首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Platelet adherence to human artery subendothelium in blood from eight normal subjects, four patients with Glanzmann's thrombasthenia (deficiency of platelet membrane glycoproteins IIb and IIIa: GPIIb-IIIa), two patients with Bernard-Soulier syndrome (deficiency of platelet membrane glycoprotein Ib: GPIb) and one patient with von Willebrand's disease (VWD subtype III. deficient in factor VIII-von Willebrand factor: FVIII-VWF) was compared at various wall shear rates (300, 500, 1000, 1800 and 2500 s-1). Platelet adherence in blood from the patients with Glanzmann's thrombasthenia was within the normal range at shear rates below 1000 s-1. There was some decrease in adhesion at higher shear rates and platelets were less spread out on the subendothelium than normally at all shear rates. Platelet aggregate formation was almost totally absent. Platelet adherence in blood from patients with the Bernard-Soulier syndrome was strongly impaired at all shear rates. Platelet adherence in blood from the patient with VWD subtype III was normal at shear rates of 300 and 500 s-1, but impaired at shear rates above 1000 s-1. Aggregate formation was also decreased at these shear rates. Platelet adhesion was strongly inhibited by a monoclonal antibody against glycoprotein Ib, which had previously been shown to inhibit ristocetin-induced aggregation, at shear rates of 500 and 1800 s-1 but not at 300 s-1. Platelet adhesion at 1800 s-1 was also inhibited, though to a lesser extent, by two antibodies against GPIIb-IIIa. These antibodies also inhibited platelet aggregate formation. The data indicates that GPIb is involved in adhesion at the same shear rates as von Willebrand factor. Absence or inhibition of GPIIb-IIIa primarily causes a defect of aggregate formation but GPIIb-IIIa may also play a role in adhesion, particularly at high shear rates. The defect of adhesion in the Bernard-Soulier syndrome may be dependent on factors other than a deficiency of GPIb alone.  相似文献   

2.
Type I Glanzmann's thrombasthenia is a rare congenital platelet function disorder, characterized by undetectable platelet membrane glycoprotein IIb-IIIa (GPIIb-IIIa). Severe bleeding is controlled by transfusion of normal platelets, leading in some cases to the occurrence of anti-GPIIb-IIIa isoantibodies, which induces a loss of transfused platelet efficacy. We used immunoadsorption on protein A Sepharose (IA-PA), which has been shown to be efficient in decreasing the titre of antibodies in several immune diseases, in three patients with Glanzmann's thrombasthenia and anti-GPIIb-IIIa isoantibodies on five different occasions. IA-PA was well tolerated with no deleterious side-effects reported. It induced a dramatic decrease of total immunoglobulin (Ig)G, including anti-GPIIb-IIIa isoantibody levels, as assessed by the monoclonal antibody-specific immobilization of platelet antigens test and the ex vivo inhibition of normal platelet aggregation induced by the patient's platelet-rich or platelet-poor plasma. Elimination of the antibody was associated with a correction of the bleeding time following platelet transfusion. IA-PA combined with platelet transfusion made it possible to control two life-threatening haemorrhages, and allowed two surgical procedures and one bone marrow transplantation to be performed safely. Our experience suggests that IA-PA, which restores the haemostatic efficacy of platelet transfusion, is a valuable therapeutic strategy in patients with Glanzmann's thrombasthenia and anti-GPIIb-IIIa isoantibodies.  相似文献   

3.
In this study, we have examined whether the platelet Fc-receptor, FcγRII (CD32), is associated with either of the two major platelet membrane glycoproteins, the GPIb-IX complex and the GPIIb-IIIa complex. Monoclonal and polyclonal anti-GPIb-IX complex antibodies inhibited to only a moderate degree (< 40%) the binding of the anti-FcγRII monoclonal antibody, IV.3, to platelets. In contrast, 6 of 12 anti-GPIIb-IIIa monoclonal antibodies and a polyclonal, affinity-purified rabbit anti-GPIIb-IIIa antibody strongly cross-blocked the binding of IV.3 to platelets. This inhibition was dependent upon the Fab-mediated binding of these antibodies to the GPIIb-IIIa complex since they did not inhibit the binding of IV.3 to Glanzmann's thrombasthenic platelets which have normal levels of FcγRII but lack the GPIIb-IIIa complex. The anti-GPIIb-IIIa monoclonal antibodies, AP3 and VM16a, had no effect on platelet aggregation induced by ADP or thrombin but inhibited Fc-receptor-dependent platelet aggregation as induced by either acetone-aggregated human IgG or by activating monoclonal antibodies against GPIV, PTA1 or CD9. F(ab')(2) fragments of these two anti-GPIIb-IIIa monoclonal antibodies also inhibited Fc-receptor-dependent platelet aggregation indicating that the observed interference by intact antibody was not due to the direct interaction of the Fc-portion of the antigen-antibody complex with FcγRII. In addition, the inhibitory anti-GPIIb-IIIa antibodies cross-blocked the binding of IV.3 to platelets at 0°C as well as at 22°C suggesting that the observed inhibition was not dependent on the lateral mobility of either GP IIb-IIIa or FcγRII in the platelet membrane. The combined results therefore strongly suggest that the platelet Fc-receptor, FcγRII, is topographically associated with the GPIIb-IIIa complex in the intact platelet membrane.  相似文献   

4.
Weiss  HJ; Turitto  VT; Baumgartner  HR 《Blood》1986,67(2):322-330
Patients whose platelets are deficient in glycoprotein (GP) Ib, IIb- IIIa (thrombasthenia), or granule substances (storage pool deficiency, SPD) were studied to define further the properties of platelets that mediate platelet adhesion and thrombus formation on subendothelium. Both nonanticoagulated and citrated blood were exposed to everted, de- endothelialized rabbit vessel segments under controlled flow conditions and shear rates varying from 650 to 3,300 sec-1. Morphometry was used to measure platelet thrombus dimensions and the percentage of the subendothelial surface covered with contact (C) or spread (S) platelets. Adhesion was defined as C + S. The results in SPD demonstrated (1) reduced thrombus dimensions in delta-SPD (pure dense granule deficiency) in proportion to the magnitude of the dense granule defect; (2) an even greater reduction in thrombus dimensions in patients with combined deficiencies of alpha and dense granules (alpha delta-SPD); and (3) impaired platelet adhesion at several conditions in alpha delta-SPD and, in delta-SPD, a hematocrit-dependent impairment of adhesion in citrated blood at 2,600 sec-1. In thrombasthenia, platelets were present as a monolayer on the subendothelial surface in both nonanticoagulated and citrated blood, indicating an absolute requirement for GPIIb-IIIa in promoting platelet-platelet interaction at all shear rates and perfusion times. Two types of abnormalities in platelet-vessel wall interactions were observed. In nonanticoagulated blood, the percentage of platelets in the C phase was consistently increased at all shear rates, but C + S values were normal. These observations indicate that platelets deficient in GPIIb-IIIa do not spread normally on the subendothelial surface exposed to nonanticoagulated blood. With citrated blood, the C + S value in thrombasthenia was reduced at both 800 and 2,600 sec-1, as in von Willebrand's disease, and a similar degree of reduction (about 50%) was observed in normal blood treated with a monoclonal antibody to GPIIb- IIIa. The findings, together with theoretical considerations, are consistent with an hypothesis that GPIIb-IIIa mediates the spreading of platelets on subendothelium following the initial attachment through GPIb and that GPIIb-IIIa may be considered an adhesion site on the platelet membrane. Abnormalities of GPIIb-IIIa may, depending on the conditions of study, result in either increased values of C platelets or decreased values of C + S. The results of the study further suggest that a complex interaction of platelet granule factors and membrane GP mediate platelet adhesion and thrombus formation.  相似文献   

5.
Glanzmann's thrombasthenia is a rare autosomal recessive bleeding disorder characterized by a quantitative deficiency or a functional abnormality of the major platelet membrane integrin receptor: the glycoprotein (GP) IIb/IIIa complex. The GPIIb/IIIa complex functions as a platelet receptor for fibrinogen, von Willebrand factor, fibronectin and vitronectin; therefore it plays an important role in platelet adhesion and aggregation. Thrombasthenic platelets are severely deficient in GPIIb/IIIa content or function, and fail to aggregate and form the hemostatic plug at the site of vessel injury. On the other hand, heterozygous subjects (having about half the number of normal GPIIb/IIIa complexes) do not show bleeding problems. It has been demonstrated that a molecular defect affecting one of the two GP coding genes is sufficient to determine a contemporary deficit of both GPIIb and GPIIIa, and hence the thrombasthenic phenotype. Up to now, few molecular abnormalities giving rise to Glanzmann's thrombasthenia have been characterized. Large rearrangements within the GPIIb or GPIIIa coding genes appear to be unusual, whereas small modifications in the nucleotide sequence of the coding regions occur with higher frequency.  相似文献   

6.
To analyze molecular mechanisms of platelet aggregation, we have studied the aggregation of Chinese hamster ovary (CHO) cells expressing between 1 and 4 x 10(5) recombinant human glycoprotein (GP) IIb-IIIa molecules per cell (A5 cells). These cells aggregated as measured by the disappearance of single cells during rotary agitation. Aggregation was dependent on the presence of extracellular fibrinogen (approximately 500 nmol/L) and divalent cations, and required prior activation of the GPIIb-IIIa. A synthetic peptide (GRGDSP) and monoclonal anti-GPIIb-IIIa antibody (2G12) that block platelet aggregation also blocked aggregation of these cells. Parent CHO cells or those expressing recombinant GPIIb-IIIa containing a point mutation that causes variant thrombasthenia both failed to aggregate when stimulated in the presence of fibrinogen. These data show that GPIIb-IIIa is the only unique platelet surface component required for aggregation.  相似文献   

7.
Ross  JM; McIntire  LV; Moake  JL; Rand  JH 《Blood》1995,85(7):1826-1835
Type VI collagen is a subendothelial constituent that binds von Willebrand factor (vWF) and platelets. The interaction of platelets with type VI collagen and the roles of platelet glycoprotein (GP) receptors and vWF were studied under flow conditions using epi- fluorescent videomicroscopy coupled with digital image processing. We found that surface coverage was less than 6% on collagen VI at a relatively high-wall shear rate (1,000 s-1) and was approximately 60% at a low-wall shear rate (100 s-1). The molecular mechanisms involved in low-shear platelet binding were studied using monoclonal antibodies to platelet GPIb and GPIIb-IIIa, and polymeric aurin tricarboxylic acid. Anti-GPIIb-IIIa was the most effective in eliminating adhesion (surface coverage, 0.8%), followed by anti-GPIb (4.3%), and ATA (12.6%). Experiments with von Willebrand disease blood indicate that vWF is involved in platelet adhesion to collagen VI at 100 s-1. In the absence of vWF, there may be direct binding of platelet GPIIb-IIIa complexes to collagen VI. Adhesion and aggregation on collagen VI are different in shear rate dependence from collagen I. Our results suggest a possible role for collagen VI and vWF in platelet adhesion and aggregation in vascular regions with low shear rates.  相似文献   

8.
《Platelets》2013,24(4):190-196
In this study, we have examined whether the platelet Fc-receptor, FcγRII (CD32), is associated with either of the two major platelet membrane glycoproteins, the GPIb-IX complex and the GPIIb-IIIa complex. Monoclonal and polyclonal anti-GPIb-IX complex antibodies inhibited to only a moderate degree (< 40%) the binding of the anti-FcγRII monoclonal antibody, IV.3, to platelets. In contrast, 6 of 12 anti-GPIIb-IIIa monoclonal antibodies and a polyclonal, affinity-purified rabbit anti-GPIIb-IIIa antibody strongly cross-blocked the binding of IV.3 to platelets. This inhibition was dependent upon the Fab-mediated binding of these antibodies to the GPIIb-IIIa complex since they did not inhibit the binding of IV.3 to Glanzmann's thrombasthenic platelets which have normal levels of FcγRII but lack the GPIIb-IIIa complex. The anti-GPIIb-IIIa monoclonal antibodies, AP3 and VM16a, had no effect on platelet aggregation induced by ADP or thrombin but inhibited Fc-receptor-dependent platelet aggregation as induced by either acetone-aggregated human IgG or by activating monoclonal antibodies against GPIV, PTA1 or CD9. F(ab')2 fragments of these two anti-GPIIb-IIIa monoclonal antibodies also inhibited Fc-receptor-dependent platelet aggregation indicating that the observed interference by intact antibody was not due to the direct interaction of the Fc-portion of the antigen-antibody complex with FcγRII. In addition, the inhibitory anti-GPIIb-IIIa antibodies cross-blocked the binding of IV.3 to platelets at 0°C as well as at 22°C suggesting that the observed inhibition was not dependent on the lateral mobility of either GP IIb-IIIa or FcγRII in the platelet membrane. The combined results therefore strongly suggest that the platelet Fc-receptor, FcγRII, is topographically associated with the GPIIb-IIIa complex in the intact platelet membrane.  相似文献   

9.
Glanzmann's thrombasthenia is a bleeding disorder, inherited in an autosomal recessive way and characterized by an absence or deficiency of the platelet glycoprotein (GP) IIb/IIIa complex. Recently, we and others demonstrated that cultured human umbilical vein endothelial cells synthesized a membrane protein complex similar to the platelet GP IIb/IIIa complex. In this article, we demonstrate that endothelial cells isolated from the umbilical vein of a newborn with Glanzmann's thrombasthenia, as compared with normal endothelial cells, show no difference in their ability to synthesize and express this GP IIb/IIIa complex. Our results indicate that Glanzmann's thrombasthenia is not accompanied by an "endotheliopathy."  相似文献   

10.
Nair S  Ghosh K  Kulkarni B  Shetty S  Mohanty D 《Platelets》2002,13(7):387-393
Glanzmann's thrombasthenia is an autosomal recessive disorder, rare in a global context, but a relatively more common platelet function defect in communities where consanguineous marriages are more frequent. On clinical grounds alone, it cannot be distinguished from other congenital platelet function defects. Epistaxis, gum bleeding, menorrhagia are the common clinical manifestations, whereas large muscle hematoma or hemarthrosis seldom occur in these patients. Essential diagnostic features are a normal platelet count and morphology, a greatly prolonged bleeding time, absence of platelet aggregation in response to ADP, collagen, epinephrine, thrombin and to all aggregating agents which ultimately depend on fibrinogen binding to platelets for this effect, flow cytometry, studies of GPIIb-IIIa receptors on the platelet membrane surface using monoclonal antibodies. The present review describes some of the uncommon features of the disorders and the currently available options which the treating physicians should be aware of during the management of these patients. Although by definition all patients with Glanzmann's thrombasthenia have a virtually complete failure of platelet aggregation, a number of variant forms of GT have been described in which the glycoproteins are present in normal or near normal amounts but are functionally defective. Understanding the pathophysiology of the disorder by the treating physicians is of utmost importance. Presence of high affinity platelet receptors resulting in thrombasthennia-like phenotype may require an antagonistic treatment atypical of classical GT management. It has now been established that different genetic mutations of either GPIIb or IIIa genes results in such a heterogeneity of thrombasthenia phenotype. Glanzmann's thrombasthenia is a paradigm for treating coronary artery disease patients with GPIIb-IIIa antibody and inhibitors. By using these medicines we create a temporary GT-like situation. Hence, understanding this disease is of utmost importance to the practicing cardiologist. As mutations for different variant forms of GT become known, our understanding of how GPIIb-IIIa molecules can be activated to act as a receptor for fibrinogen molecules will be increased. Such understanding undoubtedly will help us to devise better drugs with GPIIb-IIIa inhibitors. Molecular biology techniques have enabled us to equivocally detect heterozygote carriers who are clinically asymptomatic. However, there may be several laboratories in the developing world, which have no access to molecular biology techniques. Development of more robust techniques of quantitation of platelet receptors has enabled an accurate diagnosis of heterozygote carriers or an unborn fetus in the second trimester. The importance of the GPIIb-IIIa polymorphisms in carrier and prenatal diagnosis has not been properly studied. Nowadays the less direct method of PLA1 typing (determination of the levels of platelet antigen) of the foetal platelets as early as 16 weeks of intrauterine life can be used for prenatal diagnosis of GT.  相似文献   

11.
Glanzmann thrombasthenia is a rare, inherited disorder of the platelet glycoprotein IIb/IIIa (GP IIb/IIIa) complex. We previously identified two distinct populations with this disorder in Israel, Iraqi-Jews and Arabs. The groups are indistinguishable in hemorrhagic symptoms and platelet GP IIB/IIIa receptor deficiency, but they differ in their platelet immunodetectable GP IIIa (beta 3), with the Iraqi-Jewish population expressing no detectable GP IIIa and the Arab population expressing small amounts. We have now examined the platelets of these two populations as well as normal platelets for the alpha v beta 3 vitronectin receptor. Normal platelets contained between approximately 50 to 100 alpha v beta 3 vitronectin receptors as judged by the binding of antibodies to both alpha v (LM142) and the intact alpha v beta 3 vitronectin receptor complex (LM609). In addition, normal platelets bound to immobilized vitronectin in the presence of 1 mmol/LMnCl2; the adhesion was mediated predominantly through GP IIb/IIIa, but with a distinct contribution by the alpha v beta 3 vitronectin receptor, as determined by monoclonal antibody inhibition studies. Iraqi-Jewish patients' platelets had a profound decrease in immunodetectable alpha v beta 3 vitronectin receptors, and their platelets did not adhere well to vitronectin. In contrast, Arab patients' platelets had normal or increased numbers of platelet alpha v beta 3 vitronectin receptors, and these receptors functioned well in the vitronectin adhesion assay, taking over much of the adhesion mediated by GP IIb/IIIa in normal platelets. These studies define further the heterogeneity of the molecular basis of Glanzmann thrombasthenia; they also have more widespread implications for understanding the synthesis and function of the beta 3 family of integrin receptors.  相似文献   

12.
Grimaldi  CM; Chen  F; Scudder  LE; Coller  BS; French  DL 《Blood》1996,88(5):1666-1675
A 20-year-old woman from a consanguineous family in the Hunan Province of the People's Republic of China was diagnosed as having Glanzmann's thrombasthenia based on (1) nearly a lifelong history of epistaxis, gum bleeding, petechiae, and purpura; (2) severe menorrhagia resulting in anemia and need for whole-blood transfusion; (3) normal coagulation assays; (4) prolonged bleeding time; (5) absent clot retraction; (6) decreased glass bead retention; (7) absent platelet aggregation in response to adenine diphosphate, epinephrine, and collagen; and (8) normal initial slope of platelet aggregation in response to ristocetin, but with a diminished maximal extent. The patient's platelets had a decreased level of platelet fibrinogen, but the deficiency was not as severe as in other Glanzmann's thrombasthenia patients. As judged by monoclonal antibody binding studies, surface glycoprotein (GP) IIb/IIIa (alpha IIb beta 3) expression was less than 15% of normal and alpha v beta 3 vitronectin receptor expression was 15% to 19% of normal, suggesting that the defect was in GPIIIa (beta 3). Immunoblotting of platelet lysates demonstrated decreased levels of GPIIb (approximately 30% to 35% of normal) and GPIIIa (approximately 10% of normal), and the GPIIb had undergone normal maturational processing into GPIIb heavy and light chains. Sequence analysis of the patient's GPIIIa RNA identified a G to A mutation at nucleotide 1219, predicting a Cys to Tyr substitution at residue 374. The patient's parents, who are first cousins, are asymptomatic and have only minor reductions in platelet aggregation. Direct sequencing of polymerase chain reaction-amplified cDNA and GPIIIa exon VIII indicated that the patient is homozygous and her parents are heterozygous for the mutation. Transient transfection studies in Chinese hamster ovary cells indicated that the mutation results in an 85% to 90% reduction in GPIIb/IIIa surface expression, but these cells retain the ability to mediate adhesion to immobilized fibrinogen. The relative preservation of platelet fibrinogen despite the very low level of platelet surface GPIIb/IIIa expression in this patient raises some interesting questions regarding the mechanism of fibrinogen uptake and the pathophysiology of Glanzmann's thrombasthenia.  相似文献   

13.
A patient is described with a disturbance of platelet function comparable to that in Glanzmann's thrombasthenia. Platelet aggregation and binding of fibrinogen to the patient's platelets were defective and thrombin-induced clot retraction was absent. The platelet fibrinogen content was only moderately reduced. As measured by monoclonal antibody binding in the presence of divalent cations, the platelets contained about 15% of the normal amount of GPIIb and GPIIIa and only 6% of the normal amount of intact GPIIb/IIIa complex. The residual GPIIb/IIIa complex exhibited a decreased stability as shown by the lack of binding of a complex-dependent anti-GPIIb/IIIa antibody to platelets incubated with ethylene diamine tetraacetic acid (EDTA) at 22 degrees C. Crossed immunoelectrophoresis (CIE) in the presence of divalent cations showed partial dissociation of GPIIb/IIIa as well as the presence of two forms of the residual intact GPIIb/IIIa complex. In addition, both CIE in the presence of the EDTA and two-dimensional sodium dodecyl sulphate (SDS) gel electrophoresis showed the presence of two forms of GPIIb. This form of thrombasthenia is characterized by a defective platelet function, a marked reduction of GPIIb and GPIIIa, decreased stability of the residual GPIIb/IIIa complex and structural heterogeneity of GPIIb.  相似文献   

14.
Summary Glycoproteins (GPs) IIb and IIIa form a Ca2+-dependent complex in platelet membrane and change their conformation upon platelet activation and dissociation of the complex. A new anti-GPIIIa monoclonal antibody (mAb). CRC54, is described which could distinguish different conformational states of GPIIIa. This antibody (i) precipitated GPIIb-IIIa from platelet Triton X-100-lysate. (ii) recognized the GPIIIa band in Western blotting of platelet SDS-lysate, and (iii) did not react with platelets from a Glanzmann's thrombasthenia patient lacking GPIIb-IIIa. Immunoblotting of chymotryptic digestion products of purified GPIIb-IIIa has shown that CRC54 epitope is located within residues 1–100 at the N-terminus of GPIIIa. CRC54 bound weakly to platelets in the presence of Ca2+ and Mg2+, 2.34 ± 0.28 ± 103 molecules per platelet at saturation. The same level of binding was observed without any divalent cations in the medium. However, binding of CRC54 was increased by several times after treatment of platelets with EDTA, 10.04 ± 0.28 ± 103 molecules per platelet. Increase of CRC54 binding correlated with the dissociation of GPIIb-IIIa complex which was followed by the decrease of the binding of another mAb, CRC64, directed against complex-specific epitope of GPIIb-IIIa. Binding of CRC54 to platelets was changed neither by platelet activation in suspension with thrombin or ADP nor by the occupancy of GPIIb-IIIa ligand binding site with GRGDSR peptide. However. binding was significantly stimulated by platelet adhesion to polystyrene plastic. As measured using 51Cr-labelled platelets, binding of l25I-CRC54 to adherent platelets in the presence of divalent cations was about 4 times higher than to platelets in suspension, 8.68 ± 0.48 ± 103 per platelet. This increase was not due to the dissociation of GPIIb-IIIa since complex-specific antibody CRC64 still bound effectively to the surface of adherent platelets. The data obtained indicated that: (1) CRC54 recognized an epitope specific for the dissociated form of GPIIIa: (2) the CRC54-reactive epitope of GPIIIa is also expressed on the surface of adherent platelets.  相似文献   

15.
Peerschke  EI 《Blood》1993,82(11):3358-3363
The platelet-membrane glycoprotein IIb-IIIa (GPIIb-IIIa) complex is essential for platelet aggregation and is involved in the attachment of platelets to thrombogenic surfaces. This study shows the retention of GPIIb and GPIIIa on immobilized fibrinogen after Triton X-100 (Sigma Chemical Co, St Louis, MO) lysis of adherent platelets. Glycoproteins were detected using subunit specific monoclonal antibodies in a modified enzyme-linked immunosorbent assay procedure. GPIIb-IIIa retention was judged to be specific relative to GPIb recovery, and was modulated by platelet activation. Platelet exposure to adenosine diphosphate or thrombin, but not A23187 or chymotrypsin, markedly enhanced GPIIb and GPIIIa recovery relative to that observed with unstimulated platelets, or prostaglandin E1-treated platelets. Moreover, lysis of adherent platelets in the presence of 10 mmol/L EDTA, under conditions promoting GPIIb-IIIa complex dissociation (pH 8.1, 60 minutes, 37 degrees C), had no effect on GPIIb or GPIIIa subunit recovery. Platelet activation with Zn+2 also enhanced GPIIb and GPIIIa recovery on fibrinogen-coated surfaces over that observed with unstimulated platelets, but GPIIb and IIIa retention was EDTA sensitive. This correlated with the EDTA-reversible nature of Zn+2- activated platelet adhesion to fibrinogen-coated surfaces. The data (1) show that platelet adhesion to fibrinogen is accompanied by the induction of high-affinity interactions between GPIIb-IIIa and immobilized fibrinogen that are EDTA-resistant and enhanced by platelet activation with some but not all agonists, and (2) implicate these interactions in stabilizing platelet contacts with fibrinogen-coated surfaces.  相似文献   

16.
Peerschke  EI 《Blood》1986,68(2):463-471
Tertiary amine local anesthetics modify a variety of platelet membrane- related functions. The present study explored dibucaine (DB)-induced inhibition of platelet cohesion by examining structural and functional alterations of the human platelet membrane glycoprotein IIb-IIIa complex (GPIIb-IIIa) and platelet Ca2+ homeostasis. Complete inhibition of ADP-induced aggregation was achieved five minutes after platelet exposure to 0.10 to 0.25 mmol/L of DB when fibrinogen binding was reduced by 50%. At higher concentrations of DB (approximately 1 mmol/L), ADP-induced fibrinogen binding was completely blocked. Scatchard analysis revealed loss of high-affinity binding sites in addition to reduction in Bmax. In contrast, chymotrypsin-treated platelets sustained 50% inhibition of fibrinogen binding when incubated with 0.4 to 0.5 mmol/L DB, and kinetic analysis showed that the high- affinity platelet-fibrinogen interactions were reduced but not absent. Fibrinogen binding to chymotrypsin-treated platelets could not be completely inhibited even at high DB concentrations (1 mmol/L). The inhibition of fibrinogen binding to chymotrypsin-treated platelets correlated with changes in binding of a monoclonal antibody (10E5) specific for an epitope on the GPIIb-IIIa complex. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and radioelectroimmunoassay of DB-treated platelets, however, showed no evidence of a reduction or degradation of GP IIb or IIIa. Platelet incubation with DB (five minutes, 0.1 to 1.0 mmol/L) was also accompanied by: increased platelet membrane-associated Ca2+ involving low-affinity binding sites [Kd = 5 X 10(-5) mol/L-]; increased 45Ca2+ uptake which correlated with degradation of actin-binding protein (ABP) and digestion of GPIb as visualized on periodic-acid Schiff (PAS)- stained SDS gels and as inferred from decreased binding of a monoclonal antibody (6D1) directed against this glycoprotein; and enhanced Ca2+ exchange. Thus, exposure of platelets to DB results in membrane-related alterations that may contribute to inhibition of platelet cohesion: Decreased fibrinogen receptor exposure by traditional agonists and diminished accessibility of the GPIIb-IIIa complex to extracellular ligands correlate with DB-induced inhibition of platelet aggregation; and increased calcium uptake and exchange across the platelet membrane likely leads to activation of the calcium-dependent protease(s) which was previously shown to correlate with DB-induced inhibition of ristocetin-induced platelet agglutination.  相似文献   

17.
Three cases of suspected variant thrombasthenia patients (out of 10 cases of Glanzmann's thrombasthenia), who had significant amounts of platelet GPIIbIIIa, underwent flow cytometry to analyse the binding capacity of monoclonal antibodies against GPIIbIIIa to platelets. The monoclonal antibodies used in this study were as follows: PLT-1 and AP-2 recognizing the IIbIIIa complex; TP 80, P2 and AP-4 recognizing IIb:;AP-5 recognizing IIIa;OP-G2, which binds an epitope near the RGD binding site and 3F11. OP-G2 also recognizes conformational changes of activated platelets by increased binding. Case 1 platelets showed a binding capacity of 28-63% of that of normal platelets for TP80, AP-2, AP-4, and 3F11, but no binding to OP-G2. Case 2 platelets also showed 16-44% binding with TP80, AP-2, AP-4, AP-5, and 3F11, but no binding to OP-G2. These findings indicated the presence of structural abnormalities of the functional site of platelet GPIIbIIIa in cases 1 and 2. Case 3 platelets bound with all monoclonal antibodies normally, but normal increase in the binding of OP-G2 to platelets activated by thrombin or ADP was not seen, indicating a lack of activation of the fibrinogen binding site of platelet GPIIbIIIa.  相似文献   

18.
The glycoprotein localization of the platelet binding site for the Fc IgG has been the subject of debate. We attempted to resolve this issue by relating the binding of radiolabeled IgG immune complexes composed of heat-aggregated IgG to platelets from healthy individuals; an individual with Bernard-Soulier syndrome lacking glycoproteins IIb and IX; and a patient with Glanzmann's thrombasthenia lacking glycoproteins IIb and IIIa. The binding of IgG complexes to platelets was determined by measuring the specific binding of radiolabeled heat-aggregated IgG to washed platelets in a plasma-free mileu. 125I aggregated IgG bound to normal platelets in a saturable and concentration-dependent fashion. Specific binding could be inhibited by a 50-fold excess of purified Fc, but not by F(ab')2. Identical binding curves were obtained by using platelets from a patient with Glanzmann's thrombasthenia and a patient with Bernard-Soulier syndrome, indicating that the platelet Fc receptor is not carried on glycoproteins Ib, IIb, IIIa, or IX. We then measured the binding of radiolabeled detergent-solubilized platelets to IgG fixed to a solid matrix. A 40-kD platelet fragment bound to the immobilized IgG following passage across a density gradient. Confirmation of the Fc specificity of the interaction was shown by inhibition of platelet glycoprotein binding by excess IgG or purified Fc but not F(ab')2. The electrophoretic mobility decreased slightly after reduction, which indicated the existence of at least one intrachain disulfide bond. Treatment with high salt solutions or urea did not solubilize the receptor, which indicated that it was an integral protein. Enzyme studies showed that the platelet Fc receptor was not digested by neuraminidase, but neuraminidase treatment altered mobility by about 3%. In addition, treatment of platelets with trypsin or pronase did not affect its function as measured by the binding of 125I-IgG aggregates to enzyme-treated platelets, but did prevent its detection when using radioimmunoprecipitation studies. The platelet Fc receptor is a 40-kD, integral protein without interchain disulfide bonds.  相似文献   

19.
Fibronectin in artery subendothelium is important for platelet adhesion   总被引:10,自引:1,他引:10  
Houdijk  WP; Sixma  JJ 《Blood》1985,65(3):598-604
The role of subendothelial fibronectin in platelet interaction with subendothelium was studied. Human umbilical artery subendothelium was exposed to flowing blood containing 111In-labeled platelets in an annular perfusion chamber. Platelet adhesion was determined from the 111In radioactivity on the vessel wall. When perfusions were performed for five minutes at a wall shear rate of 1,800 s-1, platelet adhesion was the same whether normal plasma or fibronectin-free plasma was used. Preincubation of subendothelium with rabbit anti-human fibronectin serum, however, resulted in a marked inhibition of platelet adhesion. Preincubation with normal rabbit serum had no effect. Platelet adhesion was also diminished when the vessel wall was preincubated with anti- fibronectin IgG fraction or F(ab')2 fragment. After the latter preincubations, frozen sections of 4 micron were incubated with fluorescein isothiocyanate-conjugated goat anti-rabbit IgG, F(ab')2 fragment specific. Fluorescence was seen throughout the subendothelium both before and after perfusion. No fluorescence was seen when subendothelium was preincubated with normal rabbit IgG or F(ab')2 or with anti-fibronectin IgG that had been absorbed with purified fibronectin. After absorption of anti-fibronectin IgG with purified fibronectin, the inhibiting effect on platelet adhesion was also no longer present. Preincubation of the vessel wall with anti-fibronectin IgG reduced platelet adhesion significantly at a wall shear rate of 800 s-1. This effect was even greater at 1,800 s-1. At low shear rate (400 s-1), there was no inhibition.  相似文献   

20.
We have investigated the molecular basis of thrombus formation by measuring the extent of platelet deposition from flowing whole blood onto fibrin-coated glass coverslips under well-defined shear conditions in a rectangular perfusion chamber. Platelets readily and specifically adhered to fibrin-coated coverslips in 5 minute perfusion experiments done at either low (300 s-1) or high (1,300 s-1) wall shear rates. Scanning electron microscopic examination of fibrin-coated coverslips after perfusions showed surface coverage by a monolayer of adherent, partly spread platelets. Platelet adhesion to fibrin was effectively inhibited by a monoclonal antibody (MoAb) specific for glycoprotein (GP) IIb:IIIa. The dose-response curve for inhibition of adhesion by anti-GPIIb:IIIa at both shear rates paralleled that for inhibition of platelet aggregation. Platelet aggregation and adhesion to fibrin were also blocked by low concentrations of prostacyclin. In contrast, anti-GPIb reduced adhesion by 40% at 300 s-1 and by 70% at 1,300 s-1. A similar pattern of shear rate-dependent, incomplete inhibition resulted with a MoAb specific for the GPIb-recognition region of von Willebrand factor (vWF). Platelets from an individual with severe von Willebrand's disease, whose plasma and platelets contained essentially no vWF, exhibited defective adhesion to fibrin, especially at the higher shear rate. Addition of purified vWF restored adhesion to normal values. These results are consistent with a two-site model for platelet adhesion to fibrin, in which the GPIIb:IIIa complex is the primary receptor, with GPIb:vWF providing a secondary adhesion pathway that is especially important at high wall shear rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号