首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method of using functional magnetic resonance imaging (fMRI) to measure retinotopic organization within human cortex is described. The method is based on a visual stimulus that creates a traveling wave of neural activity within retinotopically organized visual areas. We measured the fMRI signal caused by this stimulus in visual cortex and represented the results on images of the flattened cortical sheet. We used the method to locate visual areas and to evaluate the spatial precision of fMRI. Specifically, we: (i) identified the borders between several retinotopically organized visual areas in the posterior occipital lobe; (ii) measured the function relating cortical position to visual field eccentricity within area V1; (iii) localized activity to within 1.1 mm of visual cortex; and (iv) estimated the spatial resolution of the fMRI signal and found that signal amplitude falls to 60% at a spatial frequency of 1 cycle per 9 mm of visual cortex. This spatial resolution is consistent with a linespread whose full width at half maximum spreads across 3.5 mm of visual cortex.   相似文献   

2.
Multisensory object-recognition processes were investigated by examining the combined influence of visual and auditory inputs upon object identification--in this case, pictures and vocalizations of animals. Behaviorally, subjects were significantly faster and more accurate at identifying targets when the picture and vocalization were matched (i.e. from the same animal), than when the target was represented in only one sensory modality. This behavioral enhancement was accompanied by a modulation of the evoked potential in the latency range and general topographic region of the visual evoked N1 component, which is associated with early feature processing in the ventral visual stream. High-density topographic mapping and dipole modeling of this multisensory effect were consistent with generators in lateral occipito-temporal cortices, suggesting that auditory inputs were modulating processing in regions of the lateral occipital cortices. Both the timing and scalp topography of this modulation suggests that there are multisensory effects during what is considered to be a relatively early stage of visual object-recognition processes, and that this modulation occurs in regions of the visual system that have traditionally been held to be unisensory processing areas. Multisensory inputs also modulated the visual 'selection-negativity', an attention dependent component of the evoked potential this is usually evoked when subjects selectively attend to a particular feature of a visual stimulus.  相似文献   

3.
Affectively arousing visual stimuli have been suggested to automatically attract attentional resources in order to optimize sensory processing. The present study crosses the factors of spatial selective attention and affective content, and examines the relationship between instructed (spatial) and automatic attention to affective stimuli. In addition to response times and error rate, electroencephalographic data from 129 electrodes were recorded during a covert spatial attention task. This task required silent counting of random-dot targets embedded in a 10 Hz flicker of colored pictures presented to both hemifields. Steady-state visual evoked potentials (ssVEPs) were obtained to determine amplitude and phase of electrocortical responses to pictures. An increase of ssVEP amplitude was observed as an additive function of spatial attention and emotional content. Statistical parametric mapping of this effect indicated occipito-temporal and parietal cortex activation contralateral to the attended visual hemifield in ssVEP amplitude modulation. This difference was most pronounced during selection of the left visual hemifield, at right temporal electrodes. In line with this finding, phase information revealed accelerated processing of aversive arousing, compared to affectively neutral pictures. The data suggest that affective stimulus properties modulate the spatiotemporal process along the ventral stream, encompassing amplitude amplification and timing changes of posterior and temporal cortex.  相似文献   

4.
Functional magnetic resonance imaging (fMRI) studies have identified category-selective regions in ventral occipito-temporal cortex that respond preferentially to faces and other objects. The extent to which these patterns of activation are modulated by bottom-up or top-down mechanisms is currently unknown. We combined fMRI and dynamic causal modelling to investigate neuronal interactions between occipito-temporal, parietal and frontal regions, during visual perception and visual imagery of faces, houses and chairs. Our results indicate that, during visual perception, category-selective patterns of activation in extrastriate cortex are mediated by content-sensitive forward connections from early visual areas. In contrast, during visual imagery, category-selective activation is mediated by content-sensitive backward connections from prefrontal cortex. Additionally, we report content-unrelated connectivity between parietal cortex and the category-selective regions, during both perception and imagery. Thus, our investigation revealed that neuronal interactions between occipito-temporal, parietal and frontal regions are task- and stimulus-dependent. Sensory representations of faces and objects are mediated by bottom-up mechanisms arising in early visual areas and top-down mechanisms arising in prefrontal cortex, during perception and imagery respectively. Additionally non-selective, top-down processes, originating in superior parietal areas, contribute to the generation of mental images, regardless of their content, and their maintenance in the 'mind's eye'.  相似文献   

5.
Repetition priming typically leads to a decrease in the activation of sensory cortical areas upon a second exposure to the same visual stimulus. This effect is thought to reflect more efficient or fluent re-processing of previously seen stimuli so that less neural activity is required. Fluent re-processing has been hypothesized to be a potential link from repetition priming to neural changes associated with visual expertise. To examine this potential connection, the neural correlates of priming were examined across eight stimulus repetitions using functional magnetic resonance imaging. Sizeable regions of bilateral ventral occipito-temporal cortex (including the fusiform gyrus) exhibited reduced responses to the second presentation of a stimulus. Most of these areas displayed no further reduction in response to subsequent repetitions of the same stimuli. Because expertise accrues over many exposures, these areas, while clearly involved in priming, do not exhibit an activity pattern consistent with the development of expertise. In contrast, an area in the right posterior fusiform gyrus exhibited reductions in evoked response that grew in magnitude for stimulus repetitions from the second to the eighth presentations. This region exhibits a pattern of activity consistent with a gradual and cumulative enhancement of the fluency effect across trials, suggesting that it may mediate the link between priming and the development of visual expertise.  相似文献   

6.
Two functional magnetic resonance imaging (fMRI) face viewpoint adaptation experiments were conducted to investigate whether fMRI adaptation in high-level visual cortex depends on the duration of adaptation and how different views of a face are represented in the human visual system. We found adaptation effects in multiple face-selective areas, which suggest a distributed, viewer-centered representation of faces in the human visual system. However, the nature of the adaptation effects was dependent on the length of adaptation. With long adaptation durations, face-selective areas along the hierarchy of the visual system gradually exhibited viewpoint-tuned adaptation. As the angular difference between the adapter and test stimulus increased, the blood oxygen level-dependent (BOLD) signal evoked by the test stimulus gradually increased as a function of the amount of 3-dimensional (3D) rotation. With short adaptation durations, however, face-selective areas in the ventral pathway, including the lateral occipital cortex and right fusiform area, exhibited viewpoint-sensitive adaptation. These areas showed an increase in the BOLD signal with a 3D rotation, but this signal increase was independent of the amount of rotation. Further, the right superior temporal sulcus showed little or very weak viewpoint adaptation with short adaptation durations. Our findings suggest that long- and short-term fMRI adaptations may reflect selective properties of different neuronal mechanisms.  相似文献   

7.
Detecting changes in an ever-changing environment is highly advantageous, and this ability may be critical for survival. In the present study, we investigated the neural substrates of change detection in the context of a visual working memory task. Subjects maintained a sample visual stimulus in short-term memory for 6 s, and were asked to indicate whether a subsequent, test stimulus matched or did not match the original sample. To study change detection largely uncontaminated by attentional state, we compared correct change and correct no-change trials at test. Our results revealed that correctly detecting a change was associated with activation of a network comprising parietal and frontal brain regions, as well as activation of the pulvinar, cerebellum, and inferior temporal gyrus. Moreover, incorrectly reporting a change when none occurred led to a very similar pattern of activations. Finally, few regions were differentially activated by trials in which a change occurred but subjects failed to detect it (change blindness). Thus, brain activation was correlated with a subject's report of a change, instead of correlated with the physical change per se. We propose that frontal and parietal regions, possibly assisted by the cerebellum and the pulvinar, might be involved in controlling the deployment of attention to the location of a change, thereby allowing further processing of the visual stimulus. Visual processing areas, such as the inferior temporal gyrus, may be the recipients of top-down feedback from fronto-parietal regions that control the reactive deployment of attention, and thus exhibit increased activation when a change is reported (irrespective of whether it occurred or not). Whereas reporting that a change occurred, be it correctly or incorrectly, was associated with strong activation in fronto-parietal sites, change blindness appears to involve very limited territories.  相似文献   

8.
Cerebral bases of subliminal and supraliminal priming during reading   总被引:1,自引:0,他引:1  
Several studies have investigated the neural correlates of conscious perception by contrasting functional magnetic resonance imaging (fMRI) activation to conscious and nonconscious visual stimuli. The results often reveal an amplification of posterior occipito-temporal activation and its extension into a parieto-frontal network. However, some of these effects might be due to a greater deployment of attentional or strategical processes in the conscious condition. Here, we examined the brain activity evoked by visible and invisible stimuli, both of which were irrelevant to the task. We collected fMRI data in a masking paradigm in which subliminal versus supraliminal letter strings were presented as primes while subjects focused attention on another subsequent, highly visible target word. Under those conditions, prime visibility was associated with greater activity confined to bilateral posterior occipito-temporal cortices, without extension into frontal and parietal cortices. However, supraliminal primes, compared with subliminal primes, evoked more extensive repetition suppression in a widely distributed set of parieto-frontal areas. Furthermore, only supraliminal primes caused phonological repetition enhancement in left inferior frontal and anterior insular cortex. Those results suggest a 2-stage view of conscious access: Relative to masked stimuli, unmasked stimuli elicit increased occipito-temporal activity, thus allowing them to compete for global conscious access and to induce priming in multiple distant areas. In the absence of attention, however, their access to a second stage of distributed parieto-frontal processing may remain blocked.  相似文献   

9.
We used functional magnetic resonance imaging (fMRI) of a visual target detection (oddball) task to investigate age differences in neural activation for the detection of two types of infrequent events: visually simple items requiring a response shift (targets) and visually complex items that did not entail a response shift (novels). Targets activated several prefrontal regions (e.g. middle frontal gyrus), as well as deep gray matter regions (caudate, putamen, thalamus and insula). Prefrontal activation was similar for younger and older adults, whereas deep gray matter activation was relatively greater for the older adults. Novels activated occipital regions (fusiform and lateral occipital gyri), and this activation was relatively reduced for older adults. The changes in behavioral performance across the task conditions were similar for the two age groups, although the older adults' responses were slower overall. Regression analyses of the relation between neural activation and task performance (response time) indicated that whereas performance was mediated most directly by prefrontal cortex for younger adults, older adults' performance was influenced to a greater extent by deep gray matter structures. Older adults may place relatively greater emphasis on the attentional control of response regulation, in compensation for the age-related decline in visual processing efficiency.  相似文献   

10.
We investigated the relation between electrophysiological and hemodynamic measures of brain activity through comparison of intracranially recorded event-related local field potentials (ERPs) and blood-oxygenation level dependent functional magnetic resonance imaging (BOLD fMRI). We manipulated the duration of visual checkerboard stimuli across trials and measured stimulus-duration-related changes in ERP and BOLD activity in three brain regions: peri-calcarine cortex, the fusiform gyrus and lateral temporal-occipital (LTO) cortex. ERPs were recorded from patients who had indwelling subdural electrodes as part of presurgical testing, while BOLD responses were measured in similar brain regions in a second set of subjects. Similar BOLD responses were measured in peri-calcarine and fusiform regions, with both showing monotonic but non-linear increases in hemodynamic amplitude with stimulus duration. In sharp contrast, very different ERP responses were observed in these same regions, such that calcarine electrodes exhibited onset potentials, sustained activity over the course of stimulus duration and prominent offset potentials, while fusiform electrodes only exhibited onset potentials that did not vary with stimulus duration. No duration-related ERP or BOLD changes were observed in LTO. Additional analyses revealed no consistent changes in the EEG spectrum across different brain sites that correlated with duration-related changes in the BOLD response. We conclude that the relation between ERPs and fMRI differs across brain regions.  相似文献   

11.
Understanding the neural representation of semantic concepts is at the core of understanding human knowledge and experience. Competing cognitive theories suggest that these neural representations are based on either a unitary semantic code or on multiple semantic codes. We contrasted these theories using event-related fMRI in a semantic priming study. Pairs of words were presented that were either semantically related or unrelated and were either high or low imageable. The unitary view predicts that there should be little or no difference between neural activity evoked by high and low imageable words when presented in a related context, but large differences in neural activity when there is an unrelated context. In contrast to this view, we provide evidence for functionally and anatomically separable effects of context and imageability in human cortex, suggesting that semantic knowledge consists of multiple representational codes.  相似文献   

12.
Cognitive psychological studies of humans and monkeys solving visual mazes have provided evidence that a covert analysis of the maze takes place during periods of eye fixation interspersed between saccades, or when mazes are solved without eye movements. We investigated the neural basis of this process in posterior parietal cortex by recording the activity of single neurons in area 7a during maze solution. Monkeys were required to determine from a single point of fixation whether a critical path through the maze reached an exit or a blind ending. We found that during this process the activity of approximately one in four neurons in area 7a was spatially tuned to maze path direction. We obtained evidence that path tuning did not reflect a covert saccade plan insofar as the majority of neurons active during maze solution were not active on a delayed-saccade control task, and the minority that were active on both tasks did not exhibit congruent spatial tuning in the two conditions. We also obtained evidence that path tuning during maze solution was not due to the locations of visual receptive fields mapped outside the behavioral context of maze solution, in that receptive field centers and preferred path directions were not spatially aligned. Finally, neurons tuned to path direction were not present in area 7a when a na?ve animal viewed the same visual maze stimuli but did not solve them. These data support the hypothesis that path tuning in parietal cortex is not due to the lower level visual features of the maze stimulus, but rather is associated with maze solution, and as such, reflects a cognitive process applied to a complex visual stimulus.  相似文献   

13.
Functional magnetic resonance imaging (fMRI) was used to estimate the average receptive field sizes of neurons in each of several striate and extrastriate visual areas of the human cerebral cortex. The boundaries of the visual areas were determined by retinotopic mapping procedures and were visualized on flattened representations of the occipital cortex. Estimates of receptive field size were derived from the temporal duration of the functional activation at each cortical location as a visual stimulus passed through the receptive fields represented at that location. Receptive fields are smallest in the primary visual cortex (V1). They are larger in V2, larger again in V3/VP and largest of all in areas V3A and V4. In all these areas, receptive fields increase in size with increasing stimulus eccentricity. The results are qualitatively in line with those obtained by others in macaque monkeys using neurophysiological methods.  相似文献   

14.
Previous studies have shown that intracortical inhibition (ICI) plays an important role in shaping the output from primary motor cortex, and that ICI may be impaired in people with Focal Hand Dystonia (FHD). This study explored the muscle-specificity and temporal modulation of ICI during the performance of a phasic index finger flexion task. Eight control subjects and seven with FHD were asked to rest their dominant hand upon a computer mouse, and depress the mouse button using their index finger in time with a 1 Hz auditory metronome, while keeping the rest of their hand as relaxed as possible. Responses to single and paired-pulse transcranial magnetic stimulation were recorded from the first dorsal interosseous (FDI) and abductor pollicis brevis (APB) muscles while subjects were at rest and during 'on' and 'off' phases of the task. For control subjects during the movement (i). FDI motor evoked potential (MEP) amplitude and pretrigger EMG increased, and ICI decreased, as expected, and (ii). there was no significant facilitation of MEP amplitude or pretrigger EMG for APB, which was associated with a significant increase in ICI during the movement. This may have helped prevent the unwanted activation of this muscle. While FHD subjects demonstrated the same patterns of modulation of both MEP amplitude and pretrigger EMG for both FDI and APB, their levels of ICI were not modulated by task performance. This was despite no difference between subject groups in the level of ICI observed at rest. These findings suggest that FHD is associated with impaired modulation of ICI during performance of a precise manual task, which may contribute to a lack of specificity in the output from M1 and the development of dystonic symptoms.  相似文献   

15.
The coupling of neuronal cellular activity to its blood supply is of critical importance to the physiology of the human brain and has been under discussion for more than a century. Linearity in this relationship has been demonstrated in some animal studies, but evidence is lacking in humans. In this study, we compared scalp evoked potentials and the functional magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) signal from healthy human volunteers with changes in the intensity of a somatosensory stimulus. By weighting the fMRI images according to the evoked potential amplitude at corresponding intensities, we tested for positive and negative covariation between these 2 data sets and the extent to which these were linear. Hemodynamic changes in primary somatosensory cortex covaried positively with neuronal activity in a predominantly linear manner, with a small quadratic contribution. Simultaneously, other cortical areas corresponding to the nonstimulated limbs were found to covary negatively and linearly in the hemispheres ipsilateral and contralateral to the stimulus. These concurrent and bilateral cortical dynamics, as well as the intraregional features of this neurovascular coupling, are both more complex than had been considered to date, with considerable implications.  相似文献   

16.
Covert attention affects prestimulus activity in the visual cortex. Although most studies investigating neural mechanisms of attention have focused on the effects of spatial attention, attention can also be directed to particular features. To investigate the spatiotemporal nature of feature attention, we measured subjects' brain activity using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) while subjects attended to color or motion of a stimulus based on a visual cue, which was presented 1 s before the stimulus onset. We used the hierarchical Bayesian method that allows us to estimate cortical currents with MEG and fMRI data in the order of millimeters and milliseconds. When subjects attended to color, activity within the color-sensitive area (fusiform gyrus) was selectively enhanced within the prestimulus period. By contrast, when subjects attended to motion, activity within the motion-sensitive area (middle temporal gyrus) was selectively enhanced during this period. This effect was not seen in frontal, parietal, and lower visual areas. Additionally, this effect was transient rather than sustained, suggesting that it differs from temporal aspects of spatial attention. These results suggest that, although both spatial and feature attention modulate prestimulus activity within specific visual areas, neural mechanisms underlying these effects might be different.  相似文献   

17.
Cortical mechanisms of feature-based attentional control   总被引:6,自引:5,他引:1  
A network of fronto-parietal cortical areas is known to be involved in the control of visual attention, but the representational scope and specific function of these areas remains unclear. Recent neuroimaging evidence has revealed the existence of both transient (attention-shift) and sustained (attention-maintenance) mechanisms of space-based and object-based attentional control. Here we investigate the neural mechanisms of feature-based attentional control in human cortex using rapid event-related functional magnetic resonance imaging (fMRI). Subjects viewed an aperture containing moving dots in which dot color and direction of motion changed once per second. At any given moment, observers attended to either motion or color. Two of six motion directions and two of six colors embedded in the stimulus stream cued subjects either to shift attention from the currently attended to the unattended feature or to maintain attention on the currently attended feature. Attentional modulation of the blood oxygenation level dependent (BOLD) fMRI signal was observed in early visual areas that are selective for motion and color. More importantly, both transient and sustained BOLD activity patterns were observed in different fronto-parietal cortical areas during shifts of attention. We suggest these differing temporal profiles reflect complementary roles in the control of attention to perceptual features.  相似文献   

18.
High-arousing emotional stimuli facilitate early visual cortex, thereby acting as strong competitors for processing resources in visual cortex. The present study used an electrophysiological approach for continuously measuring the time course of competition for processing resources in the visual pathway arising from emotionally salient but task-irrelevant input while performing a foreground target detection task. Steady-state visual evoked potentials (SSVEPs) were recorded to rapidly flickering squares superimposed upon neutral and emotionally high-arousing pictures, and variations in SSVEP amplitude over time were calculated. As reflected in SSVEP amplitude and target detection rates, arousing emotional background pictures withdrew processing resources from the detection task compared with neutral ones for several hundred milliseconds after stimulus onset. SSVEP amplitude was found to bear a close temporal relationship with accurate target detection as a function of time after stimulus onset.  相似文献   

19.
We recorded the neuronal activity in the arm area of the motor cortex and parietal area 7a of two monkeys during interception of stimuli moving in real and apparent motion. The stimulus moved along a circular path with one of five speeds (180-540 degrees/s), and was intercepted at 6 o'clock by exerting a force pulse on a semi-isometric joystick which controlled a cursor on the screen. The real stimuli were shown in adjacent positions every 16 ms, whereas in the apparent motion situation five stimuli were flashed successively at the vertices of a regular pentagon. The results showed, first, that a group of neurons in both areas above responded not only during the interception but also during a NOGO task in which the same stimuli were presented in the absence of a motor response. This finding suggests these areas are involved in both the processing of the stimulus as well as in the preparation and production of the interception movement. In addition, a group of motor cortical cells responded during the interception task but not during a center --> out task, in which the monkeys produced similar force pulses towards eight stationary targets. This group of cells may be engaged in sensorimotor transformations more specific to the interception of real and apparent moving stimuli. Finally, a multiple regression analysis revealed that the time-varying neuronal activity in area 7a and motor cortex was related to various aspects of stimulus motion and hand force in both the real and apparent motion conditions, with stimulus-related activity prevailing in area 7a and hand-related activity prevailing in motor cortex. In addition, the neural activity was selectively associated with the stimulus angle during real motion, whereas it was tightly correlated to the time-to-contact in the apparent motion condition, particularly in the motor cortex. Overall, these observations indicate that neurons in motor cortex and area 7a are processing different parameters of the stimulus depending on the kind of stimulus motion, and that this information is used in a predictive fashion in motor cortex to trigger the interception movement.  相似文献   

20.
We evaluated the neural substrates of cross-modal binding and divided attention during audio-visual speech integration using functional magnetic resonance imaging. The subjects (n = 17) were exposed to phonemically concordant or discordant auditory and visual speech stimuli. Three different matching tasks were performed: auditory-auditory (AA), visual-visual (VV) and auditory-visual (AV). Subjects were asked whether the prompted pair were congruent or not. We defined the neural substrates for the within-modal matching tasks by VV-AA and AA-VV. We defined the cross-modal area as the intersection of the loci defined by AV-AA and AV-VV. The auditory task activated the bilateral anterior superior temporal gyrus and superior temporal sulcus, the left planum temporale and left lingual gyrus. The visual task activated the bilateral middle and inferior frontal gyrus, right occipito-temporal junction, intraparietal sulcus and left cerebellum. The bilateral dorsal premotor cortex, posterior parietal cortex (including the bilateral superior parietal lobule and the left intraparietal sulcus) and right cerebellum showed more prominent activation during AV compared with AA and VV. Within these areas, the posterior parietal cortex showed more activation during concordant than discordant stimuli, and hence was related to cross-modal binding. Our results indicate a close relationship between cross-modal attentional control and cross-modal binding during speech reading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号