首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Vitiligo is a pigmentary disorder of the skin characterized by the complete absence of melanocytes from the lesion. Complement-activating antimelanocyte antibodies have been implicated in vitiligo pathogenesis. As membrane regulators of complement activation, membrane cofactor protein, decay accelerating factor and CD59 protect cells from elimination by autologous complement, their absence or downregulation on melanocytes may be associated with autoantibody and complement-mediated melanocyte destruction in vitiligo. OBJECTIVES: We studied the expression of these regulatory proteins in non-lesional, perilesional and lesional vitiligo skin compared with those of control specimens. METHODS: We used immunohistochemistry to study the expression of the regulatory proteins, and flow cytometric analysis of cultured melanocytes to investigate possible constitutive changes in the expression levels of these molecules. We also investigated whether melanocytes can influence keratinocyte susceptibility to autologous complement by regulating keratinocytic decay accelerating factor and membrane cofactor protein expression levels. RESULTS: Immunohistochemical data showed that expression of membrane cofactor protein and decay accelerating factor in whole epidermis was lower in lesional and perilesional skin in comparison with non-lesional skin. The reduced in situ expression appeared to be specific to vitiligo. However, coculture experiments indicated that melanocytes do not influence keratinocyte susceptibility to autologous complement. Further, flow cytometric analysis of cultured melanocytes convincingly demonstrated that non-lesional vitiligo and control melanocytes have comparable decay accelerating factor, membrane cofactor protein and CD59 expression levels. CONCLUSIONS: It is therefore concluded that there is no constitutive melanocyte defect per se that could be related to the in vivo expression of these molecules in vitiligo. Nevertheless, the present data suggest that both keratinocytes and melanocytes in the involved vitiliginous whole epidermis express lower levels of decay accelerating factor and membrane cofactor protein compared with controls that could render them more vulnerable to autologous complement attack.  相似文献   

2.
Photobiomodulation (PBM) therapy is based on the exposure of biological tissues to low‐level laser light (coherent light) or light‐emitting diodes (LEDs; noncoherent light), leading to the modulation of cellular functions, such as proliferation and migration, which result in tissue regeneration. PBM therapy has important clinical applications in regenerative medicine. Vitiligo is an acquired depigmentary disorder resulting from disappearance of functional melanocytes in the involved skin. Vitiligo repigmentation depends on available melanocytes derived from (a) melanocyte stem cells located in the bulge area of hair follicles and (b) the epidermis at the lesional borders, which contains a pool of functional melanocytes. Since follicular melanoblasts (MBs) are derived from the melanocyte stem cells residing at the bulge area of hair follicle, the process of vitiligo repigmentation presents a research model for studying the regenerative effect of PBM therapy. Previous reports have shown favourable response for treatment of vitiligo with a low‐energy helium‐neon (He‐Ne) laser. This review focuses on the molecular events that took place during the repigmentation process of vitiligo triggered by He‐Ne laser (632.8 nm, red light). Monochromatic radiation in the visible and infrared A (IRA) range sustains matrix metalloproteinase (MMP), improves mitochondrial function, and increases adenosine triphosphate (ATP) synthesis and O2 consumption, which lead to cellular regenerative pathways. Cytochrome c oxidase in the mitochondria was reported to be the photoacceptor upon which He‐Ne laser exerts its effects. Mitochondrial retrograde signalling is responsible for the cellular events by red light. This review shows that He‐Ne laser initiated mitochondrial retrograde signalling via a Ca2+‐dependent cascade. The impact on cytochrome c oxidase within the mitochondria, an event that results in activation of CREB (cyclic‐AMP response element binding protein)‐related cascade, is responsible for the He‐Ne laser promoting functional development at different stages of MBs and boosting functional melanocytes. He‐Ne laser irradiation induced (a) melanocyte stem cell differentiation; (b) immature outer root sheath MB migration; (c) differentiated outer root sheath MB melanogenesis and migration; and (d) perilesional melanocyte migration and proliferation. These photobiomodulation effects result in perifollocular and marginal repigmentation in vitiligo.  相似文献   

3.
Kim NH  Lee AY 《Experimental dermatology》2010,19(12):1073-1079
Repigmention of vitiligo requires melanocyte proliferation and migration. Keratinocytes have been shown to play a role in this process. Data from this laboratory showed that bee venom (BV) stimulated melanocyte proliferation and migration as well as melanogenesis. As histamine release is associated with BV, its effect on melanocyte proliferation and migration was examined. Cultured normal human melanocytes treated with histamine were studied with and without receptor-specific antagonists or agonists. The effect of histamine on vitiliginous keratinocytes, in cultured cells treated with a PI3K inhibitor in the presence of TNF-α, was also examined. Histamine exerted a more significant effect on melanocyte proliferation than on melanogenesis. This occurred through the H2 receptor with complex signalling to ERK, CREB, and Akt activation, which stimulated melanocyte migration. Histamine and the H2 receptor agonist also increased survival of vitiliginous, but not normal, keratinocytes, with NF-κB activation. Because expression levels of the H2 receptor was significantly decreased in depigmented compared to normally pigmented epidermis, in patients with vitiligo, histamine may increase the survival of vitiliginous keratinocytes. Overall, histamine stimulated the proliferation and migration of melanocytes and the vitiliginous keratinocyte survival, providing the basis for novel therapeutic approaches to vitiligo repigmentation.  相似文献   

4.
5.
Genetic deficiency of type XVII collagen (C17), laminin‐332 or type VII collagen causes epidermolysis bullosa (EB). Spontaneous correction of the deficiency, also known as revertant mosaicism, is caused by a second somatic mutation that restores protein expression resulting in clinically healthy (revertant) patches surrounded by fragile (mutant) skin. Interestingly, in some patients, patches of revertant skin show hyperpigmentation. To study the possible role of affected proteins in pigmentation and melanocyte distribution, we investigated clinical documentation and skin biopsy specimens of 13 revertant EB patients having correcting mutations in the COL17A1, LAMB3 or COL7A1 genes. Analysis revealed that lack of C17 led to decreased melanin intensity and melanocyte density in the epidermis when compared with the revertant patches. Reversions of LAMB3 and COL7A1 in keratinocytes did not influence clinical pigmentation or density of melanocytes. We conclude that in human skin, melanocyte supply to the epidermis depends on C17 expression in keratinocytes.  相似文献   

6.
Skin evolves essential appendages and indispensable types of cells that synergistically insulate the body from environmental insults. Residing in the specific regions in the skin such as epidermis, dermis and hair follicle, melanocytes perform an array of vital functions including defending the ultraviolet radiation and diversifying animal appearance. As one of the adult stem cells, melanocyte stem cells in the hair follicle bulge niche can proliferate, differentiate and keep quiescence to control and coordinate tissue homeostasis, repair and regeneration. In synchrony with hair follicle stem cells, melanocyte stem cells in the hair follicles undergo cyclic activation, degeneration and resting phases, to pigment the hairs and to preserve the stem cells. Disorder of melanocytes results in severe skin problems such as canities, vitiligo and even melanoma. Here, we compare and summarize recent discoveries about melanocyte in the skin, particularly in the hair follicle. A better understanding of the physiological and pathological regulation of melanocyte and melanocyte stem cell behaviours will help to guide the clinical applications in regenerative medicine.  相似文献   

7.
Background The treatment of vitiligo remains a challenge for clinical dermatologists. We have previously shown that the helium–neon laser (He–Ne laser, 632·8 nm) is a therapeutic option for treatment of this depigmentary disorder. Objectives Addressing the intricate interactions between melanocytes, the most important cellular component in the repigmentation scheme of vitiligo, and their innate extracellular matrix collagen type IV, the current study aimed to elucidate the effects of the He–Ne laser on melanocytes. Methods Cultured melanocytes were irradiated with the He–Ne laser. Relevant biological parameters including cell attachment, locomotion and growth were evaluated. In addition, the potentially involved molecular pathways were also determined. Results Our results show that in addition to suppressing mobility but increasing attachment to type IV collagen, the He–Ne laser stimulates melanocyte proliferation through enhanced α2β1 integrin expression. The expression of phosphorylated cyclic‐AMP response element binding protein (CREB), an important regulator of melanocyte growth, was also upregulated by He–Ne laser treatment. Using a specific mitochondrial uncoupling agent [carbonyl cyanide m‐chlorophenyl‐hydrazone (CCCP)], the proliferative effect of the He–Ne laser on melanocytes was abolished and suppression of melanocyte growth was noted. Conclusions In summary, we have demonstrated that the He–Ne laser imparts a growth stimulatory effect on functional melanocytes via mitochondria‐related pathways and proposed that other minor pathways including DNA damage may also be inflicted by laser treatment on irradiated cells. More importantly, we have completed the repigmentation scheme of vitiligo brought about by He–Ne laser light in vitro and provided a solid theoretical basis regarding how the He–Ne laser induces recovery of vitiligo in vivo.  相似文献   

8.
BackgroundSolar lentigines (SLs) are characterized by hyperpigmented macules, commonly seen on sun-exposed areas of the skin. Although it has been reported that an increase in the number of melanocytes and epidermal melanin content was observed in the lesions, the following questions remain to be answered: (1) Is acceleration of melanogenesis in the epidermis caused by an increased number of melanocytes or the high melanogenic potential of each melanocyte? (2) Why does the number of melanocytes increase?ObjectiveTo elucidate the pathogenic mechanism of SLs by investigating the number, melanogenic potential and proliferation status of the melanocyte lineage in healthy skin and SL lesions.MethodsImmunostaining for melanocyte lineage markers (tyrosinase, MART-1, MITF, and Frizzled-4) and a proliferation marker, Ki67, was performed on skin sections, and the obtained images were analyzed by image analysis software.ResultsThe expression level of tyrosinase to MART-1 of each melanocyte was significantly higher in SL lesions than healthy skin. The numbers of melanocytes in the epidermis, melanoblasts in the hair follicular infundibulum and melanocyte stem cells in the bulge region were increased in SL; however, no significant difference was observed in the Ki67-positive rate of these cells.ConclusionThe melanogenic potential of each melanocyte was elevated in SL lesions. It was suggested that the increased number of melanocytes in the SL epidermis might be attributed to the abnormal increase of melanocyte stem cells in the bulge.  相似文献   

9.
10.
11.
12.
13.
14.
The content and distribution of melanin in the epidermis determines the wide variety of skin colors associated with ethnic/racial diversity. Although it was previously reported that qualitative changes in keratinocyte-derived exosomes regulate melanocyte pigmentation in vitro, their practical involvement, especially in skin color development in vivo, has remained unclear. To address this unexplained scientific concern, the correlation of epidermal exosomes isolated from human skin tissues with melanosomal protein expression levels was demonstrated in this study for the first time. After confirming the quantitative effect of human keratinocyte-derived exosomes on human melanocyte activation, even in the absence of ultraviolet B (UV-B) exposure, the impact of exosomes secreted from UV-B-irradiated keratinocytes on melanogenesis was consistently detected, which suggests their constitutive role in regulating cutaneous pigmentation. Additionally, both a specific exosome secretion inducer and a suppressor were consistently found to significantly control melanin synthesis in a co-culture system composed of keratinocytes and melanocytes as well as in an ex vivo skin culture system. These results suggest that quantitative changes, in addition to already known qualitative changes, in exosomes secreted from human epidermal keratinocytes homeostatically regulate melanogenic activity in a paracrine manner, which leads to skin color determination.  相似文献   

15.
16.
Vitiligo is a depigmenting disorder characterized by loss of functional melanocytes from the epidermis. Experimental data suggest that defective melanocyte adhesion may underlie the pathogenesis of the disease. In particular, association between vitiligo and genetic variants of the DDR1 gene involved in melanocyte adhesion has been recently published. A subsequent, independent study revealed lower expression of DDR1 in vitiligo lesions. Here, we expand this investigation by testing for association between vitiligo and polymorphisms of CDH1, IL1B and NOV (formerly CCN3), genes belonging to the DDR1 adhesion pathway, in two population samples of distinct design. Our results reveal that alleles of marker rs10431924 of the CDH1 gene are associated with vitiligo, especially in the presence of autoimmune comorbidities.  相似文献   

17.
Cytokines regulate immune response and inflammation and play an important role in depigmentation process of an autoimmune disease, vitiligo. We sought to determine how inflammatory cytokines influence the progression of vitiligo, and based on that, we develop a logical therapeutic intervention using primary melanocyte culture. Melanocytes were cultured and exposed to IL‐17A, IL‐1β, IFN‐γ and TGF‐β for 4 days. Melanocytes proliferation, tyrosinase assay and melanin content were measured. Real‐Time PCR was used to analyse mRNA expression of genes specific for melanocytes growth and pigmentation. Anti‐IL‐17A receptor antibody was used to block IL‐17A receptors expressed on melanocytes. Protein expression of MITF and TYR was assessed by immunofluorescence and Western blotting. A gradual decline in the melanocyte population, melanin content and tyrosinase activity was observed after different cytokine treatment. The expression of MITF and its downstream genes after blocking with anti‐IL‐17RA, an increased melanin content, increased expression of TYR, MITF along with its downstream genes, and cell proliferation was observed.  相似文献   

18.
In order to investigate possible alterations in c-kit protein expression on epidermal melanocytes in different hypopigmentary disorders, we have examined skin specimens from one patient with piebaldism, one patient with naevus depigmentosus, and five patients with vitiligo. Cryosections were examined by immunohistochemistry using monoclonal antibodies against the c-kit protein (YB5.B8) and melanosomes (TA99). In piebaldism, hypomelanotic epidermis contained only a few TA99-positive epidermal melanocytes and no detectable c-kit protein, whereas in naevus depigmentosus the expression of c-kit protein was strong, and TA99 immunoreactivity was faint. In vitiligo lesions, no epidermal immunoreactivity for melanosomes or c-kit protein was found. Normally pigmented skin of all patients showed immunoreactivity of epidermal melanocytes for both c-kit protein and melanosomes. Different hypomelanotic lesions can thus be differentiated by absent melanocyte c-kit protein and low or no expression of melanosomal marker in piebaldism, normal c-kit but low melanosome expression in naevus depigmentosus, and the absence of all melanocyte markers in vitiligo.  相似文献   

19.
Vitiligo is an acquired depigmentary disorder of the skin that results from the loss of functioning epidermal melanocytes. Most studies on vitiligo have concentrated on the abnormality of melanocytes rather than the abnormality of keratinocytes; however, epidermal melanocytes form a functional and structural unit with neighboring keratinocytes. In fact, direct cell-to cell contact stimulates in vitro proliferation of melanocytes, and growth factors produced by adjacent keratinocytes regulate the proliferation and differentiation of melanocytes. The potential role of keratinocyte-derived cytokines has also been presented. We focused on the structural changes in vitiliginous keratinocytes, which may result in loss of melanocytes, to examine the pathomechanism of vitiligo. The results of a comparison between depigmented and normally pigmented epidermis in patients with vitiligo showed that the keratinocytes in the depigmented epidermis were more vulnerable to apoptosis. Impaired Phosphatidylinositol 3-kinase (PI3K)/serine/threonine protein kinase (Akt) activation followed by reduced nuclear factor-κB activation under increased tumor necrosis factor-α levels was demonstrated as a mechanism for keratinocyte apoptosis. The role of aquaporin 3 in keratinocyte apoptosis was addressed based on the relationship between the PI3K/AKT pathway and the E-cadherin-catenin complex. Apoptotic keratinocytes induced a lower expression of keratinocyte-derived factors, including stem cell factor, in depigmented epidermis, resulting in passive melanocyte death.  相似文献   

20.
Stem cell factor (SCF) of keratinocyte origin regulates melanocyte growth and survival. Deprivation of survival factors causes the apoptosis of melanocytes. Vitiligo often develops following physical trauma, even if this is minor. The exact mechanism of the Koebner phenomenon in vitiligo is unclear. Apoptosis of keratinocytes, which occurs more in depigmented suction-blistered epidermis than in the normally pigmented counterpart, could reduce levels of keratinocyte-derived factors such as SCF and basic fibroblast growth factor (bFGF). Levels of SCF expression were examined in the depigmented and normally pigmented paired epidermis of 19 patients with vitiligo, and bFGF expression in six patients. The expression of SCF (p<0.001) and bFGF was usually reduced in the depigmented compared with the normally pigmented epidermis. Apoptosis of cultured normal human keratinocytes, which was induced by staurosporine, resulted in a concentration-dependent decrease in levels of SCF mRNA and protein. Normal human melanocytes proliferated more in medium containing SCF or keratinocyte (XB-2) feeder than in medium with neither. Deprivation of SCF or keratinocyte feeder in the culture medium induced a marked decrease in melanocytes as a result of apoptosis. Therefore, lower expression of keratinocyte-derived factors, including SCF, in vitiliginous keratinocytes, which could result from keratinocyte apoptosis, might be responsible for passive melanocyte death and may explain the Koebner phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号