首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Asthma is one of the major public health problems worldwide and the morbidity and mortality of asthma has increased in the past two decades. Accumulating data suggest that unnecessary immune responses and inflammation should be suppressed to treat asthma. The purpose of this study is to investigate the anti-asthmatic effects of DA-9201, an ethanolic extract of black rice (Oryza sativa L. var japonica), on an ovalbumin (OVA)-induced mouse model of asthma. Balb/c mice immunized with OVA were administered with DA-9201 (30, 100 or 300 mg/kg, p.o.) or dexamethasone (3 mg/kg, p.o.) and challenged with 1% aerosolized OVA for 30 min. The effects on airway inflammation, airway hyperresponsiveness (AHR), antibody profiles and cytokines were evaluated. DA-9201 treatment significantly reduced the number of eosinophils in bronchoalveolar lavage fluid (BALF) and ameliorated the AHR. Lung histological features also showed that DA-9201 reduced airway inflammation. Furthermore, DA-9201 treatment decreased IFN-gamma as well as IL-4, IL-5 and IL-13 levels in the supernatant of cultured splenocytes, and suppressed the level of OVA-specific IgG, IgG2a, IgG1 and total IgE in plasma. DA-9201 showed anti-asthmatic effects by suppressing unnecessary immune responses, airway inflammation, eosinophilia, AHR and IgE level. These results suggest DA-9201 might be beneficial for the treatment of asthma.  相似文献   

2.
Nuclear factor kappa B (NF-kappaB) regulates the expression of multiple cytokines, chemokines, and cell adhesion molecules that are involved in the pathogenesis of asthma. We investigated the anti-asthmatic effects and the mechanism of action of DA-9201, an extract of the black rice, in a mouse model of asthma. Mice immunized with ovalbumin (OVA) were administered with DA-9201 (30, 100 or 300 mg/kg) or dexamethasone (DEXA, 3 mg/kg) for 2 weeks and challenged with aerosolized OVA during the last 3 days. Anti-asthmatic effects were assessed by means of enhanced pauses, level of total IgE and Th2 cytokines in plasma or bronchoalveolar lavage fluid (BALF), the percentage of eosinophils in BALF, and histopathological examination. The expression of NF-kappaB in nuclear and cytoplasmic fraction and its DNA-binding activity in lung tissues were analyzed by means of Western blotting and electrophoretic gel mobility shift assay (EMSA), respectively. DA-9201 significantly reduced airway hyperresponsiveness (AHR), total IgE level in plasma and BALF, IL-4, IL-5, and IL-13 levels in BALF, and the percentage of eosinophils in BALF. Tissue inflammation was significantly improved by DA-9201 treatment. In addition, DA-9201 dramatically suppressed the expression of NF-kappaB and its DNA-binding activity. These results suggest that DA-9201 may be useful for the treatment of asthma and its efficacy is related to suppression of NF-kappaB pathway.  相似文献   

3.
Cigarette smoking (CS) is common in asthma, aggravating inflammatory reactions. However, the current treatment strategies for asthma are still not effective enough, and novel therapeutic approaches are required for CS-induced asthmatic disorders. We here investigated the ability of CpG oligodeoxynucleotides (CpG-ODNs) to inhibit airway inflammation and remodeling in ovalbumin (OVA)-associated asthma in mice exposed to chronic CS, revealing potential mechanistic insights. Lung tissue specimens were histologically analyzed. Th1/Th2/Th17 associated cytokines in serum, bronchoalveolar lavage fluid (BALF), and lung specimens were quantitated by ELISA, qRT-PCR and immunoblot. Parameters of bone marrow-derived dendritic cells (BMDCs) functions were evaluated as well. The results showed that BALB/c mice after CS and OVA treatments developed an asthmatic phenotype with airway inflammation involving both eosinophils and neutrophils, goblet cell metaplasia, airway remodeling, and elevated OVA-specific serum IgE, serum IL-17A, and BALF Th17/Th2 associated cytokines. CpG-ODNs and budesonide were found to synergistically inhibit inflammatory cell recruitment in the lung, airway remodeling, IgE synthesis, and Th17/Th2 associated cytokines. Mechanistically, CpG-ODNs and budesonide acted synergistically on BMDCs via downregulation of TSLP receptor (TSLPR) and IL-23 production, and subsequently contributed to dampen Th17/Th2 polarization in CS-associated asthma. In conclusion, combined administration of CpG-ODNs and budesonide, in a synergistic manner, inhibits airway inflammation, and tissue remodeling mediated by BMDCs by regulating IL-23 secretion and blocking TSLP signaling, which subsequently contribute to alleviate Th17/Th2 imbalance in CS-associated asthma.  相似文献   

4.
Traditional herbal medicines may be viable alternatives to corticosteroid therapy for treatment of asthma. However, the therapeutic mechanisms of herbal compounds remain a matter of considerable debate. This study was performed to evaluate the effects of Chung-Sang-Bo-Ha-Tang (CSBHT), a herbal compound administrated therapeutically to asthma patients for centuries, on airway inflammation and remodeling in a murine model of chronic asthma. BALB/c mice sensitized to ovalbumin (OVA) were chronically challenged with aerosolized OVA for 6 weeks. During the last 2 weeks, some mice were treated daily with CSBHT by intragastric feeding. Dexamethasone (Dex)-treated, phosphate-buffered saline (PBS)-treated, and naive mice served as controls. The effects of CSBHT on airway inflammation, lung pathology, and cytokine production were evaluated. Mice exposed to recurrent airway challenge with OVA had chronic inflammation and characteristics of airway remodeling, including subepithelial fibrosis, epithelial hypertrophy, and goblet cell hyperplasia. CSBHT was as effective as Dex at moderately reducing these changes compared to the PBS-treated mice. In addition, IL-5 and IFN-gamma levels in supernatants of Concanavalin A (Con A)-activated splenocyte cultures were reduced in mice treated with CSBHT. Treatment with CSBHT during the last 2 weeks of challenge modulated airway inflammation and remodeling in a murine model of chronic asthma. Thus, CSBHT may effectively delay the progression of airway inflammation and remodeling.  相似文献   

5.
Asthma is a chronic airway inflammatory disorder and progresses mainly due to airway remodeling. Chrysin, a natural flavonoid, has been reported to possess multiple biologic activities, including anti-inflammation, anti-oxidation and anti-proliferation. The present study aimed to investigate whether chrysin could relieve allergic airway inflammation and remodeling in a murine model of chronic asthma and the mechanism involved. The female BALB/c mice sensitized and challenged with ovalbumin (OVA) successfully developed airway hyperresponsiveness (AHR), inflammation and remodeling. The experimental data showed that chrysin could alleviate OVA-induced AHR. Chrysin could also reduce OVA-induced increases in the number of inflammatory cells, especially eosinophils, interleukin (IL) -4, and IL-13 in bronchoalveolar lavage fluid (BALF) and total IgE in serum. The decreased interferon-γ (IFN-γ) level in BALF was also upregulated by chrysin. In addition, inflammatory cell infiltration, goblet cell hyperplasia and the expression of α-smooth muscle actin (α-SMA) around bronchioles were suppressed by chrysin. Furthermore, the phosphorylation levels of Akt and extracellular signal-regulated kinase (ERK) could be decreased by chrysin, which are associated with airway smooth muscle cell (ASMC) proliferation. These results indicate the promising therapeutic effect of chrysin on chronic asthma, especially the progression of airway remodeling.  相似文献   

6.
Asthma comprises a triad of reversible airway obstruction, bronchial smooth muscle cell hyperreactivity to bronchoconstrictors, and chronic bronchial inflammation. Clinical and experimental findings have established eosinophilia as a sign of allergic disorders. In the present investigation, we evaluated the anti-asthmatic effects of schizandrin and its underlying mechanisms in an in vivo murine asthmatic model. To accomplish this, female BALB/c mice were sensitized and challenged with ovalbumin (OVA), and examined for the following typical asthmatic reactions: increased numbers of eosinophils and other inflammatory cells in bronchoalveolar lavage fluid (BALF); production of Th1 cytokines (such as tumor necrosis factor (TNF)-α in BALF); production of Th2 cytokines (such as interleukin IL-4 and IL-5) in BALF; presence of total and OVA-specific immunoglobulins (Ig)E in serum; presence of oxidative stress; hyperplasia of goblet cells in the lung; and marked influx of inflammatory cells into the lung. Our results collectively show that schizandrin exerts profound inhibitory effects on accumulation of eosinophils into the airways and reduces the levels of IL-4, IL-5, IFN-γ, and TNF-α in BALF. Additionally, schizandrin suppresses the production of reactive oxygen species (ROS) in a dose-dependent manner, and inhibits goblet cell hyperplasia and inflammatory cell infiltration in lung tissue. Thus, schizandrin has anti-asthmatic effects, which seem to be partially mediated by reduction of oxidative stress and airway inflammation, in a murine allergic asthma model. These results indicate that schizandrin may be an effective novel therapeutic agent for the treatment of allergic asthma.  相似文献   

7.
Pinocembrin, one of the primary flavonoids in propolis, possesses many biological activities, including anti-inflammation, anti-oxidation and immunoregulation. This study aimed to evaluate whether pinocembrin could attenuate ovalbumin (OVA)-induced allergic airway inflammation in mice and to explore the possible mechanism. BALB/c mice sensitized and challenged with OVA were administered intraperitoneally with pinocembrin. Airway inflammation and airway hyperresponsiveness were examined. T-helper type (Th) 2 cytokines in bronchoalveolar lavage fluid (BALF) and OVA-specific immunoglobulin E (IgE) in serum were determined. The activation of nuclear factor kappa B (NF-κB) p65 were also measured. Our results showed that pinocembrin resulted in significant inhibition of pathophysiological signs of allergic asthma, including increased pulmonary eosinophilia infiltration, mucus hypersecretion and airway hyperresponsiveness (AHR). Treatment with pinocembrin significantly reduced Th2 cytokines interleukin (IL)-4, IL-5 and IL-13 in BALF, and OVA-specific IgE in serum. Moreover, pinocembrin treatment suppressed phosphorylation of inhibitor-κBα (IκBα) and NF-κB subunit p65 activation in lung tissue of OVA-sensitized mice. These data suggest that pinocembrin may inhibit allergic airway inflammation, and providing potential benefits in the treatment of inflammatory disease.  相似文献   

8.
Thymoquinone (TQ), the main active constituent of the volatile oil extracted from Nigella sativa's seeds, has been reported to have an anti-inflammatory and immune stimulatory effect on bronchial asthma and inflammation. However, little is known about the factors and mechanisms underlying these effects. In the present study, we examined the effect of TQ on airway inflammation in a mouse model of allergic asthma. Intraperitoneal injection of TQ before airway challenge of ovalbumin (OVA)-sensitized mice resulted in a marked decrease in lung eosinophilia and the elevated Th2 cytokines observed after airway challenge with OVA antigen; both in vivo, in the bronchoalveolar lavage (BAL) fluid and in vitro, following stimulation of lung cells with OVA. TQ also decreased the elevated serum levels of OVA-specific IgE and IgG1. Histological examination of lung tissue demonstrated that TQ significantly inhibited allergen-induced lung eosinophilic inflammation and mucus-producing goblet cells. While TQ showed a significant effect in inhibiting IL-4, IL-5 and IL-13 and some effect in inducing IFN-gamma production in the BAL fluid, it did show a slight effect on in vitro production of IL-4 by cultured lung cells stimulated with OVA antigen. These data suggest that TQ attenuates allergic airway inflammation by inhibiting Th2 cytokines and eosinophil infiltration into the airways; thus demonstrating its potential anti-inflammatory role during the allergic response in the lung.  相似文献   

9.
The role of tumor necrosis factor-α (TNF-α) in contributing to allergen induced airway remodeling in asthma is unknown. In this study we have utilized a mouse model of chronic OVA allergen induced airway remodeling to determine whether TNF p55/p75 receptor deficient mice (abbreviated TNF-R KO) had reduced levels of airway remodeling. Chronic OVA challenged WT mice had significantly increased levels of lung eosinophilic inflammation as well as features of airway remodeling including increased peribronchial fibrosis, thickness of the peribronchial smooth muscle layer, mucus expression, and deposition of extracellular matrix proteins. In contrast, TNF-R KO mice had significantly reduced levels of major basic protein positive peribronchial eosinophils and significantly reduced peribronchial fibrosis assessed by quantitating the area of peribronchial trichrome staining and total lung collagen. In addition, TNF-R KO mice had significantly reduced thickness of the peribronchial smooth muscle layer, area of peribronchial α-smooth muscle actin immunostaining, and levels of the extracellular matrix protein fibronectin. There was a non-significant trend for reduced mucus expression in TNF-R KO mice. Levels of peribronchial cells immunostaining positive for TGF-β1 were significantly reduced in TNF-R KO mice suggesting that reduced levels of TGF-β1 expression in TNF-R KO mice may contribute to reduced airway remodeling. Overall, this study suggests an important role for TNF-α in contributing to many features of allergen induced airway remodeling including changes in levels of peribronchial smooth muscle, subepithelial fibrosis, and deposition of extracellular matrix.  相似文献   

10.
Allergic asthma is a chronic disease with significant morbidity and mortality. It affects 300 million people worldwide and absorbs a significant amount of the healthcare budget. The predisposition to asthma is dictated by complex genetic regulation, and the asthmatic inflammation itself is characterized by the interplay of various local cells of the bronchial tree and invading inflammatory immune cells. The clinical problems of asthma are owing to intermittent airway hyper-responsiveness that can become chronic in the course of the disease. Histopathologically, infiltration with a variety of inflammatory cells, smooth muscle cell hyperplasia and hypertrophy, goblet cell hyperplasia and subepithelial fibrosis are found in asthmatic inflammatory tissue. This special report sets out to review data on the role of the enzyme arginase and L-arginine metabolism as a unifying element of asthma pathophysiology and as a potential target for future clinical asthma treatment.  相似文献   

11.
Allergic asthma is a chronic disease with significant morbidity and mortality. It affects 300 million people worldwide and absorbs a significant amount of the healthcare budget. The predisposition to asthma is dictated by complex genetic regulation, and the asthmatic inflammation itself is characterized by the interplay of various local cells of the bronchial tree and invading inflammatory immune cells. The clinical problems of asthma are owing to intermittent airway hyper-responsiveness that can become chronic in the course of the disease. Histopathologically, infiltration with a variety of inflammatory cells, smooth muscle cell hyperplasia and hypertrophy, goblet cell hyperplasia and subepithelial fibrosis are found in asthmatic inflammatory tissue. This special report sets out to review data on the role of the enzyme arginase and L-arginine metabolism as a unifying element of asthma pathophysiology and as a potential target for future clinical asthma treatment.  相似文献   

12.
Increased number of airway smooth muscle cells (ASMCs) is a characteristic of airway remodeling in asthma. In this study we investigated whether emodin alleviated airway remodeling in a murine asthma model and reduced the proliferation of ASMCs in vitro. We provided in vivo evidence suggesting that intraperitoneal injection of emodin (20 mg/kg) 1 h prior to OVA challenge apparently alleviated the thickness of airway smooth muscle, the mass of alpha-smooth muscle actin (α-SMA), collagen deposition, epithelial damage, goblet cell hyperplasia, airway inflammation and airway hyperresponsiveness (AHR) in lung tissue. Meanwhile, we found that emodin suppressed the activation of the Akt pathway in lung tissue of allergic mouse models. Additionally, we found that emodin inhibited cellular proliferation and Akt activation in a dose-dependent manner in vitro. Furthermore, LY294002, an inhibitor for PI3K, abrogated serum-induced phosphorylation of Akt, and decreased the proliferation of ASMCs. These findings indicated that emodin alleviated ASMCs proliferation by inhibiting PI3K/Akt pathway in vivo and in vitro, which may provide a potential therapeutic option for airway smooth muscle remodeling in asthma.  相似文献   

13.
1. Imiquimod, a synthetic Toll-like receptor (TLR) 7 ligand, has been shown to attenuate airway inflammation and airway hyperresponsiveness (AHR) in acute murine models of allergic asthma. In the present study, we investigated the effect of imiquimod on allergen-induced airway remodelling in chronic experimental asthma. 2. Ovalbumin (OVA)-sensitized mice were chronically challenged with aerosolized OVA for 8 weeks. Some mice were exposed to an aerosol of 0.15% imiquimod daily during the period of OVA challenge. Twenty-four hours after the last OVA challenge, mice were evaluated for the development of airway inflammation, AHR and airway remodelling. The levels of total serum IgE and Th2 cytokines (interleukin (IL)-4, IL-5 and IL-13) in bronchoalveolar lavage fluid (BALF) and the expression of transforming growth factor (TGF)-beta1 protein in lungs were measured by ELISA and immunohistochemistry, respectively. 3. The results demonstrated that imiquimod significantly inhibited chronic inflammation, persistent AHR and airway remodelling in chronic experimental asthma. In addition, imiquimod reduced levels of total serum IgE and BALF Th2 cytokines and diminished expression of TGF-beta1 in remodelled airways. 4. In summary, the results of the present study indicate that imiquimod may attenuate the progression of airway inflammation and remodelling, providing potential in the treatment of asthma.  相似文献   

14.
Chronic airway inflammation is a hallmark of asthma, which is an immune-based disease. We evaluated the ability of saucerneol D, a tetrahydrofuran-type sesquilignan isolated from Saururus chinensis, to regulate airway inflammation in an ovalbumin (OVA)-induced airway inflammation model. Furthermore, we determined whether heme oxygenase (HO)-1 was required for the protective activity of saucerneol D. The airways of OVA-sensitized mice exposed to an OVA challenge developed eosinophilia and mucus hypersecretion and exhibited increased cytokine levels. Mice were administered saucerneol D orally at doses of 20 and 40mg/kg once daily on days 26-30. Saucerneol D administered orally significantly inhibited the number of OVA-induced inflammatory cells and the production of immunoglobulin E as well as Th2-type cytokines. Histopathology studies revealed a marked decrease in lung inflammation and goblet cell hyperplasia after saucerneol D treatment. In addition, saucerneol D induced HO-1 and led to a marked decrease in OVA-induced reactive oxygen species and malondialdehyde and an increase in superoxide dismutase and glutathione in lung tissues. These antioxidant effects were correlated with HO-1 induction. In our experiments, saucerneol D treatment reduced airway inflammation and suppressed oxidative stress in an OVA-induced asthma model.  相似文献   

15.
Asthma is a common chronic inflammatory disease regulated by coordination of T-helper cell type 2 (Th2) cytokines and inflammatory signal molecules. Additionally, oxidative stress may play an important role in airway inflammation such as eosinophilia, mucus hypersecretion, and airway hyperresponsiveness (AHR). In the present report, we investigated whether anthocyanins would reduce airway inflammation in a mouse asthma model immunized and challenged with ovalbumin (OVA). OVA inhalation elicited inflammatory responses characterized by eosinophilia and increased lipid hydroperoxide (LPO) in bronchoalveolar lavage (BAL) fluid, enhanced pause (Penh), increased glycoprotein and proliferating cell nuclear antigen (PCNA) expressions in mucus hypersecretion, and an increased expression of various cytokines and cyclooxygenase (COX) 2 in lung tissues. All parameters were attenuated in a dose-dependant manner by the administration of anthocyanins. These results suggest that anthocyanins may attenuate the development of asthma by downregulating Th2 cytokines, proinflammatory cytokines, and COX-2. Our findings suggest that anthocyanins have positive contributions as a dietary supplement for the prevention of asthma.  相似文献   

16.
Asthma is a chronic inflammatory disease of the airways characterized by an associated increase in airway responsiveness. In this study, we investigated the inhibitory effect of an aqueous extract from the root of Platycodi Radix (Changkil: CK) on airway inflammation in a murine model of asthma. Mice were sensitized and challenged by ovalbumin (OVA) inhalation to induce chronic airway inflammation and airway remodeling. CK markedly decreased the number of infiltrated inflammatory cells and the levels of Th1 and Th2 cytokines and chemokines compared with those in the OVA-induced group. In addition, CK reduced OVA-specific IgE levels in bronchoalveolar lavage (BAL) fluid. Based on lung histopathological studies, inflammatory cell infiltration and mucus hypersecretion were inhibited by CK administration compared to that in the OVA-induced group. Lung weight was reduced after CK administration. Also, increased generation of ROS in BAL fluid, as well as NF-κB nuclear translocation, by inhalation of OVA was diminished by CK. Moreover, CK reduced the OVA-induced upregulation of matrix metalloproteases activity. These findings indicate that oxidative stress may play a crucial role in the pathogenesis of bronchial asthma induced by OVA and that CK may be useful as an adjuvant therapy for the treatment of bronchial asthma.  相似文献   

17.
It is known that the late asthmatic response (LAR), a characteristic feature of asthma, is closely associated with CD4+ Th2 cell-mediated allergic inflammation. Airway remodeling is also a pathogenesis of asthma, but literature reporting roles of CD4+ cells in the remodeling is controversial. There has been no study that simultaneously assessed the roles of CD4+ cells in both LAR and airway remodeling. Sensitized mice were intratracheally challenged with ovalbumin 4 times. Treatment with an anti-CD4 monoclonal antibody (mAb) before the 1st challenge almost completely abolished increase in CD4+ cells in the tissues after the 4th challenge. The late phase increase in airway resistance after the 4th challenge was also completely inhibited by anti-CD4 mAb. Parameters of airway remodeling, subepithelial fibrosis and epithelial thickening were attenuated by treatment, whereas the inhibition was only 30% - 40%. Bronchial smooth muscle thickening was not affected. Because interleukin (IL)-5 production as well as eosinophilia was effectively suppressed by anti-CD4 mAb, the effect of anti-IL-5 mAb was also examined, resulting in no inhibition of airway remodeling. Collectively, although the LAR was completely dependent on CD4+ cell activation, airway remodeling was only partially dependent on the cell.  相似文献   

18.
目的观察雷帕霉素对哮喘大鼠模型气道重塑和肺组织白细胞介素(IL)-8、IL-10的影响,探讨其在干预支气管哮喘气道炎症和气道重塑中的作用机制,为临床研究提供实验依据。方法建立哮喘大鼠气道重塑模型,30只SD大鼠按随机数字法随机分为正常对照组(A)、哮喘组(B)、雷帕霉素干预组(C),每组10只。对肺组织切片行苏木素-伊红染色观察气道重塑情况。采用免疫组织化学和图像分析技术的方法测定各组大鼠肺组IL-8、IL-10的表达。结果哮喘组动物出现管壁增厚、平滑肌增生、黏液分泌增加等气道重塑的特征性改变,免疫组织化学染色显示气道各层细胞及炎性细胞均有IL-8表达增多,且IL-10水平也显著减少。雷帕霉素干预组与哮喘组比较,炎症反应轻微,平滑肌增生、黏液分泌不明显,免疫组织化学染色示各细胞IL-8表达也有所降低,IL-10水平表达增高,与正常对照组比较差异有统计学意义(P<0.05)。结论雷帕霉素可减轻哮喘大鼠的气道炎症和气道重塑,并可降低IL-8表达水平,增高IL-10表达水平,调节失衡的致炎因子/抑炎因子比例,发挥对支气管哮喘的炎症抑制和免疫调节作用。  相似文献   

19.
BACKGROUND: In this study, we assess the effectiveness of inhaled doxycycline, a tetracycline antibiotic displaying matrix metalloproteinases (MMP) inhibitory effects to prevent allergen-induced inflammation, hyperresponsiveness and remodeling. MMPs play key roles in the complex cascade of events leading to asthmatic phenotype. METHODS: Doxycycline was administered by aerosols by the mean of a novel formulation as a complex with hydroxypropyl-gamma-cyclodextrin (HP-gamma-CD) used as an excipient. BALB/c mice (n=16-24 in each group) were sensitized and exposed to aerosolized ovalbumin (OVA) from day 21 to 27 (short-term exposure protocol) or 5 days/odd weeks from day 22 to 96 (long-term exposure protocol). RESULTS: In the short-term exposure model, inhaled doxycycline decreased allergen-induced eosinophilic inflammation in bronchoalveolar lavage (BAL) and in peribronchial areas, as well as airway hyperresponsiveness. In lung tissue, exposure to doxycycline via inhaled route induced a fourfold increase in IL-10 levels, a twofold decrease in IL-5, IL-13 levels and diminished MMP-related proteolysis and the proportion of activated MMP-9 as compared to placebo. In the long-term exposure model, inhaled doxycycline significantly decreased the extent of glandular hyperplasia, airway wall thickening, smooth muscle hyperplasia and subepithelial collagen deposition which are well recognized features of airway remodeling. CONCLUSION: Doxycycline administered by aerosols decreases the allergen-induced airway inflammation and hyperresponsiveness and inhibits the development of bronchial remodeling in a mouse model of asthma by modulation of cytokines production and MMP activity.  相似文献   

20.
Recent research has focused on the effects of ambient particulate pollution and much evidence has indicated that particulate pollution is associated with the onset of asthma and allergy; however, the effect of diesel exhaust particles (DEP) on the development of allergen-induced airway remodeling has not been fully investigated in vivo. In the present study, we examined the effects of DEP on Dermatophagoides farinae allergens (Der f)–induced asthma-like phenotypes in mice. Mice were administered i.t. 8 times with Der f. DEP were injected i.t. with Der f 4 times throughout the experiment or twice at the sensitization period. In both cases, DEP aggravated Der f–induced increases in airway responsiveness to acetylcholine, the number of eosinophils and neutrophils in the bronchoalveolar lavage fluid (BALF), serum Der f–specific IgG1 levels, Th2 cytokines and transforming growth factor-β 1 levels in BALF, and amount of hydroxyproline in the right lungs. Furthermore, goblet cell hyperplasia and subepithelial fibrosis were also markedly aggravated. These findings indicate that DEP can potentiate airway remodeling induced by repeated allergen challenge as well as Th2-drived airway hyperresponsiveness, eosinophilic inflammation, and IgG1 production and that DEP can exhibit adjuvant activity for airway remodeling, probably due to the enhancement of allergen sensitization and/or of Th2 polarizing pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号