共查询到20条相似文献,搜索用时 15 毫秒
1.
Hayabuchi Y Nakaya Y Yasui S Mawatari K Mori K Suzuki M Kagami S 《Journal of molecular and cellular cardiology》2006,41(6):972-979
Angiostensin II (Ang II) regulates the migration and proliferation of vascular smooth muscle cells. Recent studies indicate that intermediate-conductance Ca2+ -activated K+ (IKca) channels have an important role in cell migration and proliferation. It is not known, however, whether the action of Ang II is linked to IKca channel regulation. Here, we investigated the modulation of IKca channels by Ang II in artery smooth muscle cells. Functional IKca channel expression in cultured embryonic rat aorta smooth muscle (A10) cells was studied using the patch-clamp technique. These cells predominantly express IKca channels. In contrast, large-conductance Ca2+ -activated K+ (BKca) currents were rarely observed in excised patches. Ang II increased the IKca current in a contration-dependent manner. Losartan (1.0 microM), an AT1 selective antagonist, abolished the activation of IKca channels by Ang II. Pretreatment with 100 microM myristoylated protein kinase C inhibitor peptide 20-28 or 10 microM GF109203X completely abolished the AngII-induced activation of IKca currents, whereas the action of Ang II was not prevented in the presence of 100 microM Rp-cyclic 3', 5'-hydrogen phosphotiate adenosine triethylammonium, a protein kinase A inhibitor, or 1.0 microM KT-5823, a protein kinase G inhibitor. A membrane permeant analogue of diacylglycerol 1, 2-dioctanoyl-sn-glycerol (10 microM) induced the activation of IKca currents. These data suggest that Ang II activates IKca channels through the activation of protein kinase C, and the AT1 receptor is involved in the regulation of these channels. 相似文献
2.
Wu SN Lin PH Hsieh KS Liu YC Chiang HT 《Journal of cardiovascular electrophysiology》2003,14(1):44-51
INTRODUCTION: The effects of membrane stretch on ion channels were investigated in cultured smooth muscle cells of human coronary artery. METHODS AND RESULTS: In the cell-attached configuration, membrane stretch with negative pressure induced two types of stretch-activated (SA) ion channels: a nonselective cation channel and a large-conductance Ca2+-activated K+ (BK(Ca)) channel. The single-channel conductances of SA cation and BK(Ca) channels were 26 and 203 pS, respectively. To elucidate the mechanism of activation of these SA channels and to minimize mechanical disruption, a sinusoidal change in pipette pressure was applied to the on-cell membrane patch. During dynamic changes in pipette pressure, increases in SA cation channel activity was found to coincide with increases in BK(Ca) channel activity. In the continued presence of cyclic stretch, the activity of SA cation channels gradually diminished. However, after termination of cyclic stretch, BK(Ca) channel activity was greatly enhanced, but the activity of SA cation channels disappeared. CONCLUSION: This study is the first to demonstrate that the behavior of SA cation and BK(Ca) channels in coronary smooth muscle cells is differentially susceptible to dynamic changes in membrane tension. 相似文献
3.
Guanosine 5''-monophosphate modulates gating of high-conductance Ca2+-activated K+ channels in vascular smooth muscle cells. 总被引:3,自引:0,他引:3
D L Williams Jr G M Katz L Roy-Contancin J P Reuben 《Proceedings of the National Academy of Sciences of the United States of America》1988,85(23):9360-9364
Ca2+-activated K+ channels (PKCa channels) account for the predominant K+ permeability of many types of smooth muscle cells. When activated, they oppose depolarization due to Na+ and Ca2+ channel activity. Several vasodilatory agents that increase intracellular cGMP levels (e.g., nitroprusside, adenosine, and atrial natriuretic factor) enhance the activity of these high-conductance PKCa channels in on-cell patches of bovine aortic smooth muscle cells. In addition, dibutyryl-cGMP (1.0 mM) causes a similar increase in channel activity. To pursue the mechanism of channel modulation by these agents, a series of guanine and adenine nucleotides were evaluated by using inside-out excised patches. Whereas cAMP, AMP, ADP, and ATP were ineffective, all of the corresponding guanine nucleotides potentiated PKCa channel activity when tested at a high concentration (500 microM). However, only GMP consistently enhanced channel activity in the 1-100 microM range by increasing the percent open time and frequency of opening of these channels over a wide range of potentials and Ca2+ levels without affecting single-channel conductance. Thus, GMP is a potent modulator of PKCa channels and it, rather than cGMP, may mediate the action of the vasodilators examined in this study. 相似文献
4.
Ca2+-activated K+ channels in human smooth muscle cells of coronary atherosclerotic plaques and coronary media segments 总被引:1,自引:0,他引:1
J. Wiecha B. Schläger R. Voisard A. Hannekum T. Mattfeldt V. Hombach 《Basic research in cardiology》1997,92(4):233-239
The behavior of Ca2+-activated K+ channels of large conductance (BKCa) in smooth muscle cells, which were obtained from atherosclerotic plaque material (SMCP) and from media segments (SMCM) of human coronary arteries, were compared using the patch-clamp technique. Voltage-clamp protocols in cell-attached patches revealed the characteristic voltage-dependent activation of BKCa in both cell groups. Single-channel conduction was 216.4±16.7pS (n=6) in SMCP and 199.9±6.7pS (n=6) in SMCM in symmetrical 140 mMK+ solutions. Using outside-out patches, external perfusion with 500 M tetraethylammonium ions caused a typical flickery block of the unitary current. The selective BKCa channel inhibitor iberiotoxin (50 nM) effectively blocked BKCa channel activity. Comparing BKCa open-state probabilities (P0) at +80 mV in cell-attached patches, a highly significant difference between SMCP (P0=0.1438±0.1301; n=15) and SMCM (P0=0.0093±0.0044; n=15; Kruskal-Wallis test, p<0.001) was found. In contrast to this finding, there was no significant difference in the open-state probability of BKCa between SMCP (P0=0.0542±0.0237; n=9) and SMCM (P0=0.0472±0.0218; n=10; p=n.s.) using inside-out patches. The results show an interesting difference in the behavior of large conductance Ca2+-activated K+ channel in SMCP compared to SMCM with a significantly higher channel activity in human smooth muscle cells obtained from coronary atherosclerotic plaque material. This finding may indicate an important functional role of BKCa channels in the development of atherosclerosis. 相似文献
5.
目的探讨二十二碳六烯酸(DHA)对大鼠冠状动脉平滑肌细胞(CASMCs)上大电导钙激活性钾通道(BKCa)的影响。方法采用酶消化法获得大鼠CASMCs,用膜片钳技术分别记录0,10,20,40,60和80μmol/LDHA对大鼠CASMCs上BKCa通道动力学的影响。结果在不同浓度DHA作用下,IBKCa和BKCa尾电流均呈浓度依赖性增加。IBKCa和BKCa尾电流I-V曲线均上移,对IBKCa稳态激活曲线无影响。在指令电压+150 mV,不同浓度DHA作用下,IBKCa电流密度分别为68.24±22.75,72.40±24.49,120.44±37.96,237.48±53.22,323.60±74.83和370.61±88.16pA/pF(P<0.05,n=20)。DHA对IBKCa激活的药物半效浓度为36.22±2.17μmol/L。在测试电压+90 mV,不同浓度DHA作用下,BKCa尾电流密度分别为91.02±13.52,100.23±17.34,224.02±38.76,369.19±65.39,511.39±82.77和700.14±96.64 pA/pF(P<0.05,n=20)。结论 DHA对全细胞BKCa有激活作用,对稳态激活曲线无影响。DHA对BKCa通道的激活作用可能是其舒张血管机制之一。 相似文献
6.
脱氢表雄甾酮对慢性缺氧大鼠肺动脉平滑肌细胞钙激活性钾通道的作用 总被引:2,自引:0,他引:2
目的 研究钾通道开放剂脱氢表雄甾酮 (DHEA)对慢性缺氧大鼠肺动脉平滑肌细胞钙激活性钾通道 (KCa)的作用和缺氧性肺动脉高压的降压作用。方法 50只Wistar大鼠随机分为对照组 (A组 ,10只 )和慢性缺氧组 (B组 ) ,B组又随机分为B1、B2 、B3 、B4 组 (每组各 10只 ) ,B组大鼠均以常压缺氧 3周建立大鼠慢性缺氧肺动脉高压模型。采用急性酶分离法分离得到大鼠肺动脉平滑肌细胞(SMCs)。应用膜片钳技术 ,在对称性高钾溶液中 ,于急性分离的大鼠肺动脉平滑肌细胞的内面向外式膜片 (inside outpatch)上 ,分离出KCa电流。比较A组和B1组KCa电流活性 ;观察DHEA对B1组KCa通道电流的激活作用。应用右心插管技术 ,测定给药前后B2 、B3 、B4 组大鼠平均肺动脉压 (mPAP)和平均体动脉压 (mSAP)等血流动力学指标。结果 B组大鼠肺动脉平滑肌细胞KCa活性比A组大鼠显著降低 (P <0 0 1)。DHEA可明显激活慢性缺氧所抑制的B1组大鼠肺动脉平滑肌细胞的KCa电流。给缺氧大鼠静脉注射DHEA可明显降低其mPAP(P <0 0 1) ,而对mSAP无明显作用 (P >0 0 5)。结论 缺氧对KCa通道的抑制作用在缺氧 3周大鼠缺氧性肺动脉高压发病中起着重要作用 ;DHEA可直接激活KCa活性而拮抗慢性缺氧对KCa的抑制作用 ;DHEA对大鼠慢性缺氧性肺动脉高压可产 相似文献
7.
目的探讨正常大鼠冠状动脉平滑肌细胞大电导钙离子激活钾通道(BK通道)电流的特点,为研究疾病状况下冠状动脉平滑肌细胞BK通道电流异常变化提供正常对照。方法酶消化法分离大鼠冠状动脉平滑肌细胞;采用不同阻滞剂,对冠状动脉血管平滑肌细胞上钾通道进行鉴定;采用全细胞和单通道膜片钳实验技术分别记录冠状动脉平滑肌细胞BK通道电流,计算开放幅度和电导,观察BK通道电压敏感性和钙敏感性及加入特异性BK通道阻滞剂IBTX后BK通道电流的变化。结果正常冠状动脉平滑肌细胞BK通道电流约占总钾离子流65%±4%(t/,=12),BK通道电导为(258±42)pS(n=6),在刺激电位150mV时,电流密度为(275±40)pA/pF(n=8);在电极外液钙离子浓度为1μmol/L,刺激电位为0、20、40、60、80、100、120、140和160mV条件下,BK通道开放概率(NP0)分别为0、0.0002、0.0016±0.0005、0.0283±0.0081、0.05694±0.0102、0.3533±0.0514、1.4922±0.1578、2.5975±0.3632和4.6041±0.7834(P〈0.05,n=5);在刺激电位60mV,电极外液钙离子浓度为0、0.001、0.01、0.1、1、10、50和100μmol/L条件下,BK通道NP。分别为0、0.0001、0.0031±0.0008、0.0042±0.0090、0.0808±0.0105、0.7591±0.1274、2.7242±0.4612和3.2366±0.5728(P〈0.05,n=6)。结论BK通道广泛分布于冠状动脉平滑肌细胞上,具有电压敏感性和钙敏感性,对冠状动脉血管张力调节起重要作用。 相似文献
8.
Objective To investigate characteristics of large conductance Ca2+ -activated K+ currents ( BK currents) in normal rat coronary smooth muscle cells. Methods Coronary smooth muscle cells were isolated by enzyme digestion. Potassium channels in coronary smooth muscle cells were identified by applications of different potassium blockers. BK currents were recorded by patch clamp in whole ce11 and single channel configuration,respectively. BK currents amplitude and conductance were calculated. Voltage-sensitive and calciumsensitive characteristics of BK currents and changes with IBTX,a specific blocker,were observed. Results BK currents in normal smooth muscle cells accounted for 65% ± 4% of total potassium currents( n = 12), BK current conductance was (258 ± 42) pS ( n = 6), and current densities were ( 275 ± 40 ) pA/pF at voltage 150 mV ( n = 8). Open probabilities ( NP0 ) of BK channels at calcium 1 μmol/L in external solution and test potentials at 0,20,40,60,80,100,120,140 and 160 mV were 0,0. 0002,0. 0016 ± 0. 0005,0. 0283 ± 0. 0081,0. 05694 ±0. 0102,0. 3533 ± 0. 0514,1. 4922 ± 0. 1578,2. 5975 ± 0. 3632, and 4. 6041 ± 0. 7834, respectively (P<0.05,n =5). NP0 of BK channels at test potential 60 mV,and calcium in external solution at 0,0. 001,0. 01,0. 1,1,10,50 and 100 μmol/L were 0,0.0001,0.0031 ± 0.0008,0.0042 ± 0.0090,0.0808 ± 0.0105,0.7591 ±0. 1274,2.7242 ±0.4612,and 3.2366 ±0.5728,respectively(P <0.05,n =6). Conclusion BK channels are widely distributed in normal coronary smooth muscle cells, have voltage-sensitive and calcium-sensitive characteristics, and play an important role in regulation of coronary vascular tension. 相似文献
9.
Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels 下载免费PDF全文
Mallouk N Jacquemond V Allard B 《Proceedings of the National Academy of Sciences of the United States of America》2000,97(9):4950-4955
Duchenne muscular dystrophy results from the lack of dystrophin, a cytoskeletal protein associated with the inner surface membrane, in skeletal muscle. The cellular mechanisms responsible for the progressive skeletal muscle degeneration that characterizes the disease are still debated. One hypothesis suggests that the resting sarcolemmal permeability for Ca(2+) is increased in dystrophic muscle, leading to Ca(2+) accumulation in the cytosol and eventually to protein degradation. However, more recently, this hypothesis was challenged seriously by several groups that did not find any significant increase in the global intracellular Ca(2+) in muscle from mdx mice, an animal model of the human disease. In the present study, using plasma membrane Ca(2+)-activated K(+) channels as subsarcolemmal Ca(2+) probe, we tested the possibility of a Ca(2+) accumulation at the restricted subsarcolemmal level in mdx skeletal muscle fibers. Using the cell-attached configuration of the patch-clamp technique, we demonstrated that the voltage threshold for activation of high conductance Ca(2+)-activated K(+) channels is significantly lower in mdx than in control muscle, suggesting a higher subsarcolemmal [Ca(2+)]. In inside-out patches, we showed that this shift in the voltage threshold for high conductance Ca(2+)-activated K(+) channel activation could correspond to a approximately 3-fold increase in the subsarcolemmal Ca(2+) concentration in mdx muscle. These data favor the hypothesis according to which an increased calcium entry is associated with the absence of dystrophin in mdx skeletal muscle, leading to Ca(2+) overload at the subsarcolemmal level. 相似文献
10.
目的探讨二十二碳六烯酸(DHA)对大鼠冠状动脉平滑肌细胞(CASMCs)上大电导钙激活性钾电流(BK_(Ca))的影响。方法采用酶消化法获得大鼠CASMCs,并用单通道内膜向外(inside-out)模式及全细胞膜片钳技术记录,分别加入10、20、30、40、50、60、70和80μmol/L DHA后,大鼠CASMCs的BK_(Ca)变化。结果 (1)单通道inside-out模式下,测试电位-60 mV及DHA浓度>10μmol/L时,BK_(Ca)的开放概率(Po)增大,且呈浓度依赖性,Po从[(0.072±0.003)0μmol/L DHA,n=6]增至[(0.601±0.030)80μmol/L DHA,n=10,P<0.05],半效激活浓度为(36.110±0.080)μmol/L;当DHA浓度<10μmol/L时,Po增加不明显(P>0.05);(2)全细胞模式下,随着DHA浓度增加,BK_(Ca)电流密度逐渐增大,且呈浓度依赖性。测试电位+80 mV,BK_(Ca)电流密度从[(48.9±2.5)pA/pF 0μmol/L,n=6]增至[(226.3±11.3)pA/pF 60μmol/L,n=8,P<0.05]。结论随着DHA浓度的增加,BK_(Ca)Po及电流密度逐渐增大,DHA对BK_(Ca)的影响可能是舒张血管的机制之一。 相似文献
11.
We examined the hypothesis that ONOO-, a product of the interaction between superoxide (O2*-) and nitric oxide (NO), inhibits calcium-activated K+ (KCa) channel activity in vascular smooth muscle cells (VSMCs) of human coronary arterioles (HCAs), thereby reducing hyperpolarization-mediated vasodilation. HCAs were dissected from right atrial appendages. The interaction of ONOO- with microvessels was determined by immunohistochemistry using a nitrotyrosine antibody. Strong staining was observed in arteries exposed to authentic ONOO- or to sodium nitroprusside (SNP)+xanthine (XA)+xanthine oxidase (XO). Dilation to 10(-8) mol/L bradykinin (BK) was abolished in vessels exposed to ONOO- (-2.5+/-8%; P<0.05) but not DC-ONOO- (65+/-8%). Reduced dilation to BK was also observed after application of XO and SNP. Dilation to NS1619 (KCa channel opener) was reduced in endothelial denuded arterioles treated with ONOO-. In isolated VSMCs, whole-cell peak K+ current density was reduced by ONOO- (control 65+/-15 pA/pF; ONOO- 42+/-9 pA/pF; P<0.05). Iberiotoxin had no further effect on whole-cell K+ current. In inside-out patches, ONOO- but not DC-ONOO- decreased open state probability (NP(o)) of KCa channel by 50+/-12%. O2*- generated by XA+XO had no effect on BK-induced dilation and NP(o) of KCa channels. These results suggest that ONOO-, but not O2*-, inhibits KCa channel activity in VSMCs possibly by a direct effect. This mechanism may contribute to impaired EDHF-mediated dilation in conditions such as ischemia/reperfusion where increased activity of NO synthase occurs in the presence of excess of O2*-. 相似文献
12.
Endothelium-independent effect of estrogen on Ca(2+)-activated K(+) channels in human coronary artery smooth muscle cells 总被引:2,自引:0,他引:2
White RE Han G Maunz M Dimitropoulou C El-Mowafy AM Barlow RS Catravas JD Snead C Carrier GO Zhu S Yu X 《Cardiovascular research》2002,53(3):650-661
OBJECTIVE: Postmenopausal estrogen replacement therapy lowers the incidence of cardiovascular disease, suggesting that estrogens support cardiovascular function. Estrogens dilate coronary arteries; however, little is known about the molecular basis of how estrogen affects the human coronary circulation. The cellular/molecular effects of estrogen action on human coronary smooth muscle were investigated in the present study. METHODS: Patch-clamp and fluorescent microscopy studies were performed on human coronary myocytes in the absence of endothelium. RESULTS: Estrogen increased whole-cell currents over a range of membrane potentials, and further studies indicated that the large-conductance (186.5 +/- 3 pS), calcium- and voltage-activated potassium (BK(Ca)) channel was the target of estrogen action. Channel activity was stimulated approximately 15-fold by nanomolar concentrations of 17 beta-estradiol, and this stimulation was reversed >90% by inhibiting cGMP-dependent protein kinase activity with 300 nM KT5823. 17 beta-Estradiol increased the level of cGMP and nitric oxide in human myocytes, and the stimulatory effect of estrogen on channel activity and NO production was reversed by inhibiting NO synthase with 10 microM N(G)-monomethyl-L-arginine. CONCLUSIONS: Our cellular and molecular studies identify the BK(Ca) channel as a target of estrogen action in human coronary artery smooth muscle. This response to estrogen involves cGMP-dependent phosphorylation of the BK(Ca) channel or a closely associated regulatory molecule, and further evidence suggests involvement of the NO/cGMP signaling system in coronary smooth muscle. These findings are the first to provide direct evidence for a molecular mechanism that can account for endothelium-independent effects of estrogen on human arteries, and may also help explain why estrogens reduce myocardial ischemia and stimulate coronary blood flow in patients with diseased coronary arteries. 相似文献
13.
高血压大鼠冠状动脉平滑肌细胞大电导钙激活钾通道的变化 总被引:1,自引:0,他引:1
目的研究在高血压背景下大电导钙激活钾(BK)通道的功能改变及其机制。方法用酶解消化方法分离12~16周龄自发性高血压大鼠(SHR)和WKY大鼠冠状动脉平滑肌细胞(CASMCS),采用膜片钳全细胞模式记录SHR和WKY大鼠CASMCSBK电流,SHR和WKY大鼠BKα亚基和β1亚基mRNA水平用实时定量取聚合酶链式反应和凝胶电泳测定,蛋白水平表达用免疫组化的方法测定。结果 SHR大鼠CASMCS(n=6)BK电流密度比WKY(n=7)高2.03±0.62(P0.01);在mRNA水平,BKβ1亚基表达SHR组明显高于WKY组5.534±1.03倍(n=4,P0.05),BKα亚基表达则无明显差异(1.266±0.12,n=4,P0.05);BKβ1亚基和α亚基的表达SHR大鼠高于WKY大鼠。结论 SHR大鼠CASMCSBK电流密度比WKY大鼠增大,在mRNA和蛋白水平上BKβ1亚基表达也比WKY大鼠增强,这种变化可能是机体在高血压时自我调节的结果 。 相似文献
14.
Local Ca2+ entry through L-type Ca2+ channels activates Ca2+-dependent K+ channels in rabbit coronary myocytes. 总被引:1,自引:0,他引:1
Large-conductance Ca2+-dependent K+ channels (KCa), which are abundant on the sarcolemma of vascular myocytes, provide negative feedback via membrane hyperpolarization that limits Ca2+ entry through L-type Ca2+ channels (ICaL). We hypothesize that local accumulation of subsarcolemmal Ca2+ during ICaL openings amplifies this feedback. Our goal was to demonstrate that Ca2+ entry through voltage-gated ICaL channels can stimulate adjacent KCa channels by a localized interaction in enzymatically isolated rabbit coronary arterial myocytes voltage clamped in whole-cell or in cell-attached patch clamp mode. During slow-voltage-ramp protocols, we identified an outward KCa current that is activated by a subsarcolemmal Ca2+ pool dissociated from bulk cytosolic Ca2+ pool (measured with indo 1) and is dependent on L-type Ca2+ channel activity. Transient activation of unitary KCa channels in cell-attached patches could be detected during long step depolarizations to +40 mV (holding potential, -40 mV; 219 pS in near-symmetrical K+). This local interaction between the channels required the presence of Ca2+ in the pipette solution, was enhanced by the ICaL agonist Bay K 8644, and persisted after impairment of the sarcoplasmic reticulum by incubation with 10 micromol/L ryanodine and 30 micromol/L cyclopiazonic acid for at least 60 minutes. Furthermore, we provide the first direct evidence of simultaneous openings of single KCa (67 pS) and ICaL (3.9 pS) channels in near-physiological conditions, near resting membrane potential. Our data imply a novel sensitive mechanism for regulating resting membrane potential and tone in vascular smooth muscle. 相似文献
15.
目的 探讨糖尿病对冠状动脉平滑肌细胞大电导钙激活钾通道(BK通道)的影响变化,阐明糖尿病冠状动脉损伤的分子机制.方法 采用链脲霉素腹腔内注射建立大鼠糖尿病动物模型,酶消化法分离冠状动脉平滑肌细胞,全细胞膜片钳实验技术和Western blot分别记录和测定正常和糖尿病大鼠冠状动脉平滑肌细胞BK通道电流和亚基的表达;采用荧光测定方法测定正常和糖尿病大鼠冠状动脉平滑肌细胞内钙离子浓度.结果 当刺激电压>100 mV时,糖尿病冠状动脉平滑肌细胞BK通道电流密度明显低于正常冠状动脉平滑肌细胞BK通道电流密度(P<0.05),在刺激电压为150 mV时,电流密度分别为(275±40)pA/pF(n=8)和(70±10)pA/pF(n=6);与正常组比较,糖尿病组BK通道α亚基蛋白表达差异无统计学意义(P>0.05),但β1亚基蛋白表达较低(P<0.05);正常组和糖尿病组冠状动脉平滑肌细胞内钙离于浓度分别为(92±7)nmol/L(n=5)和(151±18)nmol/L(n=6),差异有统计学意义(P<0.05).结论 糖尿病冠状动脉平滑肌细胞BK通道β1亚基表达下调、BK通道电流密度下降及细胞内钙离子浓度升高可能是糖尿病冠状动脉功能损伤的重要原因. 相似文献
16.
ATP-sensitive K+ channels of vascular smooth muscle cells 总被引:8,自引:0,他引:8
ATP-sensitive potassium channels (K(ATP)) of vascular smooth muscle cells represent potential therapeutic targets for control of abnormal vascular contractility. The biophysical properties, regulation and pharmacology of these channels have received intense scrutiny during the past twenty years, however, the molecular basis of vascular K(ATP) channels remains ill-defined. This review summarizes the recent advancements made in our understanding of the molecular composition of vascular K(ATP) channels with a focus on the evidence that hetero-octameric complexes of Kir6.1 and SUR2B subunits constitute the vascular K(ATP) subtype responsible for control of arterial diameter by vasoactive agonists. 相似文献
17.
The aim of the present study was to examine the effects of calcitonin gene-related peptide (CGRP) on the K+ channels of vascular smooth muscle cells. Cultured smooth muscle cells from a porcine coronary artery were studied using the patch-clamp technique. Extracellular application of 100 nM CGRP activated two types of K+ channels the Ca2+-activated K+ channel (KCa channel) and the ATP-sensitive K+ channel (KATP channel) in cell-attached patch configurations. In cells pretreated with Rp-cAMPS, a membrane-permeable inhibitor of cAMP-dependent protein kinase (PKA), extracellular application of 100 nM CGRP could not activate the KCa or KATP channel, indicating that the activation of the K+ channels by CGRP occurs in connection with PKA. In the cell-attached patch configurations, extracellular application of 1 mM dibutyryl cAMP, a membrane permeable cAMP, activated KCa and KATP channels. In inside-out patch configurations, application of PKA to the cytosolic side activated both the KCa and KATP channels. These results indicate that CGRP modulates the K+ channels of vascular smooth muscle cells via adenylate cyclase, i.e., cAMP-PKA pathway, and contributes to control of vascular tone. 相似文献
18.
Ca(2+) ion is a universal intracellular messenger that regulates numerous biological functions. In smooth muscle, Ca(2+) with calmodulin activates myosin light chain (MLC) kinase to initiate a rapid MLC phosphorylation and contraction. To test the hypothesis that regulation of MLC phosphatase is involved in the rapid development of MLC phosphorylation and contraction during Ca(2+) transient, we compared Ca(2+) signal, MLC phosphorylation, and 2 modes of inhibition of MLC phosphatase, phosphorylation of CPI-17 Thr38 and MYPT1 Thr853, during alpha(1) agonist-induced contraction with/without various inhibitors in intact rabbit femoral artery. Phenylephrine rapidly induced CPI-17 phosphorylation from a negligible amount to a peak value of 0.38+/-0.04 mol of Pi/mol within 7 seconds following stimulation, similar to the rapid time course of Ca(2+) rise and MLC phosphorylation. This rapid CPI-17 phosphorylation was dramatically inhibited by either blocking Ca(2+) release from the sarcoplasmic reticulum or by pretreatment with protein kinase C inhibitors, suggesting an involvement of Ca(2+)-dependent protein kinase C. This was followed by a slow Ca(2+)-independent and Rho-kinase/protein kinase C-dependent phosphorylation of CPI-17. In contrast, MYPT1 phosphorylation had only a slow component that increased from 0.29+/-0.09 at rest to the peak of 0.68+/-0.14 mol of Pi/mol at 1 minute, similar to the time course of contraction. Thus, there are 2 components of the Ca(2+) sensitization through inhibition of MLC phosphatase. Our results support the hypothesis that the initial rapid Ca(2+) rise induces a rapid inhibition of MLC phosphatase coincident with the Ca(2+)-induced MLC kinase activation to synergistically initiate a rapid MLC phosphorylation and contraction in arteries with abundant CPI-17 content. 相似文献
19.
Aging is the main risk factor for coronary artery disease. One characteristic of aging coronary arteries is their enhanced contractile responses to endothelial vasoconstricting factors, which increase the risk of coronary vasospasm in older people. Because large-conductance voltage- and Ca(2+)-activated K(+) channels (MaxiK) are key regulators of vascular tone, we explored the possibility that this class of channels is diminished with increasing age. Using site-directed antibodies recognizing the pore-forming alpha subunit and electrophysiological methods, we demonstrate that the number of MaxiK channels is dramatically diminished in aged coronary arteries from old F344 rats. Channel density was reduced from 52+/-9 channels/pF (3 months old) to 18+/-5 channels/pF (25 to 30 months old), which represents a 65% reduction in the older population. Pixel intensity of Western blots was also diminished by approximately 50%. Moreover, the age-related decrease in the channel protein expression was also evident in humans, which showed approximately 80% reduction in 61- to 70-year-old subjects compared with 3- to 18-year-old youngsters and approximately 45% reduction compared with 19- to 56-year-old adults. In agreement with a reduction of MaxiK channel numbers in aging coronary arteries, old coronary arteries from F344 rats contract less effectively ( approximately 70% reduction) than young coronary arteries when exposed to the MaxiK channel blocker iberiotoxin. The contraction studies indicate that under physiological conditions, MaxiK channels are tonically active, serving as a hyperpolarizing force that opposes contraction. Thus, reduced expression of MaxiK channels in aged coronary arteries would lead to a decreased vasodilating capacity and increased risk of coronary spasm and myocardial ischemia in older people. 相似文献