EDRF) and nitric oxide radical (NO). Whenever possible, a comparison was also made between arterial and venous EDRF. In vascular relaxation experiments, acetylcholine and bradykinin were used as endothelium-dependent relaxants of isolated rings of bovine intrapulmonary artery and vein, respectively, and NO was used to relax endothelium-denuded rings. Oxyhemoglobin produced virtually identical concentration-dependent inhibitory effects on both endothelium-dependent and NO-elicited relaxation. Oxyhemoglobin and oxymyoglobin lowered cyclic guanosine monophosphate (cGMP) levels, increased tone in unrubbed artery and vein, and abolished the marked accumulation of vascular cGMP caused both by endothelium-dependent relaxants and by NO. The marked inhibitory effects of oxyhemoglobin on arterial and venous relaxant responses and cGMP accumulation as well as its contractile effects were abolished or reversed by carbon monoxide. These observations indicate that EDRF and NO possess identical properties in their interactions with oxyhemoproteins. Both EDRF from artery and vein and NO activated purified soluble guanylate cyclase by heme-dependent mechanisms, thereby revealing an additional similarity in heme interactions. Spectrophotometric analysis disclosed that the characteristic shift in the Soret peak for hemoglobin produced by NO was also produced by an endothelium-derived factor released from washed aortic endothelial cells by acetylcholine or A23187. Pyrogallol, via the action of superoxide anion, markedly inhibited the spectral shifts, relaxant effects, and cGMP accumulating actions produced by both EDRF and NO. Superoxide dismutase enhanced the relaxant and cGMP accumulating effects of both EDRF and NO. Thus, EDRF and NO are inactivated by superoxide in a closely similar manner. We conclude, therefore, that EDRF from artery and vein is either NO or a chemically related radical species.  相似文献   

12.
Human peripheral blood leukocytes, activated by phorbol myristate acetate, disrupt canine sarcoplasmic reticulum calcium transport, in vitro, by an oxygen-derived free radical mechanism. Activated leukocytes significantly depress Ca++ uptake activity and Ca++ -stimulated, Mg++ -dependent ATPase activity. The depression is completely inhibited by sodium-azide (0.1 mM) or the combination of superoxide dismutase (10 micrograms/ml) and catalase (10 micrograms/ml). Exogenous hydrogen peroxide (0.441-4.41 mM) uncoupled Ca++ uptake activity from ATP hydrolysis, and this effect was inhibited by catalase. Mannitol alone did not inhibit the effects of activated leukocytes, but superoxide plus mannitol (20-100 mM) resulted in normal ATPase activity, while Ca++ uptake remained depressed. In the presence of indomethacin and ibuprofen, activated leukocytes depressed Ca++ uptake and had no effect on ATPase activity. 2-Amino-methyl-4-t-butyl-6-iodophenol (MK-447) further depressed Ca++ uptake and partially inhibited the effect on ATPase activity. Indomethacin plus catalase completely inhibited the effects of activated leukocytes on cardiac sarcoplasmic reticulum. We conclude, first, that activated leukocytes depress canine cardiac sarcoplasmic reticulum Ca++ transport by an oxygen-free radical mechanism with the generation of hydrogen peroxide and hydroxyl radical. In addition to the classical membrane NADPH oxidase system, significant oxygen radical generation can occur through the cyclooxygenase pathway of arachidonic acid metabolism, and seems to be responsible for the generation of the hydroxyl radical.  相似文献   

13.
Isolated bovine coronary arteries were treated with 10 mM diethyldithiocarbamate (DETCA) for 30 minutes to deplete the cytosolic ZnCu form of superoxide dismutase (SOD). This treatment completely inhibited the endothelium- and cGMP-dependent relaxation to acetylcholine (mediated via the endothelium-derived relaxing factor, which is thought to be nitric oxide) without significantly inhibiting endothelium-dependent relaxation to arachidonic acid (mediated by prostaglandins). DETCA treatment of endothelial cells cultured from the coronary arteries inhibited bradykinin-elicited release of endothelium-derived relaxing factor, which was detected by bioassay on an isolated rabbit aorta in the presence of extracellular SOD. DETCA also inhibited cGMP-associated relaxations to nitric oxide and to vasodilators thought to function via the generation of this mediator (nitroglycerin and nitroprusside), but cAMP-associated relaxations to isoproterenol and papaverine were not altered. The inhibitory effects of DETCA against the relaxation to nitroprusside and nitroglycerin were attenuated by severe hypoxia. DETCA treatment of isolated coronary arterial smooth muscle or cultured endothelial cells produced an increase of chemiluminescence elicited in the presence of lucigenin, a detector of superoxide anion generation. The addition of SOD markedly attenuated the effects of DETCA treatment on arterial relaxation and chemiluminescence. Therefore, control of cellular superoxide anion levels by endogenous SOD appears needed for the release of endothelium-derived relaxing factor and relaxation of vascular smooth muscle to nitrovasodilators mediated via cGMP in the bovine coronary artery, but SOD is not critical for other endothelium-dependent or cAMP-associated relaxant mechanisms.  相似文献   

14.
L R Pelc  G J Gross  D C Warltier 《Circulation》1991,83(6):2048-2056
BACKGROUND. Bradykinin has been demonstrated to be an endothelium-dependent vasodilator in the cerebral circulation of the mouse, but the actions of bradykinin on regional tissue perfusion in the canine coronary circulation have not been studied. METHODS AND RESULTS. The mechanism of coronary vasodilation by bradykinin was studied in open-chest, anesthetized dogs. The role of cyclooxygenase stimulation, bradykinin B2 receptor activation, and endothelium-derived relaxing factor in bradykinin-mediated vasodilation was studied in separate groups of dogs. Bradykinin was infused intracoronarily so as to avoid changes in systemic hemodynamics capable of altering the regional distribution of coronary blood flow (radioactive microspheres). Bradykinin produced a preferential increase in subendocardial blood flow. Pretreatment with indomethacin had no effect on bradykinin-mediated increases in total left ventricular flow or the transmural distribution of coronary blood flow. Blockade of bradykinin B2 receptors with the competitive antagonist [Thi5,8, D-Phe7]-bradykinin attenuated both the increase in total flow and redistribution of perfusion to the subendocardium produced by bradykinin. Inhibition of endothelium-derived relaxing factor with quinacrine, occlusion/reperfusion, or NG-monomethyl L-arginine attenuated the total increase in left ventricular flow and blocked the redistribution of flow to the subendocardium produced by bradykinin. CONCLUSIONS. The present results demonstrate that intracoronary infusion of bradykinin produces a preferential increase in blood flow to the subendocardium via stimulation of B2 receptors and the release of an endothelium-dependent relaxing factor that may be nitric oxide.  相似文献   

15.
Activation of leukocytes results in the release of a variety of vasoactive substances that may modulate vascular tone. We studied the effect of human polymorphonuclear (PMN) and mononuclear (MONO) leukocytes on quiescent femoral arteries in vitro. Arteries were obtained from normal and atherosclerotic cynomolgus monkeys. In normal arteries, stimulation of PMNs (3 and 5 x 10(6) cells/ml) with either thrombin (5 units/ml) or complement C5a (0.5 micrograms/ml) resulted in endothelium-independent contraction (approximately 25% of maximum contraction with 80 mM KCl). Vasocontraction was augmented in the presence of superoxide dismutase (150 units/ml) and was significantly impaired in the presence of the hydroxyl radical scavengers mannitol (20 mM) and deferoxamine (1 mM). Catalase (1,200 units/ml) or L-alanine (20 mM) did not modify this effect of PMNs. In contrast to PMNs, vasocontraction in response to MONOs was not altered by the addition of radical scavengers. Pretreatment of PMNs and MONOs with indomethacin (10 microM) or nordihydroguaiaretic acid (20 microM) did not influence vascular responses. Supernatant of thrombin-stimulated PMNs and MONOs also produced vasocontraction (approximately two thirds of the effect of intact cells). This vasocontractor factor (or factors) was heat stable (30 minutes, 95 degrees C) and had a molecular weight less than 1,000 as determined by ultrafiltration. Stimulation of MONOs or PMNs (3 and 5 x 10(6) cells/ml) produced a similar response in normal arteries. In contrast, the constrictor response in atherosclerotic arteries to MONOs (5 x 10(6) cells/ml) was significantly greater than to PMNs. We conclude that stimulated human PMNs and MONOs contract arteries in vitro by release of at least two factors. One factor appears to be heat stable, with a molecular weight less than 1,000. The vascular response to PMNs, but not to MONOs, appears to involve the generation of hydroxyl radicals. The response to MONOs is greater than the response to PMNs in atherosclerotic, but not in normal, arteries.  相似文献   

16.
The goals of this study were 1) to quantitate the effects of atherosclerosis on physiological and pharmacological endothelium-dependent vasoactive responses in coronary arterioles downstream from arterial lesions and 2) to determine if administration of L-arginine, the precursor for endothelium-derived was induced in pigs, and vasomotor responses of isolated, cannulated coronary arterioles (30-70 microns in diameter) were assessed by measuring diameter changes in vitro. To assess pharmacological alterations of endothelium-dependent responses, dose-response curves were constructed to ADP, serotonin, and histamine. To assess physiological alterations in endothelial function, different flow rates were established across the vessel. Arteriolar diameters were measured in vessels from normal and atherosclerotic pigs under control conditions, after administration of L-arginine, and after endothelial denudation. In arterioles from normal pigs, administration of serotonin, histamine, or ADP produced dose-dependent vasodilation, which was abolished by endothelial denudation. In arterioles from atherosclerotic pigs, administration of histamine, serotonin, and ADP produced dilation at only the highest doses (10(-6)-10(-7) M), and the extent of dilation was only 20-30% of that observed in arterioles from normal pigs. Initiation of flow also produced vasodilation in arterioles from normal pigs that was completely abolished after endothelial denudation. In arterioles from atherosclerotic pigs, flow-induced responses were absent. These abnormal physiological and pharmacological responses (i.e., blunted vasodilation to pharmacological stimulation and to flow) were restored after administration of L-arginine for 40 minutes. The vascular responses after administration of L-arginine were not different from those observed under control conditions in arterioles from normal pigs. In addition, L-arginine did not restore vasodilation to the endothelium-dependent agonists in denuded segments. From these data in arterioles downstream from atherosclerotic lesions, we conclude that 1) the ED50 and maximal responses of endothelium-dependent vasodilation to ADP, histamine, and serotonin are attenuated; 2) the physiological response to flow, that is, flow-mediated endothelium-dependent vasodilation, is absent; and 3) the abnormality in arteriolar responsiveness during large vessel disease involves an impairment of the synthesis and/or release of endothelium-derived relaxing factor.  相似文献   

17.
Oxygen free radicals have been demonstrated to be important mediators of postischemic reperfusion injury in a broad variety of tissues; however, the cellular source of free radical generation is still unknown. In this study, electron paramagnetic resonance measurements with the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) demonstrate that bovine endothelial cells subjected to anoxia and reoxygenation become potent generators of superoxide and hydroxyl free radicals. A prominent DMPO-OH signal aN = aH = 14.9 G is observed on reoxygenation after 45 min of anoxic incubation. Quantitative measurements of this free radical generation and the time course of radical generation are performed. Both superoxide dismutase and catalase totally abolish this radical signal, suggesting that O2 is sequentially reduced from O2-. to H2O2 to OH.. Addition of ethanol resulted in trapping of the ethoxy radical, further confirming the generation of OH.. Endothelial radical generation was shown to cause cell death, as evidenced by trypan blue uptake. Radical generation was partially inhibited and partially scavenged by the xanthine oxidase inhibitor allopurinol. Marked inhibition of radical generation was observed with the potent xanthine oxidase inhibitor oxypurinol. These studies demonstrate that endothelial cells subjected to anoxia and reoxygenation, conditions observed in ischemic and reperfused tissues, generate a burst of superoxide-derived hydroxyl free radicals that in turn cause cell injury and cell death. Most of this free radical generation appears to be from the enzyme xanthine oxidase. Thus, endothelial cell free radical generation may be a central mechanism of cellular injury in postischemic tissues.  相似文献   

18.
Veresh Z  Racz A  Lotz G  Koller A 《Hypertension》2008,52(5):960-966
Asymmetrical dimethylarginine (ADMA) is thought to be an endogenous regulator of arteriolar tone by inhibiting NO synthase. However, our previous studies showed that, in isolated arterioles, ADMA induced superoxide production as well. Thus, the mechanisms by which ADMA affects arteriolar tone remain obscure. We hypothesized that ADMA, by activating NAD(P)H oxidase, increases superoxide production, interfering with NO mediation of flow-induced dilation. In the presence of indomethacin, isolated arterioles from rat gracilis muscle ( approximately 160 microm at 80 mm Hg) were incubated with ADMA (10(-4) mol/L), which elicited significant constriction (from 162+/-4 to 143+/-4 microm) and eliminated the dilations to increases in intraluminal flow (from a maximum 31+/-2% to 3+/-1%; P<0.05). In the presence of ADMA, superoxide dismutase plus catalase restored dilations to flow (from a maximum 3+/-1% to 28+/-2%). Endothelial denudation or incubation of arterioles with the NAD(P)H oxidase inhibitor apocynin or the angiotensin-converting enzyme inhibitor quinapril inhibited ADMA-induced constriction. In addition, apocynin, quinapril, or the angiotensin type 1 receptor blocker losartan restored flow-induced dilations reduced by ADMA. Furthermore, inhibition of NO synthase abolished the "superoxide dismutase/catalase-restored" flow-induced dilation in the presence of ADMA. ADMA-induced increased production of superoxide, assessed by dihydroethidium fluorescence, was inhibited by apocynin, quinapril, or losartan. We suggest that ADMA activates the local renin-angiotensin system, and the angiotensin II released activates NAD(P)H oxidase; superoxide produced interferes with the bioavailability of NO, resulting in diminished flow-induced dilation, a mechanism that may contribute to the development of arteriolar dysfunction and increased tone associated with elevated ADMA levels.  相似文献   

19.
Afferent arterioles were used to investigate the role of adenosine, angiotensin II, NO, and reactive oxygen species in the pathogenesis of increased tubuloglomerular feedback response in hydronephrosis. Hydronephrosis was induced in wild-type mice, superoxide dismutase-1 overexpressed mice (superoxide-dismutase-1 transgenic), and deficient mice (superoxide dismutase-1 knockout). Isotonic contractions in isolated perfused arterioles and mRNA expression of NO synthase isoforms, adenosine, and angiotensin II receptors were measured. In wild-type mice, N(G)-nitro-L-arginine methyl ester (L-NAME) did not change the basal arteriolar diameter of hydronephrotic kidneys (-6%) but reduced it in control (-12%) and contralateral arterioles (-43%). Angiotensin II mediated a weaker maximum contraction of hydronephrotic arterioles (-18%) than in control (-42%) and contralateral arterioles (-49%). The maximum adenosine-induced constriction was stronger in hydronephrotic (-19%) compared with control (-8%) and contralateral kidneys (+/-0%). The response to angiotensin II became stronger in the presence of adenosine in hydronephrotic kidneys and attenuated in contralateral arterioles. L-NAME increased angiotensin II responses of all of the groups but less in hydronephrotic kidneys. The mRNA expression of endothelial NO synthase and inducible NO synthase was upregulated in the hydronephrotic arterioles. No differences were found for adenosine or angiotensin II receptors. In superoxide dismutase-1 transgenic mice, strong but similar L-NAME response (-40%) was observed for all of the groups. This response was totally abolished in arterioles of hydronephrotic superoxide dismutase-1 knockout mice. In conclusion, hydronephrosis is associated with changes in the arteriolar reactivity of both hydronephrotic and contralateral kidneys. Increased oxidative stress, reduced NO availability, and stronger reactivity to adenosine of the hydronephrotic kidney may contribute to the enhanced tubuloglomerular feedback responsiveness in hydronephrosis and be involved in the development of hypertension.  相似文献   

20.
Endothelium-derived relaxing factors. A perspective from in vivo data   总被引:1,自引:0,他引:1  
We review below published studies of endothelium-dependent vasodilation in vivo. Endothelium-dependent vasodilation has been demonstrated in conduit arteries in vivo and in the cerebral, coronary, mesenteric, and femoral vascular beds as well as in the microcirculation of the brain and the microcirculation of cremaster muscle. The available evidence, although not complete, strongly suggests that the endothelium-derived relaxing factor generated by acetylcholine in the cerebral microcirculation is a nitrosothiol. The endothelium-derived relaxing factor generated by bradykinin in this vascular bed is an oxygen radical generated in association with enhanced arachidonate metabolism via cyclooxygenase. In the microcirculation of skeletal muscle, on the other hand, the vasodilation from bradykinin is mediated partly by prostacyclin and partly by an endothelium-derived relaxing factor similar to that generated by acetylcholine. Basal secretion of endothelium-derived relaxing factor is controversial in vivo but is usually present in vitro. On the other hand, it appears that endothelium-derived relaxing factor mediates flow-dependent vasodilation in both large vessels and in the microcirculation in vivo. The generation and release of endothelium-derived relaxing factor from endothelium may be abnormal in a variety of conditions including acute and chronic hypertension, atherosclerosis, and ischemia followed by reperfusion. Several mechanisms for these abnormalities have been identified. These include inability to generate endothelium-derived relaxing factor or destruction of endothelium-derived relaxing factor by oxidants after its release in the extracellular space. These abnormalities in endothelium-dependent relaxation may contribute to the vascular abnormalities in these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号