首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Levofloxacin, the bacteriologically active isomer of ofloxacin, has microbiologic activity against many pathogens common in human immunodeficiency virus (HIV)-infected patients, including Mycoplasma species which may be cofactors in the progression of HIV disease. The purpose of this phase I, double-blind, randomized (1:1), placebo-controlled trial was to evaluate the pharmacokinetics and safety of levofloxacin hemihydrate in 10 asymptomatic HIV-infected males. Plasma concentrations by chiral high-performance liquid chromatography (HPLC) were evaluated for 48 h after a single 350-mg oral dose, at morning predose during the multiple-dosing phase, and for 72 h at steady state after a week of 350 mg every 8 h orally. Mean +/- standard deviation levofloxacin pharmacokinetic parameters (by noncompartmental moment method) after multiple dosing were as follows: area under the concentration-time curve, 31.24 +/- 5.60 mg.h/liter; apparent total body clearance, 11.18 +/- 1.76 liters/h; renal clearance, 8.63 +/- 2.82 liters/h; steady-state volume of distribution, 104.10 +/- 12.48 liters; and effective half-life, 6.50 +/- 0.51 h. Single-dose parameters were not significantly different from the multiple-dose parameters, with the exception of peak concentrations in plasma, which were 4.79 +/- 1.00 and 6.92 +/- 1.56 mg/liter for single- and multiple-dose data, respectively. Essentially identical parameter values were obtained from curve-fitting analysis when the entire 13-day plasma concentration profiles of the subjects were analyzed simultaneously by a two-compartmental distribution model. Levofloxacin pharmacokinetics in HIV-infected patients remained linear upon multiple dosing. The dosing regimen studied provides levels in plasma and urine well above those found to be effective in vitro against pathogens common in HIV-infected patients. Levofloxacin was well- tolerated in this group of asymptomatic HIV-infected males: there were no statistically significant differences in adverse effects in the two groups (P = 0.22). Use of placebo control helped to differentiate disease-related adverse effects from those related to the study drug.  相似文献   

2.
The objective of this study was to determine the population pharmacokinetic parameters of levofloxacin, gatifloxacin, and moxifloxacin following multiple oral doses. Twenty-nine patients with tuberculosis at the University Hospital in Vitória, Brazil, participated. Subjects received multiple doses of one drug (levofloxacin, 1,000 mg daily, or gatifloxacin or moxifloxacin, 400 mg daily) as part of a 7-day study of early bactericidal activity. Serum samples were collected over 24 h after the fifth dose and assayed using validated high-performance liquid chromatography assays. Concentration-time data were analyzed using noncompartmental, compartmental, and population methods. The three drugs were well tolerated. Levofloxacin produced the highest maximum plasma concentrations (median, 15.55 microg/ml; gatifloxacin, 4.75 microg/ml; moxifloxacin, 6.13 microg/ml), largest volume of distribution (median, 81 liters; gatifloxacin, 79 liters; moxifloxacin, 63 liters), and longest elimination half-life (median, 7.4 h; gatifloxacin, 5.0 h; moxifloxacin, 6.5 h). A one-compartment model, with or without weight as a covariate, adequately described the data. Postmodeling simulations using median population parameter estimates closely approximated the median values from the original data. Area under the concentration-time curve/MIC ratios for free drug were high. All three quinolones showed favorable pharmacokinetic and pharmacodynamic indices, with the most favorable results in this population being seen with levofloxacin at the comparative doses used.  相似文献   

3.
Tefibazumab (Aurexis) is a humanized monoclonal antibody being evaluated as adjunctive therapy for the treatment of Staphylococcus aureus infections. This open-label, dose escalation study evaluated the safety and pharmacokinetics of tefibazumab in 19 healthy volunteers aged 18 to 69 years. Each subject received a single administration of tefibazumab at a dose of 2, 5, 10, or 20 mg/kg of body weight infused over 15 min. Plasma samples for pharmacokinetic assessments were obtained before infusion as well as 1, 6, 12, and 24 h and 3, 4, 7, 21, 28, 42, and 56 days after dosing. Plasma concentrations of tefibazumab were detected 1 h after the end of the infusion, with a mean maximum concentration of drug in serum (C(max)) of 59, 127, 252, and 492 microg/ml following doses of 2, 5, 10, and 20 mg/kg, respectively. The median time to maximum concentration of drug in serum (T(max)) was 1.0 h for each dose. The mean elimination half-life (t(1/2)) was approximately 22 days. The volume of distribution (V) was 4.7, 6.7, 7.2, and 7.2 liters after doses of 2, 5, 10, and 20 mg/kg, respectively. Clearance (CL) was 6.0, 9.2, 10.2, and 9.9 ml/hr, respectively. At the highest dose, plasma levels of tefibazumab were >100 microg/ml for 21 days. On day 56, the mean plasma concentrations were 6.3, 10.0, 16.4, and 30.5 microg/ml for the 2, 5, 10, and 20 mg/kg doses, respectively. Tefibazumab exhibited linear kinetics across doses of 5, 10, and 20 mg/kg. No anti-tefibazumab antibodies were detected after dosing in any subject. There were no serious adverse events, and tefibazumab was well tolerated over the entire dose range.  相似文献   

4.
The purpose of this paper is to establish the pharmacokinetics and safety of escalating, once-daily doses of daptomycin, a novel lipopeptide antibiotic active against gram-positive pathogens, including those resistant to methicillin and vancomycin. This phase 1, multiple-dose, double-blind study involved 24 healthy subjects in three dose cohorts (4, 6, and 8 mg/kg of body weight) who were randomized to receive daptomycin or the control at a 3:1 ratio and administered the study medication by a 30-min intravenous infusion every 24 h for 7 to 14 days. Daptomycin pharmacokinetics was assessed by blood and urine sampling. Safety and tolerability were evaluated by monitoring adverse events (AEs) and laboratory parameters. Daptomycin pharmacokinetics was linear through 6 mg/kg, with a slight ( approximately 20%) nonlinearity in the area under the curve and trough concentration at the highest dose studied (8 mg/kg). The pharmacokinetic parameters measured on the median day of the study period, (day 7) were half-life ( approximately 9 h), volume of distribution ( approximately 0.1 liters/kg), systemic clearance ( approximately 8.2 ml/h/kg), and percentage of the drug excreted intact in urine from 0 to 24 h ( approximately 54%). Daptomycin protein binding (mean amount bound, 91.7%) was independent of the drug concentration. No gender effect was observed. All subjects who received daptomycin completed the study. The frequencies and distributions of treatment-emergent AEs were similar for the subjects who received daptomycin and the control subjects. There were no serious AEs and no pattern of dose-related events. The pharmacokinetics of once-daily administration of daptomycin was linear through 6 mg/kg. For all three doses, plasma daptomycin concentrations were consistent and predictable throughout the dosing interval. Daptomycin was well tolerated when it was administered once daily at a dose as high as 8 mg/kg for 14 days.  相似文献   

5.
The pharmacokinetics of cefepime in 31 young, healthy volunteers were assessed after the administration of single and multiple 250-, 500-, 1,000-, or 2,000-mg intravenous doses. Each subject received a single dose of cefepime via a 30-min intravenous infusion on day 1 of the study. Starting from day 2, subjects received multiple doses of cefepime every 8 h for 9 days, and on the morning of day 11, they received the last dose. Serial blood and urine samples were collected after administration of the first dose and on days 1, 6, and 11. Cefepime concentrations in plasma and urine were assayed by using reverse-phase high-performance liquid chromatography with UV detection. Data were evaluated by noncompartmental methods to determine pharmacokinetic parameters. The mean half-life of cefepime was approximately 2 h and did not vary with the dose or duration of dosing. The regression analyses of peak levels (Cmax) in plasma at the end of the 30-min intravenous infusion and the area under the plasma concentration-versus-time curve (AUCo-infinity) showed a dose-proportional response. The steady-state volume of distribution (Vss) was approximately 18 liters and was independent of the administered dose. The multiple-dose pharmacokinetic data are suggestive of a lack of accumulation or change in clearance of cefepime on repeated dosing. Cefepime was excreted primarily unchanged in urine. The recovery of intact cefepime in urine was invariant with respect to the dose and accounted for over 80% of the dose. The values for renal clearance ranged from 99 to 132 ml/min and were suggestive of glomerular filtration as the primary excretion mechanism. It is concluded that cefepime linear pharmacokinetics in healthy subjects.  相似文献   

6.
Because the treatment of inhalational anthrax cannot be studied in human clinical trials, it is necessary to conduct efficacy studies using a rhesus monkey model. However, the half-life of levofloxacin was approximately three times shorter in rhesus monkeys than in humans. Computer simulations to match plasma concentration profile, area under the concentration-time curve (AUC), and time above MIC for a human oral dose of 500 mg levofloxacin once a day identified a dosing regimen in rhesus monkeys that would most closely match human exposure: 15 mg/kg followed by 4 mg/kg administered 12 h later. Approximately 24 h following inhalational exposure to approximately 49 times the 50% lethal doses of Bacillus anthracis (Ames strain), monkeys were treated daily with vehicle, levofloxacin, or ciprofloxacin for 30 days. Ciprofloxacin was administered at 16 mg/kg twice a day. Following the 30-day treatment, monkeys were observed for 70 days. Nine of 10 control monkeys died within 9 days of exposure. No clinical signs were observed in fluoroquinolone-treated monkeys during the 30 treatment days. One monkey died 8 days after levofloxacin treatment, and two monkeys from the ciprofloxacin group died 27 and 36 days posttreatment, respectively. These deaths were probably related to the germination of residual spores. B. anthracis was positively cultured from several tissues from the three fluoroquinolone-treated monkeys that died. MICs of levofloxacin and ciprofloxacin from these cultures were comparable to those from the inoculating strain. These data demonstrate that a humanized dosing regimen of levofloxacin was effective in preventing morbidity and mortality from inhalational anthrax in rhesus monkeys and did not select for resistance.  相似文献   

7.
The in vivo efficacies of levofloxacin and ciprofloxacin in lethal, systemic Pseudomonas aeruginosa infections in mice were compared. MICs of levofloxacin and ciprofloxacin ranged from 0.5 to 2.0 micrograms/ml and from 0.12 to 1.0 microgram/ml respectively. Infecting doses ranged from 5.0 x 10(1) to 3.2 x 10(3) CFU per mouse, depending on the isolate. Test fluoroquinolones were administered orally at 1 h (single dose) or at 1 and 3 h (divided dose) postinfection, with 10 infected mice used for each of six concentrations of each fluoroquinolone tested (1 to 40 mg/kg of body weight) in each dosing regimen. Whether given in a single or a divided dose, the total daily dose was the same for each fluoroquinolone. For mice treated 1 h postinfection with levofloxacin and ciprofloxacin, the effective doses for 50% of the infected mice ranged from 2.09 to 13.80 mg/kg and from 2.34 to 11.22 mg/kg, respectively, and for those treated 1 and 3 h postinfection, the effective doses for 50% of the infected mice ranged from 3.71 to 16.98 mg/kg and from 2.95 to 13.18 mg/kg, respectively. Although the potency varied for both levofloxacin and ciprofloxacin among all strains of P. aeruginosa tested, there were small differences within the same strain for levofloxacin and ciprofloxacin when given in the same dosing regimen. Levofloxacin proved nearly as effective as ciprofloxacin against a systemic P. aeruginosa infection in mice.  相似文献   

8.
The safety and pharmacokinetics of once-daily oral levofloxacin in 16 healthy male volunteers were investigated in a randomized, double-blind, placebo-controlled study. Subjects were randomly assigned to the treatment (n = 10) or placebo group (n = 6). In study period 1, 750 mg of levofloxacin or a placebo was administered orally as a single dose on day 1, followed by a washout period on days 2 and 3; dosing resumed for days 4 to 10. Following a 3-day washout period, 1 g of levofloxacin or a placebo was administered in a similar fashion in period 2. Plasma and urine levofloxacin concentrations were measured by high-pressure liquid chromatography. Pharmacokinetic parameters were estimated by model-independent methods. Levofloxacin was rapidly absorbed after single and multiple once-daily 750-mg and 1-g doses with an apparently large volume of distribution. Peak plasma levofloxacin concentration (Cmax) values were generally attained within 2 h postdose. The mean values of Cmax and area under the concentration-time curve from 0 to 24 h (AUC0–24) following a single 750-mg dose were 7.1 μg/ml and 71.3 μg · h/ml, respectively, compared to 8.6 μg/ml and 90.7 μg · h/ml, respectively, at steady state. Following the single 1-g dose, mean Cmax and AUC0–24 values were 8.9 μg/ml and 95.4 μg · h/ml, respectively; corresponding values at steady state were 11.8 μg/ml and 118 μg · h/ml. These Cmax and AUC0–24 values indicate modest and similar degrees of accumulation upon multiple dosing at the two dose levels. Values of apparent total body clearance (CL/F), apparent volume of distribution (Vss/F), half-life (t1/2), and renal clearance (CLR) were similar for the two dose levels and did not vary from single to multiple dosing. Mean steady-state values for CL/F, Vss/F, t1/2, and CLR following 750 mg of levofloxacin were 143 ml/min, 100 liters, 8.8 h, and 116 ml/min, respectively; corresponding values for the 1-g dose were 146 ml/min, 105 liters, 8.9 h, and 105 ml/min. In general, the pharmacokinetics of levofloxacin in healthy subjects following 750-mg and 1-g single and multiple once-daily oral doses appear to be consistent with those found in previous studies of healthy volunteers given 500-mg doses. Levofloxacin was well tolerated at either high dose level. The most frequently reported drug-related adverse events were nausea and headache.  相似文献   

9.
In vitro levofloxacin exhibits both potent or intermediate activity against most of the pathogens frequently responsible for acute bacterial meningitis and synergistic activity with some beta-lactams. Since levofloxacin was shown to penetrate the cerebrospinal fluid (CSF) during meningeal inflammation both in animals and in humans, the disposition of levofloxacin in CSF was studied in 10 inpatients with external ventriculostomy because of communicating hydrocephalus related to subarachnoid occlusion due to cerebral accidents who were treated with 500 mg of levofloxacin intravenously twice a day because of extracerebral infections. Plasma and CSF concentration-time profiles and pharmacokinetics were assessed at steady state. Plasma and CSF levofloxacin concentrations were analyzed by high-pressure liquid chromatography. The peak concentration of levofloxacin at steady state (C(max ss))was 10.45 mg/liter in plasma and 4.06 mg/liter in CSF, respectively, with the ratio of the C(max ss) in CSF to the C(max ss) in plasma being 0.47. The areas under the concentration-time curves during the 12-h dosing interval (AUC(0-tau)s) were 47.69 mg. h/liter for plasma and 33.42 mg. h/liter for CSF, with the ratio of the AUC(0-tau) for CSF to the AUC(0-tau) for plasma being 0.71. The terminal-phase half-life of levofloxacin in CSF was longer than that in plasma (7.02 +/- 1.57 and 5.51 +/- 1.36 h, respectively; P = 0.034). The ratio of the levofloxacin concentration in CSF to the concentration in plasma progressively increased with time, from 0.30 immediately after dosing to 0.99 at the end of the dosing interval. In the ventricular CSF of patients with uninflamed meninges, levofloxacin was shown to provide optimal exposure, which approximately corresponded to the level of exposure of the unbound drug in plasma. The findings provide support for trials of levofloxacin with twice-daily dosing in combination with a reference beta-lactam for the treatment of bacterial meningitis in adults. This cotreatment could be useful both for overcoming Streptococcus pneumoniae resistance and for enabling optimal exposure of the CSF to at least one antibacterial agent for the overall treatment period.  相似文献   

10.
Levofloxacin pharmacokinetics were studied in 11 patients with severe burn injuries. Patients (values are means +/- standard deviations; age, 41 +/- 17 years; weight, 81 +/- 12 kg; creatinine clearance, 114 +/- 40 ml/min) received intravenous levofloxacin at 750 mg (n = 10 patients) or 500 mg (n = one patient) once daily. Blood samples were collected on day 1 of levofloxacin therapy; eight patients were studied again on days 4 to 6. The pharmacodynamic probability of target attainment (PTA) was evaluated by Monte Carlo simulation. Mean systemic clearance, half-life, and area under the concentration-time curve over 24 h after levofloxacin at 750 mg were 9.0 +/- 3.2 liters/h, 7.8 +/- 1.6 h, and 93 +/- 31 mg . h/liter, respectively. There were no differences in pharmacokinetic parameters between day 1 and day 4; however, large intrapatient and interpatient variability was observed. Levofloxacin pharmacokinetics in burned patients were similar to those reported in other critically ill populations. Levofloxacin at 750 mg achieved >90% PTA for gram-negative and gram-positive pathogens with MICs of < or =0.5 microg/ml and MICs of < or =1 microg/ml, respectively. However, satisfactory PTA was not obtained with less-susceptible gram-negative organisms with MICs of 1 microg/ml or any organism with a MIC of > or =2 microg/ml. The results of this study indicate that levofloxacin should be administered at 750 mg/day for treatment of systemic infections in severely burned patients. However, even 750 mg/day may be inadequate for gram-negative organisms with MICs of 1 to 2 microg/ml even though they are defined as susceptible. Alternative antibiotics or treatment strategies should be considered for infections due to these pathogens.  相似文献   

11.
P. aeruginosa is one of the most difficult to treat pathogens that generally requires combination therapy to prevent the development of resistance. This study evaluated the in vitro activity of two concentrations of levofloxacin (modeled for the 500 mg and 750 mg daily dose) in combination with ceftazidime, cefepime, piperacillin/tazobactam, imipenem, and tobramycin against P. aeruginosa. MICs and time-kill studies were performed against 12 non-duplicate clinical isolates of P. aeruginosa. The percent susceptible for levofloxacin, ceftazidime, cefepime, piperacillin/tazobactam, imipenem, and tobramycin were 67%, 58%, 58%, 67%, 75%, and 100%, respectively. Tobramycin was the most active single agent, killing and maintaining > or =99.9% killing over a 24 h period against all isolates. Levofloxacin 4 microg/mL(750 mg/day) alone reached 99.9% killing and maintain this killing over the time period more often than levofloxacin 2 microg/mL (500 mg/day). No combination was antagonistic and all combinations with tobramycin were indifferent. Overall, levofloxacin 2 microg/mL plus a beta-lactam was synergistic (65%) more often than levofloxacin 4 microg/mL combinations (46%). This was not unexpected due to the increased activity of levofloxacin 4 microg/mL. However, levofloxacin 4 microg/mL combinations maintained a > or =99.9% killing over the entire 24 h period more often than levofloxacin 2 microg/mL combinations (94% vs 83%). The findings from this work suggest that levofloxacin 750 mg/day in combination with another agent active against P. aeruginosa may prove to be clinically beneficial and superior to combinations using lower doses of levofloxacin. In vivo studies are needed to evaluate the clinical significance of these findings.  相似文献   

12.
The macrolide antibiotic clarithromycin (CLARI) has a wide spectrum of activity and efficacy for Mycoplasma species. In addition, CLARI accumulates during re-dosing of Mojave desert tortoises (Gopherus agassizii). Here, we characterized plasma concentrations after a single dose, after 3.5 months of dosing, and after per rectum administration; all doses were 15 mg/kg. After a single dose, the median maximal plasma concentration (Cmax) was 1.69 mg/ml and occurred at a median of 6 h after administration, the estimated elimination half-life was 6.9 h, and the median accumulation index was 10%. Plasma concentrations after long-term dosing showed consistent intraturtle concentrations of at least 2 microg/ml, with 1 turtle showing increasing accumulation of CLARI at all 3 time points and the remaining 5 turtles showing increases by 3.5 mo. Compared with expected Cmax values, the median long-term values were approximately 3 times higher than expected in 4 of 6 turtles and approximately 2/3 of that expected in the remaining 2 turtles. Per rectum dosing caused antibiotic retention below target values. Together, these results support accumulation of CLARI after repeated oral dosing and indicate that stable concentrations are reached long-term. Either cystoenteric recycling of CLARI or large intestinal absorption of bypass CLARI may explain the observed cumulative increases. In addition, twice-weekly CLARI maintains target concentrations over time, and per rectum dosing will require higher doses or increased dose frequency to be successful. Based on this work, pharmacokinetic studies in exotic species should include multidose studies to verify initial kinetic estimates from single-dose trends.  相似文献   

13.
Single- and multiple-dose pharmacokinetics of caspofungin in healthy men   总被引:16,自引:0,他引:16  
Caspofungin, a glucan synthesis inhibitor, is being developed as a parenteral antifungal agent. The pharmacokinetics of caspofungin following 1-h intravenous infusions in healthy men was investigated in four phase I studies. In an alternating two-panel (six men each), rising-single-dose study, plasma drug concentrations increased proportionally with the dose following infusions of 5 to 100 mg. The beta-phase half-life was 9 to 10 h. The plasma drug clearance rate averaged 10 to 12 ml/min. Renal clearance of unchanged drug was a minor pathway of elimination (approximately 2% of the dose). Multiple-dose pharmacokinetics were investigated in a 2-week, serial-panel (5 or 6 men per panel) study of doses of 15, 35, and 70 mg administered daily; a 3-week, single-panel (10 men) study of a dose of 70 mg administered daily; and a parallel panel study (8 men) of a dose of 50 mg administered daily with or without a 70-mg loading dose on day 1. Moderate accumulation was observed with daily dosing. The degree of drug accumulation and the time to steady state were somewhat dose dependent. Accumulation averaged 24% at 15 mg daily and approximately 50% at 50 and 70 mg daily. Mean plasma drug concentrations were maintained above 1.0 microg/ml, a target selected to exceed the MIC at which 90% of the isolates of the most clinically relevant species of Candida were inhibited, throughout therapy with daily treatments of 70 or 50 mg plus the loading dose, while they fell below the target for the first 2 days of a daily treatment of 50 mg without the loading dose. Caspofungin infused intravenously as a single dose or as multiple doses was generally well tolerated. In conclusion, the pharmacokinetics of caspofungin supports the clinical evaluation of once-daily dosing regimens for efficacy against fungal infections.  相似文献   

14.
Hypericin is a natural derivative of the common St. Johns wort plant, Hypericum perforatum. It has in vitro activity against several viruses, including bovine diarrhea virus, a pestivirus with structural similarities to hepatitis C virus (HCV). We conducted a phase I dose escalation study to determine the safety and antiviral activity of hypericin in patients with chronic HCV infection. The first 12 patients received an 8-week course of 0.05 mg of hypericin per kg of body weight orally once a day; 7 patients received an 8-week course of 0.10 mg/kg orally once a day. At the end of the 8-week period of treatment, no subject had a change of plasma HCV RNA level of more than 1.0 log(10). Five of 12 subjects receiving the 0.05-mg/kg/day dosing schedule and 6 of 7 subjects receiving the 0.10-mg/kg/day dosing schedule developed phototoxic reactions. No other serious adverse events associated with hypericin use occurred. The pharmacokinetic data revealed a long elimination half-life (mean values of 36.1 and 33.8 h, respectively, for the doses of 0.05 and 0.1 mg/kg) and mean area under the curve determinations of 1.5 and 3.1 microg/ml x hr, respectively. In sum, hypericin given orally in doses of 0.05 and 0.10 mg/kg/d caused considerable phototoxicity and had no detectable anti-HCV activity in patients with chronic HCV infection.  相似文献   

15.
The activity of gemifloxacin against intracellular Legionella pneumophila and for the treatment of guinea pigs with L. pneumophila pneumonia was studied. Gemifloxacin, azithromycin, and levofloxacin (1 microg/ml) reduced bacterial counts of two L. pneumophila strains grown in guinea pig alveolar macrophages by 2 to 3 log(10) units. Gemifloxacin and levofloxacin had roughly equivalent intracellular activities. In contrast, erythromycin had static activity only. Therapy studies of gemifloxacin, azithromycin, and levofloxacin were performed in guinea pigs with L. pneumophila pneumonia. When gemifloxacin (10 mg/kg) was given by the intraperitoneal (i.p.) route to infected guinea pigs, mean peak levels in plasma were 1.3 microg/ml at 0.5 h and 1.2 microg/ml at 1 h postinjection. The terminal half-life phase of elimination from plasma was 1.3 h, and the area under the concentration-time curve from 0 to 24 h (AUC(0--24)) was 2.1 microg. h/ml. For the same drug dose, mean levels in lungs were 3.4 microg/g at both 0.5 and 1 h, with a half-life of 1.5 h and an AUC(0--24) of 6.0 microg. h/ml. All 15 L. pneumophila-infected guinea pigs treated with gemifloxacin (10 mg/kg/dose given i.p. once daily) for 2 days survived for 9 days after antimicrobial therapy, as did 13 of 14 guinea pigs treated with the same dose of gemifloxacin given for 5 days. All 12 azithromycin-treated animals (15 mg/kg/dose given i.p. once daily for 2 days) survived, as did 11 of 12 animals treated with levofloxacin (10 mg/kg/dose given i.p. once daily for 5 days). None of 12 animals treated with saline survived. Gemifloxacin is effective against L. pneumophila in infected macrophages and in a guinea pig model of Legionnaires' disease, even with an abbreviated course of therapy. These data support studies of the clinical effectiveness of gemifloxacin for the treatment of Legionnaires' disease.  相似文献   

16.
BACKGROUND: Succinylated human serum albumin (Suc-HAS) is a negatively charged neo-glycoprotein that binds to the positively charged V3-loop of HIV-1 gp120, acting as HIV-1-fusion inhibitor in vitro (IC50: 0.5-5.0 microg/ml). Suc-HSA was safe in rats and monkeys, and showed antiretroviral effect in a human-to-mouse model. We evaluated safety and pharmacokinetics of single and multiple doses of Suc-HSA in HIV-1-infected individuals. METHODS: First, six untreated, chronically HIV-1-infected patients were randomized to a single dose of 1 or 10 mg/kg Suc-HSA intravenously. Second, five consecutive daily doses (10 mg/kg, based on the results of the single dose study) were given to four patients. Safety laboratory assessments, Suc-HSA plasma levels, plasma HIV-1 RNA (pVL), and CD4+ T-cell counts were determined. RESULTS: Increase of liver transaminases (grade 1/2) occurred in one of six patients in the single-dose phase and in three of four patients in the multiple-dosing phase. Suc-HSA plasma levels were undetectable 4 h after a single dose of 1 mg/kg. After a dose of 10 mg/kg, plasma levels were more sustained, but declined under the target plasma concentration (10 microg/ml) 12-24 h post-dosing. After multiple dosing, plasma levels reached peak values 2h post-dosing as predicted by our kinetic model. However, trough levels were below the target concentrations. There was no change in pVL or CD4+ T-cell count in either the single- or multiple-dosing phase. CONCLUSIONS: At the chosen dosing regimens, adequate antiviral plasma levels were not maintained, probably because the hepatic clearance was more rapid than expected. This may partially explain the lack of effect on pVL and CD4+ T-cell count. The observed liver transaminase increases prohibit further dose escalation.  相似文献   

17.
The pharmacokinetics of once-daily oral levofloxacin (study A) or intravenous levofloxacin (study B) in 40 healthy male volunteers were investigated in two separate randomized, double-blind, parallel-design, placebo-controlled studies. Levofloxacin at 500 mg or placebo was administered orally or intravenously as a single dose on day 1; daily oral or intravenous dosing resumed on days 4 to 10. In a third study (study C), the comparability of the bioavailabilities of two oral and one intravenous levofloxacin formulations were investigated with 24 healthy male subjects in an open-label, randomized, three-way crossover study. Levofloxacin at 500 mg as a single tablet or an intravenous infusion was administered on day 1; following a 1-week washout period, subjects received the second regimen (i.e., the other oral formulation or the intravenous infusion); the third and final regimen was administered following a 1-week washout period. The concentrations of drug in plasma and urine were measured by validated high-pressure liquid chromatography methods. Pharmacokinetic parameters were estimated by noncompartmental methods. In both study A (oral levofloxacin) and study B (intravenous levofloxacin), steady state was attained within 48 h after the start of the multiple dosing on day 4. Levofloxacin pharmacokinetics were linear and predictable for the single and multiple 500-mg, once-daily oral and intravenous dosing regimens, and the values of the pharmacokinetic parameters for the oral and intravenous administrations were similar. Study C indicated that levofloxacin was rapidly and completely absorbed from the oral tablets, with mean times to the maximum concentration of drug in serum of approximately 1.5 h and mean absolute bioavailability of > or =99%. These results support the interchangeability of the oral and intravenous routes of levofloxacin administration.  相似文献   

18.
The pharmacokinetics and safety of ceftolozane, a novel cephalosporin, and tazobactam, a β-lactamase inhibitor, alone and in combination as a 2:1 ratio in single doses of up to 2,000 and 1,000 mg of ceftolozane and tazobactam, respectively, and multiple doses of up to 3,000 and 1,500 mg of ceftolozane and tazobactam, respectively, per day were evaluated in healthy adult subjects. In part 1, groups of six subjects each received single ascending doses of ceftolozane, tazobactam, and ceftolozane-tazobactam in a within-cohort crossover design. In part 2, groups of 5 or 10 subjects each received multiple doses of ceftolozane, tazobactam, or ceftolozane-tazobactam for 10 days. After a single dose of ceftolozane alone, the ranges of mean values for half-life (2.48 to 2.64 h), the total clearance (4.35 to 6.01 liters/h), and the volume of distribution at steady state (11.0 to 14.1 liters) were consistent across dose levels and similar to those observed when ceftolozane was coadministered with tazobactam. Mean values after multiple doses for ceftolozane alone and ceftolozane-tazobactam were similar to those seen following a single dose. The pharmacokinetics of the dosing regimens evaluated were dose proportional and linear. Ceftolozane-tazobactam was well tolerated and systemic adverse events were uncommon. Mild infusion-related adverse events were the most commonly observed following multiple-dose administration. Adverse events were not dose related, and no dose-limiting toxicity was identified.  相似文献   

19.
Pharmacokinetics of rifabutin.   总被引:5,自引:4,他引:1       下载免费PDF全文
We investigated the pharmacokinetics of rifabutin in 15 male patients as part of a phase I trial of the treatment of early symptomatic human immunodeficiency virus infection. Six or more patients were studied at each of four different oral dosage levels: 300, 600, 900, and 1,200 mg/day. Twelve studies were also conducted with tracer doses of intravenous radiolabeled [14C]rifabutin. Blood and urine samples were collected for at least 72 h after the first (day 1) and last (day 28) doses of rifabutin and analyzed by high-pressure liquid chromatography. The plasma concentration data were best described by a two-compartment open model with a terminal half-life of 36 h. Rifabutin was rapidly absorbed, reaching a peak concentration about 2 to 3 h after an oral dose. Peak and trough concentrations for the 1,200-mg dose were 907 and 194 ng/ml, respectively. Total body clearance was 10 to 18 liters/h. Oral bioavailability was 12 to 20%. The drug was moderately bound to plasma proteins with a free fraction of 29 +/- 2% (mean +/- standard deviation). About 10% of an administered intravenous dose of rifabutin is excreted into the urine unchanged. Renal clearance was 1.5 +/- 0.2 liters/h. The volume of distribution was large (8 to 9 liters/kg), suggesting extensive distribution into the tissues. The area under the curve for the last dose was smaller than that of the first dose, suggesting possible induction of drug-metabolizing enzymes.  相似文献   

20.
We characterized the pharmacokinetic profile of imipenem-cilastatin administered intravenously to six normal volunteers in a dose of 1,000 mg of each drug every 6 h for 40 doses. The plasma concentrations of imipenem and cilastatin 1 h after the end of a 30-min infusion were 18.7 (+/- 2.1) and 19.1 (+/- 4.6), 20.0 (+/- 3.2) and 17.8 (+/- 4.8), and 23.4 (+/- 2.3) and 19.1 (+/- 3.5) micrograms/ml in the 1st, 17th, and 37th dosing intervals, respectively. The central compartment volumes of distribution for imipenem and cilastatin were 0.16 (+/- 0.05) and 0.14 (+/- 0.03) liter/kg, respectively. Elimination half-lives were short: 0.93 (+/- 0.09) h for imipenem and 0.84 (+/- 0.11) h for cilastatin. Plasma clearances were 12.1 (+/- 0.06) liters/h per 1.73 m2 for imipenem and 12.4 (+/- 1.1) liters/h per 1.73 m2 for cilastatin. Renal clearance accounted for 54% of the plasma clearance of imipenem and 69% of the plasma clearance of cilastatin. The concentrations of imipenem in plasma and urine remained above the MICs of the vast majority of pathogens throughout the dosing interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号