首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Callipeltin A is a cyclic depsidecapeptide isolated from the marine sponges Callipelta sp. and Latrunculia sp. that has been previously shown to increase the force of contraction of guinea-pig atria through the inhibition of Na+/Ca2+ exchanger (NCX). We investigated the effect of callipeltin A on guinea-pig aortic rings contracted by procedures that activate NCX in "calcium entry mode". Callipeltin A did not inhibit these contractions. Resting aorta responded to callipeltin A with a remarkable contraction that was concentration-dependent (EC50 0.44microM). This contraction was not inhibited by the calcium channel blocker verapamil and was not mediated by the activation of alpha-adrenergic or endothelin-1 receptors. Pre-incubation of aortic rings with 0.5mM amiloride, an inhibitor of NCX, completely prevented callipeltin A-induced contraction. Furthermore, callipeltin A (EC50 0.51microM) increased Na+ efflux of Na-loaded erythrocytes. 1H and 13C NMR resonances of callipeltin A revealed small but significant changes in the titration with K+ and Na+ salts. It is suggested that the effect of callipeltin A on cardiac and vascular preparations is linked to a Na-ionophore action.  相似文献   

3.
The present study was designed to evaluate the effects of antidepressants on smooth muscle contractile activity. In rat aortic rings, the antidepressants imipramine, mianserin and sertraline provoked concentration-dependent inhibitions of the mechanical responses evoked by K+ (30 mM) depolarization. These myorelaxant effects were not modified by the presence of glibenclamide or 80 mM K+ in the bathing medium. Moreover, the vasodilator properties of imipramine were not affected by atropine, phentolamine and pyrilamine. Radioisotopic experiments indicated that imipramine failed to enhance 86Rb outflow from prelabelled and perifused aortic rings whilst counteracting the increase in 45Ca outflow provoked by a rise in the extracellular K+ concentration. Simultaneous measurements of contractile activity and fura-2 fluorescence revealed that, in aortic rings, imipramine reduced the mechanical and fluorimetric response to K+ challenge. In A7r5 smooth muscle cells, whole cell recordings further demonstrated that imipramine inhibited the inward Ca2+ current. Under different experimental conditions, the ionic and relaxation responses to the antidepressants were reminiscent of those mediated by the Ca2+ entry blocker verapamil. Lastly, it should be pointed out that imipramine exhibited a myorelaxant effect of similar amplitude on rat aorta and on rat distal colon. All together, these findings suggest that the myorelaxant properties of imipramine, and probably also setraline and mianserin, could result from their capacity to inhibit the voltage-sensitive Ca2+ channels.  相似文献   

4.
The highly potent marine toxin maitotoxin (MTX) evoked an increase in cytosolic Ca(2+) levels in fura-2 loaded rat aortic smooth muscle cells, which was dependent on extracellular Ca(2+). This increase was almost fully inhibited by KB-R7943, a potent selective inhibitor of the reverse mode of the Na(+)/Ca(2+) exchanger (NCX). Cell viability was assessed using ethidium bromide uptake and the alamarBlue cytotoxicity assay. In both assays MTX-induced toxicity was attenuated by KB-R7943, as well as by MDL 28170, a membrane permeable calpain inhibitor. Maitotoxin-evoked contractions of rat aortic strip preparations in vitro, which persist following washout of the toxin, were relaxed by subsequent addition of KB-R7943 or MDL 28170, either in the presence of, or following washout of MTX. These results suggest that MTX targets the Na(+)/Ca(2+) exchanger and causes it to operate in reverse mode (Na(+) efflux/Ca(2+) influx), thus leading to calpain activation, NCX cleavage, secondary Ca(2+) overload and cell death.  相似文献   

5.
Kinetic studies of U-37883A (4-morpholinecarboximidine-N-1-adamantyl-N'-cyclohexyl-hydrochloride), a vascular ATP-sensitive K+ channel (KATP channel) blocker, were performed on pig urethral myocytes to investigate inhibitory effects on large-conductance intracellular Ca2+ -sensitive K+ channels (i.e., BKCa channels; 225 pS K+ channels) by use of single-channel recordings (outside-out and inside-out configuration). BKCa channels in pig urethral smooth muscles showed extracellular iberiotoxin (300 nM) sensitivity and voltage dependency. The alpha subunit of BKCa channel proteins was detected in the membrane fraction by use of Western blot technique. Application of U-37883A (> or =10 microM) reduced the activity of BKCa channels in a concentration-dependent manner, not only by decreasing mean openlife time but also by prolonging the mean closed time. These results shows that U-37883A affects channels other than the vascular KATP channel, and demonstrates how it inhibits the activities of BKCa channels in urethral smooth muscles.  相似文献   

6.
The purpose of the present study was to examine the mechanisms underlying the putative hypotensive actions of iso-S-petasin, a sesquiterpene extract of Petasites formosanus through both in vivo and in vitro experiments. Intravenous administration of iso-S-petasin elicited dose-dependent (0.1-1.5 mg/kg) hypotensive and bradycardiac responses in anesthetized rats. Isometric tension recording in isolated thoracic aorta revealed that iso-S-petasin (0.01-100 microM) inhibited KCl- or Bay K 8644 (1,4-dihydro-2,6-dimethyl-5-nitro-4-[2'-(trifluoromethyl)phenyl]-3-pyridinecarboxylic acid methyl ester)-induced vasoconstriction independent of endothelium. Iso-S-Petasin also attenuated Ca(2+)-induced vasoconstriction in a concentration-dependent manner in Ca(2+)-depleted/high K(+)-depolarized ring segments, indicating that iso-S-petasin inhibited Ca(2+) influx into vascular smooth muscle cells. This was confirmed by whole-cell patch-clamp recording in cultured vascular smooth muscle cells where iso-S-petasin (10-100 microM) appeared to directly inhibit the L-type voltage-dependent Ca(2+) channel (VDCC) activity. Intracellular Ca(2+) concentration ([Ca(2+)](i)) measurements using the fluorescent probe fura-2/AM (1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2'-amino-5'-methylphenoxy)-ethane-N,N,N',N'-tetraacetic acid pentaacetoxymethyl ester) showed suppression of the KCl-stimulated increase in [Ca(2+)](i) by iso-S-petasin (10, 100 microM). In conclusion, these results suggest that Ca(2+) antagonism of the L-type VDCC in vascular smooth muscle cells might largely account for the hypotensive action of iso-S-petasin.  相似文献   

7.
Ion channels in carcinoma and their roles in cell proliferation are drawing attention. Intracellular Ca2+ ([Ca2+]i)-dependent signaling affects the fate of cancer cells. Here we investigate the role of Ca2+-activated K+ channel (SK4) in head and neck squamous cell carcinoma cells (HNSCCs) of different cell lines; SNU-1076, OSC-19 and HN5. Treatment with 1 µM ionomycin induced cell death in all the three cell lines. Whole-cell patch clamp study suggested common expressions of Ca2+-activated Cl- channels (Ano-1) and Ca2+-activated nonselective cation channels (CAN). 1-EBIO, an activator of SK4, induced outward K+ current (ISK4) in SNU-1076 and OSC-19. In HN5, ISK4 was not observed or negligible. The 1-EBIO-induced current was abolished by TRAM-34, a selective SK4 blocker. Interestingly, the ionomycin-induced cell death was effectively prevented by 1-EBIO in SNU-1076 and OSC-19, and the rescue effect was annihilated by combined TRAM-34. Consistent with the lower level of ISK4, the rescue by 1-EBIO was least effective in HN5. The results newly demonstrate the role of SK4 in the fate of HNSCCs under the Ca2+ overloaded condition. Pharmacological modulation of SK4 might provide an intriguing novel tool for the anti-cancer strategy in HNSCC.  相似文献   

8.
We examined the different vasodilatory effects of the K+ channel openers levcromakalim and 5-amino-N2-[2-(2-chlorophenyl)ethyl]-N-cyano-3-pyridinecarboxamidine (KRN4884), and the Ca2+ channel blocker nifedipine in the rat aorta. KRN4884 (10–10-10–5 M) and nifedipine (10–10–10–5 M) produced concentration-dependent relaxation in the rat aorta precontracted by 25 mM KCl. The K+ channel blocker glibenclamide (1 M) inhibited the relaxation induced by KRN4884 but did not influence nifedipine-induced relaxation. KRN 4884 had almost no effect on contraction induced by 80 mM KCl, whereas nifedipine completely relaxed the muscle precontracted by 80 mM KCl, whereas nifedipine completely relaxed the muscle precontracted by 80 mM KCl. These results indicate that KRN4884 is a K+ channel opener. We investigated the relaxant effects of KRN4884 (10–10-10–5 M), levcromakalim (10–9-10–5 M) and nifedipine (10–9-10–5 M) on A23187 (1 M)-induced contraction. KRN4884 and levcromakalim had a potent relaxant effect but nifedipine only a weak effect on the smooth muscle contracted by A23187. Glibenclamide (1 M) inhibited the relaxation induced by KRN4884 and levcromakalim, but did not influence the nifedipine-induced relaxation. KRN 4884 (1 M) produced a larger relaxation of A23187-induced contraction but had little effect on the increase in intracellular [Ca2+] induced by A23187. These results suggest that KRN4884 is a specific K+ channel opener and its vasodilating mechanisms involve not only deactivation of Ca2+ channels but also a decrease in the Ca2+ sensitivity of contractile elements.  相似文献   

9.
10.
Summary Effects of calcitonin gene-related peptide (CGRP), a putative non-adrenergic non-cholinergic neutrotransmitter on the electrical properties of the cell membrane, were investigated in enzymically dispersed smooth muscle cells from rat vas deferens. Under current clamp conditions, CGRP (up to 10–7 M) did not induce significant changes in membrane potentials or input resistance in the resting state. The configurations of action potentials elicited by depolarizing current pulses were also unaffected, except that a prolongation of the duration of the action potentials by a high dose (10–7 M) of CGRP was observed in some of the cells. Under whole cell voltage clamp conditions, the transient and sustained K+ currents, activated by depolarizing voltage-steps, were apparently decreased in the presence of 10–9 to 10–7 M CGRP. The peptide increased the voltage-gated Ca2+ current in cells loaded with 145 mM Cs+ solution in order to block the K+ currents. The voltage-dependency of the peak Ca2+ current was not changed by CGRP. Ba2+ (10.8 mM) was used as a charge carrier for the Ca2+-channel current to clarify further the effects of CGRP on the properties of the current. CGRP (10–8 M) delayed the inactivation time course of the Ca2+-channel current and slowed the recovery from inactivation. The peptide did not affect the steady-state inactivation measured by changing the holding potential. The Ca2+-channel current in the presence of CGRP was suppressed by nicardipine (10–6 M) to the same extent as the current under control conditions. The results suggest that CGRP modifies the L-type Ca2+ channel in smooth muscle cells. Correspondence to N. Matsuki at the above address  相似文献   

11.
The search for novel anxiolytics devoid of undesirable side-effects typical of classical benzodiazepines (BDZs) has been intense, and flavonoids, as a relative new class of ligands, have been shown to possess anxiolytic effects in vivo. The present study evaluated the pharmacological properties of a naturally occurring monoflavonoid, 5,7-dihydroxy-8-methoxyflavone or wogonin. The affinity (K(i)) of wogonin for the benzodiazepine site (BZD-S) on the gamma-aminobutyric acid(A) (GABA(A)) receptor complex was 0.92 microM. Using electrophysiological techniques, we showed that wogonin enhanced the GABA-activated current in rat dorsal root ganglion neurons, and in Xenopus laevis oocytes expressing recombinant rat GABA(A) receptors, the enhancement was partially reversed by the co-application of a 1 microM concentration of the BZD-S antagonist anexate (Ro15-1788). Acute toxicity and behavioral effects were examined in mice. Acute lethal activity was low, with an LD(50) of 3.9 g/kg. Oral administration of wogonin (7.5 to 30 mg/kg) elicited an anxiolytic response that was similar to that elicited by diazepam in the elevated plus-maze; a dose-dependent increase in open arm entries and time spent in open arms was observed. More importantly, its anxiolytic effect was blocked by the co-administration of Ro15-1788. In the holeboard test, not only did wogonin-treated mice experience an increased number of head-dips but they also spent more time at it, showing no signs of sedation. Furthermore, wogonin did not cause myorelaxant effects in the horizontal wire test. Taken together, these data suggest that wogonin exerts its anxiolytic effect through positive allosteric modulation of the GABA(A) receptor complex via interaction at the BZD-S. Its anxiolytic effect was not accompanied by sedative and myorelaxant side-effects typical of BDZs.  相似文献   

12.
Summary The inhibitory effect of a new dihydropyridine derivative, (±)-2-[benzyl(phenyl)amino]ethyl-1,4-dihydro-2,6-dimethyl-5-(5,5-dimethyl-2-oxo-1,3,2-dioxaphosphorinan-2-yl)-4-(3-nitrophenyl)-3-pyridinecarboxylate hydrochloride (NZ-105), on whole cell Ca2+ current (ICa) in cultured vascular smooth muscle cells was investigated with the patch clamp technique. NZ-105 blocked ICa in a concentration-dependent manner when the command pulse ranged from +10 mV to –50 mV. The inhibitory effect of NZ-105 appeared at concentrations higher than 10 mol/l and it blocked ICa completely at a concentration of 1 nmol/l. The concentration which produced the half-maximal inhibitory effect was estimated to be around 20 mol/l. NZ-105 (500 pmol/l) completely blocked ICa elicited by depolarization to + 10 mV at a holding potential of –40 mV, whereas it blocked ICa by only 67% at a holding potential of –90 mV. NZ-105 (100 mol/l) shifted the steady-state inactivation curve by 40 mV to more negative potentials without affecting its slope factor. The blocking time constant of 500 mol/l NZ-105 was 57.6 + 9.9 s at a holding potential of –70 mV. These results indicate that NZ-105 has characteristics typical of dihydropyridines and binds to Ca2+ channels of vascular smooth muscle cells with a high affinity. They also suggested that the slow onset of its action is due to the slow binding of the drug to Ca2+ channels. Send offprint requests to S. Kokubun at the above address  相似文献   

13.
Summary The resting membrane potential of smooth muscle cells of the rabbit portal vein was –51.2 mV. LP-805 (8-tert-butyl-6,7-dihydropyrrolo[3,2-e] 5-methylpyrazolo [1,5-a] pyrimidine-3-carbonitrile) hyperpolarized the membrane to –62.3 mV (10 M) and inhibited the burst spike discharges as measured using the microelectrode method. In dispersed smooth muscle cells, LP-805 (10 M) generated an outward-current with a maximum amplitude of 68 pA at a holding potential of –40 mV in experiments using the voltage-clamp procedure. The reversal potential of the outward current evoked by LP-805 was –82 mV and this value was close to the equilibrium potential for K+ (–80 mV) in the present ionic conditions, suggesting that LP-805 activated the K+ channel. Generation of both the hyperpolarization and the outward c urrent by LP-805 was inhibited by glibenclamide ( 1 M). Using the cell-attached and cell-free patch-clamp (in the presence of GDP) procedures, the maxi-K+ channel current (150 pS) could be recorded in the absence of LP-805; application of LP-805 additionally opened a small conductance K+ channel current (15 pS) without change in the activity of the maxi-K+ channel. The maxi-K+ channel was sensitive to charybdotoxin (0.1 M) and to intracellular Ca2+ ([Ca2+]i) concentration. The 15 pS channel was insensitive to [Ca2+]i and charybdotoxin, but sensitive to intracellular ATP concentration. Glibenclamide (> 1 M) inhibited the 15 pS K+ channel activated by LP-805. These actions of LP-805 on the maxi-K+ and 15 pS K+ channels are the same as those previously observed for nicorandil and pinacidil. Thus, LP-805 is a K+ channel opener with a chemical structure different from those of the known openers. Correspondence to M. Kamouchi at the above address  相似文献   

14.
Summary Tedisamil, a new bradycardic agent with an inhibitory action on K+ channels in cardiac muscle, was found to inhibit in a non-competitive manner the relaxation induced by the K+ channel opener cromakalim in noradrenaline-stimulated helical strips from rabbit aortae. Tedisamil tended to be more potent in this respect than glibenclamide; the latter however competitively antagonized the cromakalim-induced relaxation. In rabbit aorta preloaded with 86Rb as a marker of K+, 10 mol/l tedisamil inhibited the 86Rb efflux induced by 10 mol/l cromakalim. — While the 86Rb efflux evoked by depolarization with 100 mmol/l K+ aspartate was inhibited by tedisamil, too, the rise of 86Rb efflux induced by noradrenaline was unaffected by the drug.In non-stimulated rabbit aorta, tedisamil increased mechanical tension in a concentration-dependent manner (EC50 for peak contractions: 32 mol/l; for maintained tension: 24 mol/l), and enhanced 86Rb efflux. Both stimulant actions were antagonized by the calcium antagonist diltiazem.In conclusion, tedisamil affects different K+ channels in vascular smooth muscle. Its stimulant effects are assumed to be secondary to membrane depolarization and subsequent activation of voltage-dependent Ca2+ channels.Supported by the Deutsche Forschungsgemeinschaft Send offprint requests to V. A. W. Kreye at the above address  相似文献   

15.
16.
Summary Stimulation of 1-adrenoceptors evokes a different pattern of inotropic responses in atrial and ventricular heart muscle preparations from rats. The inotropic effects are accompanied by different changes in membrane potential. In an attempt to clarify the question whether or to which extent these events are causally related, the effects of phenylephrine on force of contraction, transmembrane potential, Ca2+ current (ICa) and K+ currents were comparatively studied in either tissue.In atrial preparations, phenylephrine 10 mol/l caused an increase in force of contraction, a marked prolongation of the action potential duration and a depolarization of the membrane at rest. In the ventricle, however, the addition of phenylephrine 10 mol/l produced first a decline in force of contraction associated with a hyperpolarization of the membrane and a reduction in the action potential duration. These changes were followed by an increase in force,of contraction and a slight prolongation of the action potential, whereas the resting membrane potential remained increased. The hyperpolarization was eliminated in the presence of ouabain 100 mol/l.In enzymatically isolated atrial and ventricular myocytes, the whole-cell voltage clamp technique was used to study membrane currents on exposure to phenylephrine. Phenylephrine 30 mol/l did not affect the magnitude of ICa in either cell type. Transient and steady state K+ outward currents, however, were significantly diminished to a similar extent in atrial and in ventricular myocytes.It is concluded that the positive inotropic effect of 1-adrenoceptor stimulation in the rat atrium is related to an increase in action potential duration and a decrease in resting membrane potential due to a decrease in K+ currents. In the ventricle, phenylephrine additionally activates the Na+/K+ pump thereby hyperpolarizing the membrane. The rapid onset of pump stimulation seems to overwhelm, in the beginning, the phenylephrine-induced decrease in K+ conductance and therefore to evoke a transient negative inotropic effect.It is assumed that phenylephrine can alter the intracellular Ca2+ concentration due to changes in the action potential duration. The way how Ca 2+ enters the cell remains speculative, since direct changes of Ica were not detected. The more complicated changes in membrane potential in the ventricle suggest that also other mechanisms for the positive inotropic response to phenylephrine must be considered. Send offprint requests to H. Nawrath at the above address  相似文献   

17.
Summary By measuring the 45Ca2+ movement in saponin-skinned primary cultured rat aortic smooth muscle cells, we examined the specificity of the inhibitory effect of heparin on the IP3-induced Ca2+ release. IP3 (100 mol/l) markedly (98%) decreased the MgATP-dependent 45Ca2+ content in the non-mitochondrial Ca2+ stores in the presence of 1 mol/l free Ca2+. Heparin (1–100 g/ml) dose-dependently inhibited this Ca2+ release by IP3. In Ca2+-free solution, heparin (100 g/ml) inhibited the increases in 45Ca2+ efflux rate evoked by 10 mol/l IP3. De-N-sulfated heparin did not inhibit the IP3-induced Ca2+ release. Hyaluronic acid, heparan sulfate, chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C and 2,6-disulfated d-glucosamine had no inhibitory effects on the IP3-induced Ca2+ release. High concentrations (over 1 mg/ml) of heparin inhibited the 45Ca2+ influx and decreased the Ca2+ content in skinned cells. These results suggest that heparin (1–100 g/ml) specifically inhibits the IP3-induced increase in Ca2+ permeability of Ca2+ stores and that three sulfate groups at different locations on the molecule of heparin, two at the d-glucosamine and one at the iduronic acid, may be important for this action, in skinned vascular smooth muscle cells, in culture. Send offprint requests to H. Kanaide at the above address  相似文献   

18.
Mibefradil, a benzimidazolyl tetralol derivative, is a new Ca(2+) channel antagonist which is structurally distinct from other Ca(2+) channel antagonists such as nifedipine, verapamil and diltiazem. It is a very effective antihypertensive agent that is thought to achieve its action via a higher affinity block for low-voltage activated (T) than for high-voltage-activated (L) Ca(2+) channels. Nevertheless, it blocks L-type Ca(2+) channels in several tissues. In the present study, the effects of mibefradil on spontaneous rhythmic contractions and on contractions elicited by CaCl(2) (K(+)-depolarized preparations) and oxytocin (in low Ca(2+)/Ca(2+)-free solutions) were investigated on uterus strips from pregnant and non-pregnant rats. Mibefradil (10(-8)-3 x 10(-6) M) caused concentration-dependent inhibition of spontaneous contractions of uterus strips from pregnant and non-pregnant rats with the IC(50) values of 8.83 x 10(-7) M; 5.94 x 10(-7) M (amplitude) and 1.03 x 10(-6) M; 5.48 x 10(-7) M (frequency), respectively. Mibefradil (3 microM) caused a rightward shift in the concentration-response curves for CaCl(2) in K(+) (40 mM)-depolarized uterus strips taken from both pregnant and non-pregnant rats. Mibefradil (3 microM) was, however, more potent for antagonising CaCl(2) responses in uterus strips obtained from pregnant rats than in those from non-pregnant rats. Mibefradil (3 microM) had no effect on oxytocin-induced contraction in Ca(2+)-free physiological salt solution (PSS) on uterus strips from non-pregnant rats. However, it markedly inhibited oxytocin-induced contraction of pregnant rat uterus strips in Ca(2+)-free PSS. Thus, mibefradil probably antagonizes L-type Ca(2+) channels as well as interferes with the intracellular Ca(2+) release mechanism, which would be helpful in the development of a tocolytic agent.  相似文献   

19.
Endothelins (ETs)- and sarafotoxin (S6b)-induced rises in intracellular Ca2+ concentration ([Ca2+]i) were monitored in cultured canine tracheal smooth muscle cells by using a fluorescent Ca2+ indicator fura-2. ET-1, ET-2, ET-3 and S6b elicited an initial transient peak and followed by a sustained elevation of [Ca2+]i, with half-maximal effect (EC50) of 18, 20, 38 and 21 nM, respectively. BQ-123, an ETA receptor antagonist, had a high affinity to block the rise in [Ca2+]i response to ET-1, ET-2, and S6b, as well as a low affinity for ET-3. Removal of external Ca2+ by addition of EGTA during the sustained phase, caused a rapid decline in [Ca2+]i to the resting level. In the absence of external Ca2+, only an initial transient peak of [Ca2+]i was seen, the sustained elevation of [Ca2+]. could then be evoked by addition of 1.8 mM Ca2+. Ca2+ influx was required for the changes of [Ca2+]i, since the Ca2+-channel blockers, diltiazem, verapamil, and Ni2+, decreased both the initial and sustained elevation of [Ca2+]i response to these peptides. ETs exhibited homologous desensitization of the Ca2+ response, but partial heterologous desensitization of the Ca2+ response mediated by carbachol to different extents. In contrast, ETs did not desensitize the Ca2+ response induced by ATP or vice versa. These data demonstrate that the initial detectable increase in [Ca2+]i stimulated by these peptides is due to the activation of ETA receptors and subsequently the release of Ca2+ from internal stores, whereas the contribution of external Ca2+ follows and partially involves a diltiazem- and verapamil-sensitive process. There is a cross-regulation among ETs and other receptor-coupling signal transduction pathways through PI hydrolysis in canine tracheal smooth muscle cells. Correspondence to: C. Mao Yang at the above address  相似文献   

20.

Aim:

To examine the involvement of K+ channels and endothelium in the vascular effects of magnesium lithospermate B (MLB), a hydrophilic active component of Salviae miltiorrhiza Radix.

Methods:

Isolated rat mesenteric artery rings were employed to investigate the effects of MLB on KCl- or norepinephrine-induced contractions. Conventional whole-cell patch-clamp technique was used to study the effects of MLB on K+ currents in single isolated mesenteric artery myocytes.

Results:

MLB produced a concentration-dependent relaxation in mesenteric artery rings precontracted by norepinephrine (1 μmol/L) with an EC50 of 111.3 μmol/L. MLB-induced relaxation was reduced in denuded artery rings with an EC50 of 224.4 μmol/L. MLB caused contractions in KCl-precontracted artery rings in the presence of N-nitro-L-arginine methyl ester (L-NAME) with a maximal value of 130.3%. The vasodilatory effect of MLB was inhibited by tetraethylammonium (TEA) in both intact and denuded artery rings. In single smooth muscle cells, MLB activated BKCa currents (EC50 156.3 μmol/L) but inhibited KV currents (IC50 26.1 μmol/L) in a voltage- and concentration-dependent manner.

Conclusion:

MLB dilated arteries by activating BKCa channels in smooth muscle cells and increasing NO release from endothelium, but it also contracted arteries precontracted with KCl in the presence of L-NAME.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号