首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Diagnosis and monitoring of HCV infection relies on sensitive and accurate HCV RNA detection and quantitation. The performance of the COBAS AmpliPrep/COBAS TaqMan 48 (CAP/CTM) (Roche, Branchburg, NJ), a fully automated, real-time PCR HCV RNA quantitative test was assessed and compared with the branched-DNA (bDNA) assay. Clinical evaluation on 576 specimens obtained from patients with chronic hepatitis C showed a good correlation (r = 0.893) between the two test, but the CAP/CTM scored higher HCV RNA titers than the bDNA across all viral genotypes. The mean bDNA versus CAP/CTM log10 IU/ml differences were -0.49, -0.4, -0.54, -0.26 for genotype 1a, 1b, 2a/2c, 3a, and 4, respectively. These differences reached statistical significance for genotypes 1b, 2a/c, and 3a. The ability of the CAP/CTM to monitor patients undergoing antiviral therapy and correctly identify the weeks 4 and 12 rapid and early virological responses was confirmed. The broader dynamic range of the CAP/CTM compared with the bDNA allowed for a better definition of viral kinetics. In conclusion, the CAP/CTM appears as a reliable and user-friendly assay to monitor HCV viremia during treatment of patients with chronic hepatitis. Its high sensitivity and wide dynamic range may help a better definition of viral load changes during antiviral therapy.  相似文献   

2.
There is considerable evidence that the loss of hepatitis C virus (HCV) RNA during the first 3 months of treatment with pegylated interferon plus ribavirin is a prognostic marker of response to therapy. Real-time polymerase chain reaction (PCR) assays for quantifying HCV RNA in plasma or serum are now commercially available. The extraction of HCV RNA can also be automated. This report analyses the performance of the COBAS Ampliprep-COBAS Taqman 48 (CAP/CTM) real-time PCR assay and compares this new test with the COBAS Amplicor HCV Monitor v 2.0 assay (CAM). CAP/CTM was 100% specific. The assay was linear across a wide range of HCV RNA concentrations without sample dilution. The intra-assay variation was 0.3-3.3% and the interassay variation was 1.5-6.7%. A total of 118 clinical samples with different HCV genotypes were assayed using both methods. The results obtained using the two methods were well correlated (r = 0.89, P < 0.001). The mean difference [CAP/CTM-CAM] was 0.17 log IU/ml and it was not influenced by the HCV genotype or by the subtype. It is concluded that the new CAP/CTM system is adequate for quantifying HCV RNA in clinical practice.  相似文献   

3.
4.
BACKGROUND: Diagnosis of hepatitis C virus (HCV) infection and its therapy is based on qualitative and quantitative measurement of HCV RNA. OBJECTIVES: A new assay that employs automated specimen extraction and real-time RT-PCR (COBAS Amplipreptrade mark/COBAS TaqMantrade mark, "CAP/CTM", Roche Diagnostics, Pleasanton, USA) was designed for linear quantification and highly sensitive detection of HCV RNA. STUDY DESIGN: The performance characteristics of CAP/CTM were compared to standard RT-PCR-based COBAS Amplicor Monitor 2.0 (CAM) assay in a multicenter study. RESULTS: The limit of detection of CAP/CTM was 7.4IU/ml (95% CI 6.2-10.6) and clinical specificity was 99%. The linear range of HCV RNA quantification by CAP/CTM was between 28 and 1.4x10(7)IU/ml, with a correlation coefficient between expected and observed results of >0.99. A fivefold dilution of serum- or plasma-samples showed a linear correlation of HCV RNA levels in undiluted and diluted samples. Analyses of the mean intra- and inter-assay imprecision within the linear range of quantification showed a coefficient of variation of 3% and 3%, respectively. HCV genotypes 1a/b, 2b, 3a, 4, 5 and 6 were equally quantified by the CAP/CTM and CAM assay with mean deviations ranging from -0.29log(10) to 0.32log(10)IU/ml. HCV RNA quantification by CAP/CTM and CAM was highly concordant (correlation coefficient of 0.96). CONCLUSIONS: The CAP/CTM assay is a reliable and robust assay for highly sensitive detection and quantification of HCV RNA within a broad linear range.  相似文献   

5.
Accurate hepatitis C virus (HCV) RNA quantification is mandatory for the management of chronic hepatitis C therapy. The first-generation Cobas AmpliPrep/Cobas TaqMan HCV test (CAP/CTM HCV) underestimated HCV RNA levels by >1-log10 international units/ml in a number of patients infected with HCV genotype 4 and occasionally failed to detect it. The aim of this study was to evaluate the ability of the Cobas AmpliPrep/Cobas TaqMan HCV test, version 2.0 (CAP/CTM HCV v2.0), to accurately quantify HCV RNA in a large series of patients infected with different subtypes of HCV genotype 4. Group A comprised 122 patients with chronic HCV genotype 4 infection, and group B comprised 4 patients with HCV genotype 4 in whom HCV RNA was undetectable using the CAP/CTM HCV. Each specimen was tested with the third-generation branched DNA (bDNA) assay, CAP/CTM HCV, and CAP/CTM HCV v2.0. The HCV RNA level was lower in CAP/CTM HCV than in bDNA in 76.2% of cases, regardless of the HCV genotype 4 subtype. In contrast, the correlation between bDNA and CAP/CTM HCV v2.0 values was excellent. CAP/CTM HCV v2.0 accurately quantified HCV RNA levels in the presence of an A-to-T substitution at position 165 alone or combined with a G-to-A substitution at position 145 of the 5′ untranslated region of HCV genome. In conclusion, CAP/CTM HCV v2.0 accurately quantifies HCV RNA in genotype 4 clinical specimens, regardless of the subtype, and can be confidently used in clinical trials and clinical practice with this genotype.  相似文献   

6.
The VERSANT HCV RNA 3.0 (bDNA), COBAS AmpliPrep/COBAS TaqMan HCV, and Abbott ART HCV RealTime assays were compared for hepatitis C virus RNA quantification in 158 clinical specimens (genotypes 1 to 5). RNA values differed significantly between methods (P < 0.0001), and mean titer differences ranged from 0.01 to 0.50 log(10) IU/ml depending on the genotypes.  相似文献   

7.
8.
9.
10.
11.
Protocols were designed for quantification and detection of hepatitis C virus (HCV) RNA by the use of an analyte-specific reagent (ASR) (Roche COBAS TaqMan48 [CTM48] HCV) after manual and automated RNA extraction. The purposes were to determine (i) assay performance characteristics using manual and automated RNA extraction methods, (ii) whether measurable range and limit of detection (LOD) of the ASR assay were influenced by genotype, and (iii) correlation of quantification by CTM48 HCV ASR and COBAS Monitor HCV v. 2.0. For HCV genotype 1 (Gt1), the lower limits of quantification after manual extraction were slightly lower than those for automated extraction (1.0 versus 1.5 log(10) IU/ml). Results were linear up to the highest concentration tested after extraction by both methods (manual, 6.1 log(10); automated, 6.4 log(10)). Similar results were obtained for Gt2 (1.8 to 6.8 log(10) IU/ml) and Gt3 (1.6 to 6.8 log(10) IU/ml) after automated extraction. The LOD of Gt1 virus was 10 IU/ml after manual extraction and between 25 and 37.5 IU/ml after automated extraction. Results with Gt2 and Gt3 viruses were similar after automated extraction (Gt2, between 25 and 50 IU/ml; Gt3, 25 IU/ml). Variability (intrarun and interrun, at concentrations throughout the range of quantification) was 相似文献   

12.
Two commercial real-time PCR assays are currently available for sensitive hepatitis C virus (HCV) RNA quantification: the Abbott RealTime HCV assay (ART) and Roche Cobas AmpliPrep/Cobas TaqMan HCV assay (CAP/CTM). We assessed whether the two real-time PCR assays were more effective than Roche Cobas Amplicor HCV Monitor test, v.2.0 (CAM) for prediction of the sustained virological response (SVR) to pegylated interferon (PEG-IFN) plus ribavirin (RBV) in chronic hepatitis C. Sixty patients chronically infected with HCV genotype 1b (37 males and 23 females, 53 ± 12 years of age) were treated with PEG-IFNα2b plus RBV for 48 weeks. Stored specimens at nine time points for each patient (at baseline, on treatment, and 24 weeks after treatment) were tested by the two real-time PCR assays and CAM. Twenty-six (43.3%) patients reached SVR. The positive predictive values (PPVs) for SVR of undetectable HCV RNA at week 12 by CAM, ART, and CAP/CTM were 74.3%, 88.0%, and 95.2%, respectively. An undetectable HCV RNA level by CAM, ART, and CAP/CTM correctly predicted SVR at week 4 in 100%, 100%, and 100% of patients, at weeks 5 to 8 in 91.7%, 100%, and 100% of patients, at weeks 9 to 12 in 55.6%, 75%, and 87.5% of patients, and at weeks 13 to 24 in 0%, 26.7%, and 40% of patients, respectively. Of 16 patients who relapsed after treatment, HCV RNA was detectable in 2 patients at the end of treatment by CAP/CTM but undetectable by ART and CAM. HCV RNA tests using ART and CAP/CTM are considered to be more effective at predicting SVR than CAM, and the PPV for SVR was slightly higher in CAP/CTM than in ART.  相似文献   

13.
BACKGROUND: HCV RNA is commonly recognized as key parameter for reliable diagnosis and treatment monitoring of HCV infection. Determination of blood HCV RNA concentrations reduces the pre-seroconversion period in the diagnosis of HCV infection and supports management of interferon alpha-based therapies of chronic HCV infection. OBJECTIVES AND STUDY DESIGN: The COBAS AmpliPrep/COBAS TaqMan HCV Test combines automated extraction of nucleic acids on the COBAS AmpliPrep Instrument with real-time PCR on the COBAS TaqMan Analyzer, thus greatly reducing hands-on time during sample preparation and amplification/detection. The test, which is calibrated to the 1st International HCV WHO Standard, was evaluated for sensitivity, dynamic range, precision, matrix equivalence, genotype inclusivity, interfering substances, diagnostic and analytical specificity, as well as for correlation with two other commercial tests for HCV RNA quantification. RESULTS: The COBAS AmpliPrep/COBAS TaqMan HCV Test demonstrated a >6-log dynamic range of 43-6.90 E+7 IU/mL, a sensitivity (95% hit rate) of at least 15 IU/mL for HCV WHO Standard and a comparable quantification of genotypes 1-6. HCV quantification results were in good correlation with those obtained by the COBAS AMPLICOR HCV MONITOR Test v2.0 and the VERSANT HCV RNA 3.0 test. CONCLUSIONS: The fully automated COBAS AmpliPrep/COBAS TaqMan HCV Test excellently accomplishes the requirements for highly sensitive detection and reliable quantification of HCV in clinical samples and thus improves therapy monitoring and management of HCV infection.  相似文献   

14.
We encountered a patient positive for anti-hepatitis C virus (HCV) whose serum HCV RNA was undetectable with the Roche AmpliPrep/Cobas TaqMan HCV assay (CAP/CTM) version 1 but showed a high viral load with the Abbott RealTime HCV assay (ART). Discrepancies in the detectability of serum HCV RNA were investigated among 891 consecutive patients who were positive for anti-HCV. Specific nucleotide variations causing the undetectability of HCV RNA were determined and confirmed by synthesizing RNA coding those variations. Serum samples with the discrepancies were also reassessed by CAP/CTM version 2. Among the 891 anti-HCV-positive patients, 4 patients had serum HCV RNA levels that were undetectable by CAP/CTM version 1 despite having levels of >5 log IU/ml that were detected by ART. All four patients had HCV genotype 2a and high titers of anti-HCV. Sequencing of the HCV 5′ noncoding regions revealed 2 common variations, A at nucleotide (nt) 145 and T at nt 151. Synthesized RNAs of the HCV 5′ noncoding region with standard (NCR145G151C) and variant nucleotides at nt 145 and nt 151 were quantified with CAP/CTM. RNAs of NCR145G151C and NCR145G151T were quantifiable with CAP/CTM version 1, while those of NCR145A151T and NCR145A151C went undetected. The substitution from G to A at nt 145 specifically conferred this undetectability, while this undetectability was reverted in synthesized HCV RNA with correction of this variation. Reassessment of these samples by CAP/CTM version 2 resulted in similar levels of HCV RNA being detected by ART. We conclude that HCV patients with undetectable HCV RNA by CAP/CTM version 1 should be reassessed for viral quantification.  相似文献   

15.
Hepatitis C virus (HCV) RNA viral load (VL) monitoring is a well-established diagnostic tool for the management of chronic hepatitis C patients. HCV RNA VL results are used to make treatment decisions with the goal of therapy to achieve an undetectable VL result. Therefore, a sensitive assay with high specificity in detecting and accurately quantifying HCV RNA across genotypes is critical. Additionally, a lower sample volume requirement is desirable for the laboratory and the patient. This study evaluated the performance characteristics of a second-generation real-time PCR assay, the Cobas AmpliPrep/Cobas TaqMan HCV quantitative test, version 2.0 (CAP/CTM HCV test, v2.0), designed with a novel dual-probe approach and an optimized automated extraction and amplification procedure. The new assay demonstrated a limit of detection and lower limit of quantification of 15 IU/ml across all HCV genotypes and was linear from 15 to 100,000,000 IU/ml with high accuracy (<0.2-log10 difference) and precision (standard deviation of 0.04 to 0.22 log10). A specificity of 100% was demonstrated with 600 HCV-seronegative specimens without cross-reactivity or interference. Correlation to the Cobas AmpliPrep/Cobas TaqMan HCV test (version 1) was good (n = 412 genotype 1 to 6 samples, R2 = 0.88; R2 = 0.94 without 105 genotype 4 samples). Paired plasma and serum samples showed similar performance (n = 25, R2 = 0.99). The sample input volume was reduced from 1 to 0.65 ml in the second version. The CAP/CTM HCV test, v2.0, demonstrated excellent performance and sensitivity across all HCV genotypes with a smaller sample volume. The new HCV RNA VL assay has performance characteristics that make it suitable for use with currently available direct-acting antiviral agents.  相似文献   

16.
Evaluation of the invader assay for genotyping hepatitis C virus   总被引:1,自引:0,他引:1       下载免费PDF全文
The Invader 1.0 assay (Invader HCV Genotyping Assay, version 1.0; Third Wave Technologies, Inc., Madison, WI) has been developed for the rapid differentiation of hepatitis C virus (HCV) genotypes 1 to 6 based on sequence variation within the HCV 5' noncoding (NC) region. In the present study, we evaluated the compatibility of Invader 1.0 with the COBAS MONITOR (COBAS AMPLICOR HCV MONITOR Test, version 2.0; Roche Molecular Systems, Inc., Branchburg, NJ), COBAS AMPLICOR (COBAS AMPLICOR Hepatitis C Virus Test, version 2.0; Roche Molecular Systems, Inc.), and COBAS TaqMan (COBAS TaqMan HCV Test; Roche Molecular Systems, Inc.) assays. The minimum HCV RNA titers required for successful HCV genotyping (>/=90% success rate) were 1,000 IU/ml for COBAS MONITOR, 100 IU/ml for COBAS AMPLICOR, and 10 IU/ml for COBAS TaqMan. Invader 1.0 results obtained from unpurified COBAS TaqMan amplification products of 111 retrospectively selected clinical serum specimens (genotypes 1 to 6, with virus titers ranging from 15.1 to 2.1 x 10(7) IU/ml) showed 98% concordance with results obtained from the TRUGENE HCV 5' NC Genotyping Kit (Bayer HealthCare LLC, Tarrytown, NY), used in conjunction with COBAS AMPLICOR. Although the assay is sensitive, accurate, and easy to perform, additional optimization of the Invader 1.0 interpretive software (Invader Data Analysis Worksheet) may be necessary to reduce potential misidentification of HCV genotypes in low-titer specimens. In summary, Invader 1.0 is compatible with a variety of commercially available PCR-based HCV 5' NC region amplification assays and is suitable for routine HCV genotyping in clinical laboratories.  相似文献   

17.
BackgroundEarly viral monitoring is essential for the management of treatment outcome in patients with chronic hepatitis C. A variety of commercially available assays are now available to quantify HCV-RNA in routine clinical practice.ObjectivesCompare the clinical results of 3 commercially available assays to evaluate the positive predictive value (PPV) and the negative predictive value (NPV) of rapid virological response (RVR) at week 4 and early virological response (EVR) at week 12.Study design287 patients treated with standard care regimen combination therapy were studied. HCV-RNA values measured at baseline, week 4, week 12 with VERSANT® HCV 3.0 Assay (bDNA), and VERSANT® HCV-RNA Qualitative Assay (TMA) (bDNA/TMA); COBAS Ampliprep/COBAS/TaqMan (CAP/CTM) and Abbott m2000sp extraction/m2000rt amplification system (ART). RVR was defined as undetectable serum HCV-RNA and EVR as a ≥2 log decline in baseline viral load (BLV).ResultsMedian (range) BVLs were: 5.585(2.585–6.816), 5.189(2.792–7.747) and 4.804(2.380–6.580) log10 IU/ml, with bDNA/TMA, CAP/CTM and ART, respectively (p < 0.01); RVR was observed in 22%, 30% and 27% of the patients and PPVs were 97%, 91% and 94% with bDNA/TMA, CAP/CTM and ART, respectively (p = 0.317). EVR was observed in 76%, 73% and 67% of the patients and NPVs were 93%, 83% and 79% with bDNA/TMA, CAP/CTM and ART, respectively (p = 0.09).ConclusionsTreatment monitoring should include both detection of serum HCV-RNA at week 4 to predict SVR and at week 12 to predict non-SVR. The value of all 3 assays was similar for evaluating RVR or EVR. Because of viral load discrepancies the same assay should be used throughout patient treatment follow-up.  相似文献   

18.
19.
20.
The accurate and sensitive measurement of hepatitis C virus (HCV) RNA is essential for the clinical management and treatment of infected patients and as a research tool for studying the biology of HCV infection. We evaluated the linearity, reproducibility, precision, limit of detection, and concordance of viral genotype quantitation of the Abbott investigational use only RealTime HCV (RealTime) assay using the Abbott m2000 platform and compared the results to those of the Roche TaqMan Analyte-Specific Reagent (TaqMan) and Bayer Versant HCV bDNA 3.0 assay. Comparison of 216 samples analyzed by RealTime and TaqMan assays produced the following Deming regression equation: RealTime = 0.940 (TaqMan) + 0.175 log10 HCV RNA IU/ml. The average difference between the assays was 0.143 log10 RNA IU/ml and was consistent across RealTime''s dynamic range of nearly 7 log10 HCV RNA IU/ml. There was no significant difference between genotypes among these samples. The limit of detection using eight replicates of the World Health Organization HCV standard was determined to be 7.74 HCV RNA IU/ml by probit analysis. Replicate measurements of commercial genotype panels were significantly higher than TaqMan measurements for most samples and showed that the RealTime assay is able to detect all genotypes with no bias. Additionally, we showed that the amplicon generated by the widely used Roche COBAS Amplicor Hepatitis C Virus Test, version 2.0, can act as a template in the RealTime assay, but potential cross-contamination could be mitigated by treatment with uracil-N-glycosylase. In conclusion, the RealTime assay accurately measured HCV viral loads over a broad dynamic range, with no significant genotype bias.Methods for accurate quantitation of serum and plasma hepatitis C virus (HCV) RNA levels have become key tools both for understanding the biology of HCV infection and for the clinical management of patients under treatment. The ability to predict likelihood of response to combination interferon/ribavirin therapy by assessing rates of HCV viral load decline has provided a more individualized treatment algorithm that can identify nonresponsive patients early in treatment, sparing them significant morbidity and cost. New algorithms that examine the kinetics of HCV viral decline provide an even more refined tool for management and complement the information provided by HCV genotype determination. Finally, HCV viral kinetics data are essential for the understanding of new therapeutics such as the class of protease inhibitors. For all applications, accurate quantitation of all HCV types over a broad dynamic range is critical. The advent of real-time PCR methods provides a powerful tool for a broad dynamic range of quantitation of viruses; however, targets such as HCV require careful assay design to avoid errors due to sequence variations intrinsic to RNA viruses.Abbott Molecular, Inc. (Des Plaines, IL), recently released the m2000 system and tests for human immunodeficiency virus type 1, HCV, and chlamydia/gonorrhea (Chlamydia trachomatis/Neisseria gonorrhea) in the European Union with Conformité Européene-marked certification, and the system was recently approved for human immunodeficiency virus type 1 by the U.S. Food and Drug Administration. The m2000 system consists of an eight-channel liquid handling platform (the m2000sp) for performing automated nucleic acid extraction and PCR preparation and of a real-time PCR platform (the m2000rt) for detection and quantification. We used the m2000 system to evaluate the sensitivity, reproducibility, linearity, and concordance of viral genotype quantitation of the Abbott Molecular investigational use only (IUO) RealTime HCV (RealTime) assay and compared aspects of its performance to the Roche TaqMan Analyte-Specific Reagent (ASR) (TaqMan) (Roche Molecular Systems, Inc., Branchburg, NJ) and Bayer Versant HCV bDNA 3.0 (bDNA) assay. In addition, we examined the potential for contamination by the Roche COBAS Amplicor Hepatitis C Virus Test, version 2.0 (Amplicor) (Roche Molecular Systems, Inc., Branchburg, NJ) and TaqMan amplicons and the effect of uracil-N-glycosylase (UNG) treatment in mitigating contamination from these widely used tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号