首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 546 毫秒
1.
摘要 背景:聚乳酸-羟基乙酸纳米粒或纳米微球用于制备生物降解型缓释或定向给药体系已经研究了近30年,是国内外研究的热点。该体系能够控制粒径大小、延缓药物降解、延长药物释放时间、靶向释放、降低药物毒性和刺激性等。 目的:以紫杉醇为模型药物、聚乳酸-羟基乙酸为包裹材料,探索载药纳米粒的制备条件对粒径、包封率等的影响,确定最佳制备工艺条件。 方法:采用乳化-溶剂挥发法制备聚乳酸-羟基乙酸纳米粒,以粒径、包封率和载药量等为观察指标,通过正交设计法优化纳米粒制备工艺条件。 结果与结论:通过正交实验设计,优化了制备工艺条件,其最佳条件是超声乳化时间为15 min,乳化剂浓度为1%,油水相比为1∶25,合成温度为25 ℃。在此条件下进行实验,制备出的载药纳米粒粒径为217.6 nm,载药量1.79%,包封率85%。该制备工艺简单、稳定,优化制备条件,可制备出包封率高、粒径适宜的紫杉醇-聚乳酸-羟基乙酸纳米粒。 关键词:聚乳酸-羟基乙酸;紫杉醇;纳米粒;正交实验;缓释 doi:10.3969/j.issn.1673-8225.2010.42.009  相似文献   

2.
目的:纳米脂质载体是近年来继固体脂质纳米粒发展起来的第2代亚微粒载药系统,具有较高的载药量和物理稳定性。探讨鬼臼毒素-脂质纳米粒(podophyllotoxin-loaded nanostructured lipid carrier,PPT-NLC)的制备方法及理化性质。 方法:实验于2006-08/2007-10在南方医科大学药学部实验室完成。选择固体脂质硬脂酸、单硬脂酸甘油脂和液态脂质油酸,采用改良的乳化蒸发-低温固化法制备PPT-NLC,用同法制备不含油酸的PPT-固体脂质纳米粒(Solid lipid nanoparticles,SLN)纳米粒混悬液。用透射电镜、Zeta电位仪、高效液相色谱法、pH计考察PPT-NLC理化性质,并比较SLN与NLC的包封率和稳定性。 结果:透射电镜下PPT-NLC外形呈圆形或椭圆形,平均粒径为(88.2±8.4)nm,多分散指数为0.190±0.085,Zeta电位为(-33.2±3.1)mV,包封率为86.6%。PPT-SLN分别为(75.3±16.2)nm,0.300±0.072,(-25.2±3.4)mV,包封率为76.5%。 结论:PPT-NLC制备工艺简单,分布均匀,稳定性较SLN好,包封率高。  相似文献   

3.
背景:纤维蛋白胶胶联羊膜作为一种无需缝合生物移植材料还无法有效地在局部长时间缓释药物,特别是对于一些不稳定的生物活性蛋白药物。 目的:构建新型的能有效缓释蛋白药物的载表皮生长因子壳聚糖纳米粒纤维蛋白胶羊膜复合体。 方法:制备表皮生长因子/壳聚糖载药纳米粒并考察其表征,然后将载药纳米粒掺入纤维蛋白胶,再将载纳米粒的纤维蛋白胶和羊膜胶联黏合,制备出负载表皮生长因子/壳聚糖纳米粒纤维蛋白胶胶联羊膜,并进行形态学和体外释药观察,检测释放出的表皮生长因子生物活性。 结果与结论:表皮生长因子/壳聚糖纳米粒的粒径为(275.7±6.8) nm,Zeta电位为(32.7±0.6) mV,包封率为(67.03±1.22)%,多分散指数为0.23±0.04,形态圆形均一,载纳米粒纤维蛋白胶能够很好地与羊膜胶联黏合,表面呈网状结构,纳米粒充斥其中。载表皮生长因子/壳聚糖纳米粒纤维蛋白胶胶联羊膜体外释药可达14 d,释放的表皮生长因子生物活性可保持7 d以上。说明制备的载重组人表皮生长因子/壳聚糖纳米粒纤维蛋白胶胶联羊膜作为一种无缝合生物移植材料可在局部缓慢释放表皮生长因子。  相似文献   

4.
背景:醋酸曲安奈德是一种长效肾上腺糖皮质激素,具有较强的抗炎作用。近年来在眼内疾病的治疗中取得了较好的效果,但同时带来一些不良反应,且需多次注射,以防止疾病复发。壳聚糖经接枝改性,生成的共聚物可在水溶液中生成纳米粒,用于药物的缓释载体,延长药物作用时间,降低不良反应,提高生物利用度。 目的:合成含脱氧胆酸基团的两亲性壳聚糖衍生物作为醋酸曲安奈德的载体材料,制备具有缓释功能的载药纳米胶束,研究其负载和缓释醋酸曲安奈德的性能。 方法:通过酰胺化反应在壳聚糖上偶联脱氧胆酸基团,合成两亲性壳聚糖衍生物。透射电镜观察纳米粒的外观形态和粒径,Zeta电位分析仪测定纳米粒的Zeta电位,体外释放实验检测负载醋酸曲安奈德的壳聚糖-脱氧胆酸纳米粒的包封率、载药量和体外释药性能。 结果与结论:合成出含脱氧胆酸基团的两亲性壳聚糖衍生物,它能与醋酸曲安奈德形成载药纳米胶束,载药量可高达82%。随着载药量的增加,载药纳米胶束的粒径逐渐增大,而Zeta电位则呈下降的趋势。体外释放的结果表明载药纳米胶束能起到72 h缓释醋酸曲安奈德的作用。提示以两亲性壳聚糖衍生物为载体的载药纳米胶束显示出较好的缓释醋酸曲安奈德性能,将有希望提高醋酸曲安奈德的治疗效果。 关键词:醋酸曲安奈德;两亲性壳聚糖衍生物;脱氧胆酸;纳米胶束;体外药物释放 doi:10.3969/j.issn.1673-8225.2010.29.013  相似文献   

5.
负载紫杉醇壳聚糖纳米粒的制备、表征与释药性能   总被引:1,自引:0,他引:1  
背景:紫杉醇是一种天然抗肿瘤药物,但其水溶性极低。壳聚糖经接枝改性,生成的共聚物可在液相中生成纳米粒,可用于药物的缓释和控释。 目的:对制备的负载紫杉醇的壳聚糖纳米粒进行表征,分析其体外药物释放能力。 设计、时间及地点:重复测量设计,于2008-01/07在华北煤炭医学院医学系实验室完成。 材料:壳聚糖,平均相对分子质量为2.0×105,脱乙酰度为92%,为浙江省玉环海洋生物化学有限公司产品。紫杉醇,批号082329802,为中国药品生物制品检定所产品。 方法:采用引发接枝效率高、引发反应条件温和的二羟基二过碘酸合镍钾为引发剂,在壳聚糖上接枝醋酸乙烯酯,该聚合物在水溶液中直接生成具有疏水核心、亲水表面的纳米粒,即壳聚糖纳米粒,再利用超声振荡技术将0.5~5.0 mg紫杉醇与上述纳米粒混合制成负载紫杉醇的壳聚糖纳米粒。 主要观察指标:激光粒度分析仪测定纳米颗粒的粒径大小、粒径分布及Zeta电位,透射电镜观察纳米颗粒的外观形态,高效液相色谱法分析负载紫杉醇的壳聚糖纳米粒的包封率、载药量和释药性能。 结果:壳聚糖纳米粒和负载紫杉醇的壳聚糖纳米粒,其粒径分别为196.2 nm和320.8 nm,粒径分布较窄,纳米粒表面均带正电荷,Zeta电位比较差异无显著性意义(F=0.818,F=3.38,P均>0.05)。稳定的纳米粒呈球形,粒径均匀。紫杉醇的加入量可影响纳米粒的包封率,紫杉醇的加入量为纳米粒的量2%时,达到最大包封率93.6%。体外模拟释药结果表明药物释放曲线分为两个阶段,突释阶段微球释药量在24 h内达48.3%,缓释阶段微球释药持续时间长,在175 h时释药量达75.9%,载药纳米粒的药物释放速率持续稳定。 结论:接枝共聚法制备壳聚糖纳米粒简便可靠,负载紫杉醇后纳米粒径明显变大,表面带有正电荷,且纳米粒对紫杉醇有很高的包封率,体外释药具有明显的缓释作用。  相似文献   

6.
摘要 背景:医用纳米粒作为药物传递的新型载体,目前已经成为医药领域研究的重点。 目的:构建以生物可降解材料乳酸-羟基乙酸共聚物为载体,负载抗肿瘤药物5-氟尿嘧啶的载药纳米粒。 方法:利用复乳-溶剂挥发法制备乳酸-羟基乙酸共聚物载药纳米粒。场发射扫描电子显微镜观察纳米粒表面形态;激光粒度分析仪测定粒径分布并计算成球率;紫外分光光度计测定5-氟尿嘧啶载药量、包封率,并对体外释药进行评估。 结果与结论:纳米粒呈球性,平均粒径为(186±14) nm,成球率、载药量和包封率分别为70.8%、6.6%、28.1%,体外释药有突释现象,24 h内5-氟尿嘧啶累积释药量达36.2%,10 d达83.6%。提示成功制备乳酸-羟基乙酸共聚物载药纳米粒,其具有缓释效应。 关键词:乳酸-羟基乙酸共聚物;5-氟尿嘧啶;纳米粒;体外释药;缓释 doi:10.3969/j.issn.1673-8225.2011.16.017  相似文献   

7.
摘要 背景:对抗肿瘤药物靶向治疗和肿瘤细胞多药耐药产生的问题,载阿霉素海藻酸钠纳米粒经改性,偶联人转铁蛋白,生成的人转铁蛋白修饰载药纳米粒,可用于靶向肿瘤药物载体。 目的:制备人转铁蛋白修饰的载阿霉素海藻酸钠纳米粒并进行表征鉴定,检测其表面蛋白活性。 方法:采用优化的微乳化-离子交联方法制备包覆阿霉素的海藻酸钠复合纳米粒,以水溶性碳二亚胺为交联剂,将载阿霉素海藻酸钠纳米粒与人转铁蛋白连接,制备出人转铁蛋白修饰载阿霉素海藻酸钠纳米粒。透射电镜观察纳米粒的外观大小、形态;高效液相色谱法分析纳米粒的包封率和载药量;流式细胞仪检测其表面人转铁蛋白的活性。 结果与结论:人转铁蛋白修饰载阿霉素海藻酸钠纳米粒呈球形,平均粒径为170 nm。阿霉素的加入量可影响纳米粒的包封率,当阿霉素的加入量为纳米粒的10%时,包封率和包裹量均最佳。每毫克载药纳米粒可与约65 μg人转铁蛋白连接。人转铁蛋白修饰的载药纳米粒在流式细胞仪上除去非特异性吸附后还有67.3%荧光显示,说明人转铁蛋白修饰的载药纳米粒大部分都偶联上了人转铁蛋白抗体并能保持抗体活性,从而为载药纳米粒特异性靶向肿瘤细胞提供了足够的靶向动力。微乳化-离子交联方法制备方法简便可靠,制得的人转铁蛋白修饰载阿霉素海藻酸钠纳米粒有望成为具有潜在价值的一种特异性靶向药物载体。 关键词:海藻酸钠;阿霉素;人转铁蛋白;纳米粒;靶向;生物材料与纳米技术 doi:10.3969/j.issn.1673-8225.2010.21.014  相似文献   

8.
背景:布洛芬因溶解度和溶血问题,目前仍无注射给药剂型上市。 目的:将自制的磁流体载入固体脂质纳米粒中,制备布洛芬磁性固体脂质纳米粒。 方法:以包封率为指标,用正交设计确定布洛芬固体脂质纳米粒的最优处方。以共沉淀法制备Fe3O4磁流体作为磁性材料,采用乳化分散-超声法,按照最优处方制备布洛芬磁性固体脂质纳米粒。观察其表面形态、粒径大小、分布和Zeta电位、饱和磁化强度、包封率及体外释放特征。 结果与结论:通过正交实验得最优处方为布洛芬0.05 g、F-68 0.2 g、吐温80 0.05 g、卵磷脂0.1 g、单硬脂酸甘油酯0.05 g、磁流体2.5 mL。用该工艺和处方制备的布洛芬磁性固体脂质纳米粒粒子呈均匀球形;平均粒径、zeta电位为(122±16) nm和(-13.3±6.94) mV;药物包封率和Fe3O4铁包封率分别为84.15%和83.19%;布洛芬在给定介质中36 h释放较完全,符合制剂学性质要求。  相似文献   

9.
以聚乙二醇二氨为偶联剂,通过叶酸活性酯和聚合物端基活性酯与聚乙二醇二氨反应,制得叶酸修饰的大分子,再通过乳化法合成载紫杉醇纳米粒,制备叶酸修饰的乳酸-羟基乙酸共聚物纳米粒子。紫外光谱、红外光谱、核磁光谱显示叶酸成功连接在高聚物分子上。所制得的纳米粒粒径(276±12)nm,扫描电镜观察其形态为规整的球形。该方法可成功制备叶酸修饰的乳酸-羟基乙酸共聚物载药纳米粒。  相似文献   

10.
摘要 背景:壳聚糖是生物可降解性天然多糖,其生物相容性好,安全无毒,故而在基因成为基因传递方面展现巨大潜力。 目的:采用复凝聚法制备包裹pcDNA3.1(-)/MAGE-3-HSP70壳聚糖纳米粒,观察研究其相关特性。 设计、时间及地点:对比观察实验,于2009-02/2009-08在国家卫生部纳米生物技术重点实验室完成。 材料:pcDNA3.1(-)/MAGE-3-HSP70由国家卫生部纳米生物技术重点实验室构建,壳聚糖 (批号060306,上海伯奥生物科技有限公司,脱乙酰度>90.0%,粘度<100cps) ,B16细胞由中南大学肿瘤研究所惠赠。 方法:采用复凝聚法制备包裹pcDNA3.1(-)/MAGE-3-HSP70壳聚糖纳米粒,将壳聚糖基因纳米粒转染B16细胞,利用逆转录-聚合酶链反应(RT-PCR)检测体外转染效果;应用噻唑蓝(MTT)评价壳聚糖基因纳米粒子的体外细胞毒性。 主要观察指标:激光粒度仪测定壳聚糖基因纳米粒径、Zeta电位;紫外分光光度计检测包封率;凝胶阻滞实验观察壳聚糖和质粒DNA的聚合;DNaseⅠ的保护试验分析壳聚糖基因纳米粒抗核酸酶降解能力。 结果:壳聚糖基因纳米粒的平均粒径约为223 nm,zeta电位为16mV; DNA包封率为92.3%,B16细胞转染实验显示其效率与Lipofectamine 2000相近, 而其毒性远低于Lipofectamine 2000。 结论:壳聚糖纳米粒子可高效装载质粒DNA转染B16细胞,而且对细胞基本无毒。  相似文献   

11.
背景:新型可生物降解多聚物纳米控释载药制剂能显著改善药物穿透组织能力、再分布时程和滞留时间,可能克服载药基质对血管修复的负性影响,有望避免药物洗脱支架晚期支架内血栓。 目的:制备雷帕霉素-聚乳酸-聚乙醇酸纳米粒子(rapamycin poly(lactic-co-glycolic) acid nanoparticles, RPM-PLGA-NPs)并观察其表征及体外控释性能。 设计、时间及地点:单一样本实验于2003-03/09在中国医学科学院,中国协和医科大学,生物医学工程研究所生物医学材料重点实验室完成。 材料:聚乳酸-聚乙烯醇酸共聚物50∶50由美国Birmingham Polymers 公司提供。 方法:以可生物降解高分子材料聚乳酸-聚乙醇酸共聚物作载药基质,超声乳化-溶剂挥发法制备RPM-PLGA-NPs,采用双室扩散池行体外药物释放试验。 主要观察指标:测定平均载药量、平均包封率;激光光散射实验测定纳米粒子的粒径及分布;扫描电镜观察纳米粒子的表面形态;高效液相色谱法计算体外药物释放量、绘制累积释放曲线。 结果:成功制备了平均粒径为246.8 nm的RPM-PLGA-NPs,平均粒径246.8 nm,粒径分布集中在208~294 nm,呈窄分布;包封率大于77%,平均载药量为19.42%。体外释放近似于零级过程,至2周释放75%的药物。 结论:超声乳化-溶剂挥发法制备RPM-PLGA-NPs稳定可靠,包封效率高,载药量控制稳定,粒径小、范围窄,体外释放药物恒定、具有良好的控释效能。  相似文献   

12.
背景:国内关于透析法控制粒径大小方面的研究报道较少。 目的:考察制备方式及制备条件等对生物素化高分子纳米粒子粒径大小的影响。 方法:采用透析法制备生物素化两亲性共聚物纳米粒子,通过单因素实验对比纳米粒子粒径的大小。 结果与结论:采用有机相滴加至水相的制备方法获得的粒径大小较适合用于药物载体,且初始有机溶剂加入量对粒径的影响较大。  相似文献   

13.
背景:目前研究的大部分高分子药物载体没有靶向性,在应用上有局限性,只有几个国外课题组报道生物素化聚乙二醇/聚乳酸(Biotin-PEO-PLA)纳米粒子的体外靶向行为,国内没有这方面的研究报道。 目的:分析Biotin-PEO-PLA纳米粒子作为靶向药物载体的可行性。 方法:透析法制备包埋紫杉醇的Biotin-PEO-PLA纳米粒子并表征;通过高效液相色谱研究包埋紫杉醇的Biotin-PEO-PLA纳米粒子的体外释放行为;利用细胞毒性法比较研究生物素-亲和素三步法实施的包埋紫杉醇的Biotin-PEO-PLA纳米粒子对OVCAR-3(表面表达CA-125抗体)和SKOV-3(表面不表达CA-125抗体)细胞的体外靶向行为。 结果与结论:包埋在Biotin-PEO-PLA纳米粒子中的紫杉醇的释放呈现初期的快速释放以及随后的缓慢释放。利用三步法处理的OVCAR-3细胞存活率明显低于SKOV-3细胞,表明通过Biotin-PEO-PLA/avidin/biotinylated MAB X306与OVCAR-3细胞表面CA-125抗原的特异性相互作用,包埋紫杉醇的Biotin-PEO-PLA纳米粒子被更为有效地传递进了OVCAR-3细胞。  相似文献   

14.
背景:部分肿瘤细胞表面的CD44受体表达上调,如大肠癌、非小细胞肺癌,提示透明质酸与CD44受体在肿瘤的生长与扩散有着一定的关系。 目的:观察透明质酸偶联壳聚糖纳米微球对非小细胞肺癌的靶向性。 方法:采用离子交联法制备负载多西紫杉醇的透明质酸偶联壳聚糖微球(DTX-HACTNPs),电镜观察其形态学特征,激光粒度分析仪测定粒径大小及分布。FITC标记微球,作用于CD44+人非小细胞肺癌细胞株(A549),荧光显微镜观察。MTT法检测载药微球的体外细胞毒性。 结果与结论:DTX-HACTNPs形态规则,粒径分布较为均匀,平均粒径为(228.0±2.6) nm。DTX-HACTNPs对A549细胞的杀伤力高于非透明质酸偶联载药微球,但仍低于普通注射用DTX,3者的半数抑制浓度(IC50)分别为(15.06±0.94),(25.73±3.37),(5.35±0.61) mg/L(F=73.871,P=0.000)。提示HACTNPs通过受体途径主动靶向性结合于非小细胞肺癌细胞,可提高化疗药对肿瘤细胞的选择性杀伤力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号