首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Arginine vasopressin (AVP) and corticotrophin-releasing hormone (CRH) in the parvocellular neurosecretory cells of the paraventricular nucleus (PVN) play a major role in activating the hypothalamic-pituitary-adrenal axis, which is the main neuroendocrine response against the many kinds of stress. We examined the effects of chronic inflammatory/nociceptive stress on the expression of the AVP-enhanced green fluorescent protein (eGFP) fusion gene in the hypothalamus, using the adjuvant arthritis (AA) model. To induce AA, the AVP-eGFP rats were intracutaneously injected heat-killed Mycobacterium butyricum (1 mg/rat) in paraffin liquid at the base of their tails. We measured AVP, oxytocin and corticosterone levels in plasma and changes in eGFP and CRH mRNA in the hypothalamus during the time course of AA development. Then, we examined eGFP fluorescence in the PVN, the supraoptic nucleus (SON), median eminence (ME) and posterior pituitary gland (PP) when AA was established. The plasma concentrations of AVP, oxytocin and corticosterone were significantly increased on days 15 and 22 in AA rats, without affecting the plasma osmolality and sodium. Although CRH mRNA levels in the PVN were significantly decreased, eGFP mRNA levels in the PVN and the SON were significantly increased on days 15 and 22 in AA rats. The eGFP fluorescence in the SON, the PVN, internal and external layers of the ME and PP was apparently increased in AA compared to control rats. These results suggest that the increases in the concentrations of ACTH and corticosterone in AA rats are induced by hypothalamic AVP, based on data from AVP-eGFP transgenic rats.  相似文献   

3.
We previously reported that food deprivation significantly decreased arginine-vasopressin (AVP) mRNA levels in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus and also greatly stimulated the pituitary-adrenocortical system in rats. In this study, we deprived adrenalectomized rats with subcutaneously implanted low-dose corticosterone pellets (ADX + B) of food for 3 days to investigate the involvement of corticosteroid feedback regulation in the food deprivation-induced decrease in AVP mRNA in both the SON and the PVN. The plasma corticosterone levels in these animals were maintained at low levels constantly over 24 h. The ACTH concentration in the morning plasma was markedly increased in the food-deprived ADX + B rats as compared to the fed ADX + B rats. Food deprivation significantly decreased the corticotropin-releasing hormone (CRH) content in the median eminence and increased the CRH and AVP content in the neurointermediate lobe of the pituitary. Semiquantitative in situ hybridization histochemistry revealed that AVP mRNA levels were decreased in the SON but, inversely, increased in magnocellular as well as parvocellular subdivisions of the PVN following food deprivation. These results suggest that: (1) AVP mRNA responds differently to food deprivation between the SON and the PVN; (2) the glucocorticoid feedback can exert on AVP mRNA in the PVN but not in the SON in the food-deprived rats; and (3) food deprivation affects the neurohypophysial levels of CRH and AVP.  相似文献   

4.
Aim of this study was to investigate, with the aid of a recently developed immunofluorescence technique, cellular colocalization of vasoactive intestinal peptide (VIP) with arginine-vasopressin (AVP) in the paraventricular nucleus (PVN), the supraoptic nucleus (SON) and the suprachiasmatic nucleus (SCN) of the human hypothalamus. To this end, six hypothalami resected from patients who had died suddenly served as material of research. After formaldehyde fixation and subsequent storage in 30% sucrose, 25-microm thick cryosections were cut of one half of each hypothalamus. These sections were double-immunolabeled with primary antibodies against AVP and VIP followed by fluorophore-conjugated secondary antibodies. Autofluorescence, mainly caused by lipofuscin granules in neurons and glial cells, was blocked by a specially developed procedure consisting of incubating the immunolabeled sections in a Sudan Black B solution. Quantitative analysis with a confocal laser scanning microscope showed that of all stained cellular profiles the percentages of profiles immunoreactive exclusively for AVP or VIP or for both neuropeptides (colocalization) were for the SCN approximately 76.5%, 19.6% and 3.9%, for the SON 97.7%, 0.2% and 2. 1% and for the PVN 93.2%, 1.6% and 5.2%, respectively. These data illustrate that colocalization between AVP and VIP is not only present in neurons of the PVN and SON, but also in neurons of the SCN. This unexpected finding illustrates that the human SCN may also use a highly differentiated language to transmit its circadian signal to the rest of the brain.  相似文献   

5.
The aim of this study was to examine the involvement of the hypothalamic oxytocin (OXT) and vasopressin (AVP) neurons in acute phase reaction using quantitative dual-labeled immunostaining with Fos and either OXT and AVP in several hypothalamic regions. Administration of low dose (5 μg/kg) and high dose (125 μg/kg) of LPS induced intense nuclear Fos immunoreactivity in many OXT and AVP neurons in all the observed hypothalamic regions. The percentage of Fos-positive nuclei in OXT magnocellular neurons was higher than that of AVP magnocellular neurons in the supraoptic nucleus (SON), the magnocellular neurons in the paraventricular nucleus (magPVN), rostral SON (rSON), and nucleus circularis (NC), whose axons terminate at the posterior pituitary for peripheral release. The percentage of Fos-positive nuclei in AVP parvocellular neurons in the paraventricular nucleus (parPVN) was higher than that of OXT parvocellular neurons, whose axons terminate within the brain for central release. Moreover, the percentage of Fos-positive nuclei in AVP magnocellular neurons of the SON and rSON was significantly higher than that of the magPVN and NC when animals were given LPS via intraperitoneal (i.p.)-injection. This regional heterogeneity was not observed in OXT magnocellular neurons of i.p.-injected rats or in either OXT or AVP magnocellular neurons of intravenous (i.v.)-injected rats. The present data suggest that LPS-induced peripheral release of AVP and OXT is due to the activation of the magnocellular neurons in the SON, magPVN, NC, and rSON, and the central release of those hormones is in part derived from the activation of parvocellular neurons in the PVN. It is also suggested that the activation of AVP magnocellular neurons is heterogeneous among the four hypothalamic regions, but that of OXT magnocellular neurons is homogenous among these brain regions in response to LPS administration.  相似文献   

6.
Mother rabbits construct an elaborate maternal nest before parturition and display a single, brief, daily nursing bout throughout lactation. These features present a unique model for investigating the relevance of changes in neuroendocrine secretion associated with pregnancy and parturition for the regulation of maternal behavior. In the present study we analyzed changes in the location, somal size, and number of oxytocin (OT)and arginine vasopressin (AVP)-immunoreactive (IR) neurons in the hypothalamus of rabbits in estrus, late pregnancy (day 29), and postpartum day 1. From estrus to late pregnancy, the number of OT-IR neurons increased in the scattered cell groups located in the lateral hypothalamic area (LHA), but not in the magnocellular nuclei, i.e., paraventricular nucleus (PVN) and supraoptic nucleus (SON). On postpartum day 1 the increase in the number of OT-IR neurons was sustained in the LHA and became apparent also in the main body of the PVN, in which the number of OT-IR neurons doubled. Increases in the somal size of OT-IR cells were seen in all three nuclei only on postpartum day 1. No OT-IR cells were found in the suprachiasmatic nucleus (SCN). From late pregnancy and into postpartum day 1 increases in the somal size of AVP-IR neurons were detected in the PVN, SON, and LHA but not in the SCN. The number of AVP-IR neurons increased between late pregnancy and postpartum day 1 in the SON only. The changes observed in OT and AVP expression in specific hypothalamic nuclei may be related to specific somatic and behavioral events occurring around the time of parturition, e.g., nest-building, maintenance of homeothermy, elevation of blood volume, and nursing in mother rabbits.  相似文献   

7.
The stress response is mediated by the hypothalamo–pituitary–adrenal (HPA) system. Activity of the corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN) forms the basis of the activity of the HPA-axis. The CRH neurons induce adrenocorticotropin (ACTH) release from the pituitary, which subsequently causes cortisol release from the adrenal cortex. The CRH neurons co-express vasopressin (AVP) which potentiates the CRH effects. CRH neurons project not only to the median eminence but also into brain areas where they, e.g., regulate the adrenal innervation of the autonomic system and affect mood. The hypothalamo-neurohypophysial system is also involved in stress response. It releases AVP from the PVN and the supraoptic nucleus (SON) and oxytocin (OXT) from the PVN via the neurohypophysis into the bloodstream. The suprachiasmatic nucleus (SCN), the hypothalamic clock, is responsible for the rhythmic changes of the stress system. Both centrally released CRH and increased levels of cortisol contribute to the signs and symptoms of depression. Symptoms of depression can be induced in experimental animals by intracerebroventricular injection of CRH. Depression is also a frequent side effect of glucocorticoid treatment and of the symptoms of Cushing's syndrome. The AVP neurons in the hypothalamic PVN and SON are also activated in depression, which contributes to the increased release of ACTH from the pituitary. Increased levels of circulating AVP are also associated with the risk for suicide. The prevalence, incidence and morbidity risk for depression are higher in females than in males and fluctuations in sex hormone levels are considered to be involved in the etiology. About 40% of the activated CRH neurons in mood disorders co-express nuclear estrogen receptor (ER)- in the PVN, while estrogen-responsive elements have been found in the CRH gene promoter region, and estrogens stimulate CRH production. An androgen-responsive element in the CRH gene promoter region initiates a suppressing effect on CRH expression. The decreased activity of the SCN is the basis for the disturbances of circadian and circannual fluctuations in mood, sleep and hormonal rhythms found in depression. Neuronal loss was also reported in the hippocampus of stressed or corticosteroid-treated rodents and primates. Because of the inhibitory control of the hippocampus on the HPA-axis, damage to this structure was expected to disinhibit the HPA-axis, and to cause a positive feedforward cascade of increasing glucocorticoid levels over time. This ‘glucocorticoid cascade hypothesis’ of stress and hippocampal damage was proposed to be causally involved in age-related accumulation of hippocampal damage in disorders like Alzheimer's disease and depression. However, in postmortem studies we could not find the presumed hippocampal damage of steroid overexposure in either depressed patients or in patients treated with synthetic steroids.  相似文献   

8.
The anti-diuretic hormone arginine vasopressin (AVP) is synthesised in the magnocellular neurosecretory cells (MNCs) in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) of the hypothalamus. AVP-containing MNCs that project their axon terminals to the posterior pituitary can be identified using immunohistochemical techniques with specific antibodies recognising AVP and neurophysin II, and by virtue of their electrophysiological properties. Recently, we generated transgenic rats expressing an AVP-enhanced green fluorescent protein (eGFP) fusion gene in AVP-containing MNCs. In this transgenic rat, eGFP mRNA was observed in the PVN and the SON, and eGFP fluorescence was seen in the PVN and the SON, and also in the posterior pituitary, indicating transport of transgene protein down MNC axons to storage in nerve terminals. The expression of the AVP-eGFP transgene and eGFP fluorescence in the PVN and the SON was markedly increased after dehydration and chronic salt-loading. On the other hand, AVP-containing parvocellular neurosecretory cells in the PVN that are involved in the activation of the hypothalamic-pituitary adrenal axis exhibit robust AVP-eGFP fluorescence after bilateral adrenalectomy and intraperitoneal administration of lipopolysaccharide. In the median eminence, the internal and external layer showed strong fluorescence for eGFP after osmotic stimuli and stressful conditions, respectively, again indicating appropriate transport of transgene traslation products. Brain slices and acutely-dissociated MNCs and axon terminals also exhibited strong fluorescence, as observed under fluorescence microscopy. The AVP-eGFP transgenic animals are thus unique and provide a useful tool to study AVP-secreting cells in vivo for electrophysiology, imaging analysis such as intracellular Ca2+ imaging, organ culture and in vivo monitoring of dynamic change in AVP secretion.  相似文献   

9.
10.
The effects of repeated electroconvulsive seizures (ECS) on expression of mRNAs coding for corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) in neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical (HPA) axis and hypothalamo-neurohypophysial system (HNS) were assessed via semi-quantitative in situ hybridization histochemical analysis. Measures of mRNA content were accompanied by measurement of peptide- and hormone-expression in the relevant neuroendocrine systems. Following 7 daily ECS treatments, CRF mRNA was significantly increased in the medial parvocellular paraventricular nucleus (PVN) of treated rats relative to controls. CRF peptide content of whole PVN homogenates was decreased to 50% of control levels. Changes in CRF message and peptide levels were accompanied by increases in pituitary ACTH content and by elevated plasma corticosterone, suggesting ECS elicits long-term up-regulation of the HPA axis. AVP mRNA in the medial parvocellular PVN, which is known to up-regulate in response to HPA challenge by adrenalectomy, was not increased by ECS. Chronic ECS causes a clear up-regulation of HNS neurons of the supraoptic nucleus, characterized by increased AVP mRNA content, decreased AVP peptide content, and depletion of neurohypophysial AVP. However, no changes were observed in magnocellular vasopressinergic neurons of the PVN, indicating that magnocellular SON and PVN neurons respond differentially to stimulation by ECS. The data indicate that ECS is a potent stimulus for activation of select components of both the HPA axis and the HNS. As such, ECS provides a useful tool for examining mechanism underlying neuroendocrine processes.  相似文献   

11.
12.
Glucagon like peptide-1 (7-36) amide (GLP-1), a potent regulator of glucose homeostasis, is also produced in the central nervous system and has been implicated in the control of hypothalamic-pituitary function and food intake. GLP-1 immunoreactive (IR) fibers and terminals are widely distributed in the septum, hypothalamus, thalamus and brainstem, likely originating from GLP-1-IR neuronal cell bodies from the nucleus of the solitary tract of the medulla oblongata. Central administration of GLP-1 increases plasma corticosterone levels and elicits c-fos expression in corticotropin releasing hormone (CRH) neurons of the hypothalamic paraventricular nucleus (PVN). To identify the endogenous neurocircuitry that may underlie this response, the present study determined whether there is an innervation of PVN CRH neurons by GLP-1-containing nerve terminals. GLP-1-IR fibers and nerve terminals were found in the parvocellular parts of the PVN, with highest concentrations in the anterior and medial parvocellular subdivisions. The magnocellular divisions of the PVN also showed moderate numbers of GLP-1-IR nerve fibers. Double immunolabelling revealed numerous GLP-1-IR nerve fibers in close apposition to approximately 65% of detectable CRH neurons in the medial parvocellular subdivision of the rat PVN. At the ultrastructural level, GLP-1-IR terminals were observed to establish synapses on both perikarya and dendrites of CRH neurons. These findings support the hypothesis that the GLP-1-induced activation of CRH neurons and the associated pituitary-adrenocortical activation may be accomplished by GLP-1's direct action on hypophysiotropic CRH neurons. Since central CRH is also thought to be an anorexigenic factor and GLP-1 neurons contain leptin receptors, activation of CRH neurons in the PVN by GLP-1 may contribute to the complex neuroendocrine and metabolic actions by the adipostatic hormone, leptin.  相似文献   

13.
Blood pressure and heart rate reflexly increase during static muscle contraction in anesthetized cats. Previous studies have demonstrated that vasopressin (AVP) and oxytocin (OT) may act as neuromodulators to regulate cardiovascular responses elicited by contraction of skeletal muscle. In this study, we tested the hypothesis that neurons containing AVP and OT in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) of the hypothalamus are activated during static muscle contraction. A laminectomy was performed to expose the spinal cord and the peripheral cut ends of L7 and S1 ventral roots were stimulated electrically to induce muscle contraction. Hypothalamic neurons activated during the muscle contraction were identified by Fos-like immunoreactivity (FLI). Static muscle contraction significantly increased FLI in the PVN and SON, compared with sham-opeated cats. Double-staining of neurons in the PVN for AVP and OT showed that 22±4% of the AVP and 26±3% of the OT neurons in the PVN expressed FLI. In contrast, only 4±1% of the AVP and 3±1% of the OT neurons in the PVN were labeled with FLI in sham-operated animals. These results indicate that neurons in the PVN and SON of the hypothalamus were activated during static muscle contraction. Furthermore, as FLI was present in AVP and OT neurons, this suggests these neurons may constitute a part of the neural pathway involved in cardiovascular regulation during static muscle contraction.  相似文献   

14.
In rodents, D1 dopamine receptors are expressed in the suprachiasmatic nucleus and are believed to play important roles in regulating circadian rhythms. It is not currently known if the primate circadian system can be influenced by dopaminergic agents, which have broad clinical use. To determine if dopamine receptors can potentially influence primate circadian function, we examined the expression of D1 dopamine receptors in the anterior hypothalamus of ring-tailed macaques (Macaca nemestrema), baboons (Papio sp.), and humans. Because D5 dopamine receptors also stimulate adenylyl cyclase activity, D5 dopamine receptor expression was studied as well. We used [125I]SCH 23982, which binds to D1 and D5 dopamine receptors, and labeling of the suprachiasmatic (SCN), supraoptic (SON), and paraventricular (PVN) nuclei was detectable in each species. In situ hybridization studies revealed differential expression of D1 and D5 dopamine receptor mRNA in the hypothalamus. D1 dopamine receptor mRNA was expressed in the SCN, SON, and PVN. By contrast, D5 dopamine receptor mRNA was expressed only in the SON and PVN of baboons and humans. Injection of the D1/D5 dopamine receptor agonist SKF 38393 at night increased the uptake of 2-deoxy-D-[14C]glucose in the SCN, SON, and PVN of newborn baboons. By contrast, c-fos mRNA expression was induced in the SON and PVN, but not in the SCN. These data show that D1 and D5 dopamine receptors are present in the hypothalamus of primates and show that activation of these receptors acutely influences SCN, SON, and PVN activity. Synapse 26:1–10, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
The distribution of transforming growth factor beta (TGFbeta) in the rat and human hypothalamus and neurohypophysis was investigated by immunocytochemical techniques using rabbit polyclonal antisera against TGFbeta(1) and TGFbeta(3). Colocalization of TGFbeta(1) or TGFbeta(3) and arginine vasopressin (AVP) in the rat hypothalamus was studied by double immunolabelling in light microscopy, while their subcellular localization in the rat neurohypophysis was investigated by immunoelectron microscopy. TGFbeta(1) and TGFbeta(3) immunoreactivity was demonstrated in the cell bodies and processes of neurones in the supraoptic nucleus (SON) and paraventricular nucleus (PVN). The TGFbeta-immunoreactive cells were more numerous in the SON compared to the PVN. TGFbeta/AVP double-labelled cells were seen in both nuclei, but some neurones in the SON were labelled for TGFbeta(1) or TGFbeta(3), although not for AVP. In the rat and human neurohypophysis, TGFbeta(3) immunolabelling was more diffuse and stronger than TGFbeta(1) immunolabelling. TGFbeta(1) expression was seen in axonal vesicles and in neurosecretory granules of the axonal endings, while TGFbeta(3) was observed in axonal fibres. Colocalization of TGFbeta(3) or TGFbeta(1) and AVP was observed in some neurosecretory granules, but many were either single-labelled for TGFbeta or AVP or unlabelled. Our results demonstrate, for the first time, the colocalization of TGFbeta and neurohypophysial hormones in magnocellular neurones. We suggest that TGFbeta secreted by the neurohypophysis regulates the proliferation and secretion of certain anterior pituitary cells.  相似文献   

16.
Acute activation of the hypothalamic-pituitary-adrenal (HPA) axis releases glucocorticoids to maintain homeostasis, whereas prolonged exposure to elevated glucocorticoids has deleterious effects. Due to the potential benefits of limiting stress-induced glucocorticoid secretion, the present study uses drinking in dehydrated rats as a model to delineate mechanisms mobilized to rapidly inhibit HPA activity during stress. Using Fos expression as an indicator of neuronal activation, the effect of a single or repeated episode of dehydration-induced drinking on the activity of magnocellular and parvocellular neurons in the paraventricular nucleus (PVN) of the hypothalamus was examined. Adult male rats underwent a single episode or repeated (six) episodes of water restriction and were sacrificed before or after drinking water in the AM. Plasma osmolality, vasopressin (AVP), adrenocorticotropic hormone (ACTH) and corticosterone were elevated by water restriction and reduced after drinking in both models. Fos expression was elevated in AVP-positive magnocellular PVN neurons and AVP- and corticotropin releasing hormone (CRH)-positive parvocellular PVN neurons after water restriction. Fos expression was reduced in magnocellular AVP neurons after both models of restriction-induced drinking. In contrast, Fos expression did not change in AVP and CRH parvocellular neurons after a single episode of restriction-induced drinking, but was reduced after repeated episodes of restriction-induced drinking. These data indicate that drinking-induced decreases in glucocorticoids in dehydrated rats involve multiple factors including reduction in magnocellular release of vasopressin and reduction in parvocellular neuronal activity. The differential inhibition of PVN parvocellular neurons after repeated rehydration may reflect a conditioned response to repeated stress reduction.  相似文献   

17.
Recent studies on experimental animals showed that long term activation of the hypothalamo-pituitary-adrenal axis is associated with increased vasopressin (AVP) colocalization in paraventricular corticotropin-releasing hormone (CRH) neurons. In the present study we estimated the fraction of CRH neurons in which AVP is colocalized by double label immunocytochemistry in hypothalami of 10 control subjects of 21 -91 years of age and 10 age-matched Alzheimer patients. CRH neurons in the paraventricular nucleus (PVN) of Alzheimer patients and control subjects showed similar age dependent increases in AVP colocalization. Based on this parameter, it seems that CRH neurons of Alzheimer patients are not overactivated as compared to age-matched controls, but e.g. changes in m-RNA for CRH should still be established.  相似文献   

18.
The distribution and area of label for arginine vasopressin (AVP) mRNA or peptides were studied in rats exposed to cold or novel environments. In situ hybridization histochemistry was employed to detect AVP mRNA in hypothalamic frozen sections with a 45-mer photobiotinylated oligonucleotide probe. The storage of the peptide in both the hypothalamus and the pituitary was determined by immunohistochemistry. Label for mRNA or peptide was then quantified by the Cue-3 color image analysis system. Exposure to 4°C for 30 min caused a 3.5-fold increase in the label for AVP mRNA in the paraventricular nucleus (PVN) compared with that of control rats. This was correlated with a 2-fold elevation in serum ACTH. In addition, rats exposed to 30 min of a novel, thermoneutral (24°C) environment showed a 1.2- to -2.3-fold enhancement of the label for AVP mRNA in the PVN. In contrast, no changes were seen in the supraoptic nucleus (SON) following exposure to either cold or novel environments. Furthermore, neither stress caused significant changes in the storage of AVP peptide in the PVN, SON, median eminence, and posterior lobe of pituitary. This in vivo study demonstrates that PVN and SON neurons respond differentially to cold and novel environment exposures. The elevation of serum ACTH is correlated with the increased level of label for AVP mRNA in the rat hypothalamus, which suggests that AVP may play a role in the regulation of pituitary—adrenal responses to cold and novel environment stresses.  相似文献   

19.
The hippocampus appears to be involved in tonic regulation of the hypothalamo-pituitary-adrenocortical axis via interactions with corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP)-containing neurons of the hypothalamic paraventricular nucleus (PVN). To further investigate the anatomical basis of such interactions, lesions were made to forebrain fiber tracts in position to communicate inhibitory information from the hippocampus to the PVN. Total fimbria-fornix transections (TFF) and lateral fimbria-fornix lesions (LFF) both significantly increased CRH mRNA levels in the medial parvocellular PVN, as assayed by semi-quantitative in situ hybridization histochemistry. Medial fimbria-fornix lesions or section of the medial corticohypothalamic tracts (MCHT) did not influence CRH mRNA levels. The LFF group showed increases in both AVP mRNA and ACTH secretion, whereas no other lesion was effective in this regard. The results suggest: (1) hippocampal efferents conferring tonic inhibition of the HPA axis probably originate in regions contributing to the lateral extent of the fornix, representing structures in the ventral subiculum and ventral extent of CA1; (2) projections from the hippocampus to the medial basal hypothalamus (travelling in the MCHT) are unlikely to affect HPA function; (3) hippocampus may influence the PVN CRH/AVP neuron at multiple levels, in that LFF and TFF lesions have differential effects on PVN AVP mRNA levels and ACTH secretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号