首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
Gross AW  Ren R 《Oncogene》2000,19(54):6286-6296
The Bcr-Abl/p210 fusion protein plays a primary role in the pathogenesis of chronic myelogenous leukemia (CML). Abelson murine leukemia virus, which encodes v-Abl/p160, induces a pre-B cell leukemia/lymphoma in mice. It has been unclear whether the apparent specificity of these two abl oncogenes for myeloid versus lymphoid neoplasms is due to specific intrinsic properties of these Abl oncoproteins, or due to the properties of the target cells expressing them. We have recently shown that expression of Bcr-Abl in bone marrow cells by retroviral transduction efficiently induces a myeloproliferative disorder in mice resembling human CML. In this study, we compared Bcr-Abl/p210 and v-Abl/p160 in this mouse CML model. We found that early in the course of disease, both Bcr-Abl/p210 and v-Abl/p160 expanded early immature hematopoietic cells. Later Bcr-Abl/p210 selectively expanded myeloid cells while v-Abl/p160 primarily induced the rapid in vivo expansion of B lymphoblastic cells, along with a minor population of myeloid cells. In vitro, Bcr-Abl/p210 induced more growth of myeloid colonies from 5-fluorouracil treated bone marrow than v-Abl/p160. These results, obtained under equal bone marrow transduction/transplantation conditions, indicate that Bcr-Abl/p210 has a greater intrinsic capacity than v-Abl/p160 to induce the neoplastic growth of myeloid cells. In addition, we found that cultured cells expressing Bcr-Abl/p210 had more activated STAT5 than cells that expressed v-Abl/p160. This suggests that activation of STAT5 might be one part of the mechanism of abl oncogene disease specificity.  相似文献   

2.
The chimeric oncogene Bcr-Abl is known to induce autonomous motility of leukemic cells. We show here that p210(bcr-abl) responsible for chronic myelogenous leukemia induces an amoeboid type of motility while p190(bcr-abl), associated with acute lymphoid leukemia, induces a rolling type of motility. We previously reported that p210(bcr-abl) activates RhoA and Rac1, while p190(bcr-abl) although devoid of a Dbl-homology (DH) domain activates Rac1, but not RhoA. We investigated the regulation of GDP/GTP exchange factor (GEF) activities in the Bcr-Abl complex. For that purpose, different GEF activity mutants of Vav and of Bcr-Abl were constructed and stably transfected in Ba/F3 cells. Using these mutants, we demonstrate that RhoA is exclusively activated by the DH domain of p210(bcr-abl), while Rac1 activation is mostly due to Vav. Inhibition of Rac1 by Vav GEF mutant leads to immobilization of cells. Vav depletion using shRNA also induces immobilization of cells and suppression of GTP-bound Rac1. RhoA inactivation induces the specific loss of amoeboid movements. These results suggest that Rac1 activation by Vav triggers the motility of Bcr-Abl-expressing Ba/F3 cells, while the specific amoeboid mode of motility induced by p210(bcr-abl) is a consequence of RhoA activation.  相似文献   

3.
Imatinib mesylate suppresses phosphorylation of its kinase target, Bcr-Abl. We hypothesized that loss of p210Bcr-Abl (the kinase target) may lead to imatinib mesylate resistance. We studied K562 cells [chronic myelogenous leukemia (CML) blast crisis line] and MO7E/MBA-1 cells (with MBA-1 cells representing MO7E cells stably transfected with BCR-ABL). Imatinib mesylate resistance developed when p210Bcr-Abl expression was abolished. Furthermore, K562 cells were significantly more growth suppressed after imatinib mesylate exposure than after downregulation of Bcr-Abl expression. Signaling pathways which were functional in the absence of Bcr-Abl expression (NF-kappaB and mitogen-activated protein kinase activation or the growth factor pathway) were disrupted when p210Bcr-Abl was present but dephosphorylated, suggesting that an intact, but enzymatically inactive Bcr-Abl, may interfere with critical growth/signaling pathways. Downregulation of p210Bcr-Abl may be a mechanism by which imatinib mesylate resistance emerges. Samples from three of 15 patients with imatinib mesylate-resistant CML blast crisis had undetectable levels of p210Bcr-Abl. We conclude that retention of a dephosphorylated p210Bcr-Abl has a biologic impact distinct from that of downregulation/loss of p210Bcr-Abl and, in a subset of patients, loss of the target of the kinase inhibitor may lead to imatinib mesylate resistance.  相似文献   

4.
Singh MM  Irwin ME  Gao Y  Ban K  Shi P  Arlinghaus RB  Amin HM  Chandra J 《Cancer》2012,118(13):3433-3445

BACKGROUND:

Patients with chronic myelogenous leukemia (CML) in blast crisis have a poor response to tyrosine kinase inhibitors designed to inhibit the breakpoint cluster region–v‐Abelson murine leukemia viral oncogene homolog 1 (BCR‐ABL1) oncogene. Recent work has demonstrated that heme oxygenase 1 (HO‐1) expression is increased in BCR‐ABL1–expressing cells and that the inhibition of HO‐1 in CML leads to reduced cellular growth, suggesting that HO‐1 may be a plausible target for therapy. The objective of the current study was to clarify the mechanism of HO‐1 overexpression and the role of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase as a contributor to this mechanism in CML.

METHODS:

HO‐1 expression was evaluated in bone marrow specimens from patients with CML in various stages of disease, in a transplantation‐based model for CML, and in CML cell lines. Chemical and genetic inhibition of the NADPH oxidase was carried out in CML cells.

RESULTS:

Specimens from patients with CML in blast crisis displayed higher levels of HO‐1 staining than specimens from patients with CML in chronic or accelerated phase. HO‐1 up‐regulation in BCR‐ABL1–expressing cells was suppressed by diphenyleneiodonium (DPI), a chemical inhibitor of the NADPH oxidase. Targeting the NADPH oxidase through RNA interference (RNAi) to Ras‐related C3 botulinum toxin substrate 1 (Rac1), a dominant‐negative Rac1 construct or an inhibitor of Rac1 activity also blunted HO‐1 protein expression. Moreover, inhibition of the NADPH oxidase by RNAi directed toward the 47‐kd cytosolic subunit of Nox (p47phox) similarly abrogated HO‐1 levels.

CONCLUSIONS:

BCR‐ABL1 expression up‐regulated HO‐1, a survival factor for CML cells. This up‐regulation was more pronounced in blast crisis CML relative to early stage disease and was mediated by the NADPH oxidase components Rac1 and p47phox. The expression of p47phox was increased in BCR‐ABL1–expressing cells. Cancer 2011. © 2011 American Cancer Society.  相似文献   

5.
The mechanism underlying p210(BCR/ABL) oncoprotein-mediated transformation in chronic myelogenous leukemia (CML) is not fully understood. We hypothesized that p210(BCR/ABL) suppresses expression of genes which may explain at least some of the pathogenetic features of CML. A subtractive cDNA library was created between BCR/ABL-enhanced-green-fluorescent-protein (GFP)-transduced umbilical cord blood (UCB) CD34+ cells and GFP-transduced UCB CD34+ cells to identify genes whose expression is downregulated by p210(BCR/ABL). At least 100 genes were identified. We have confirmed for eight of these genes that expression was suppressed by quantitative real-time-RT-PCR (Q-RT-PCR) of additional p210(BCR/ABL)-transduced CD34+ UCB cells as well as primary early chronic phase (CP) bone marrow (BM) CML CD34+ cells. Imatinib mesylate reversed downregulation of some genes, to approximately normal levels. Several of the genes are implicated in cell adhesion and motility, including L-selectin, intercellular adhesion molecule-1 (ICAM-1), and the chemokine receptor, CCR7, consistent with the known defect in adhesion and migration of CML cells. Compared with GFP UCB or normal (NL) BM CD34+ cells, p210 UCB and CML CD34+ cells migrated poorly towards the CCR7 ligands, CCL19 and CCL21, suggesting a possible role for CCR7 in the abnormal migratory behavior of CML CD34+ cells.  相似文献   

6.
7.
Y Chalandon  X Jiang  S Loutet  A C Eaves  C J Eaves 《Leukemia》2004,18(5):1006-1012
The tyrosine kinase activity of p210BCR-ABL is essential to its leukemogenic potential, but the role of other functional domains in primary human hematopoietic cells has not been previously investigated. Here we show that infection of normal human CD34+ cord blood (CB) cells with a retroviral vector encoding p210BCR-ABL rapidly activates a factor-independent phenotype and autocrine interleukin-3/granulocyte colony-stimulating factor/erythropoietin production in the transduced cells. These changes are characteristic of primitive chronic myeloid leukemic (CML) cells and are important to the leukemogenicity of BCR-ABL-transduced murine hematopoietic stem cells. When BCR-ABL-transduced human CB cells were incubated with imatinib mesylate, an inhibitor of the p210BCR-ABL kinase, or when human CB cells were transduced with a BCR-ABL cDNA lacking the SH2 domain (p210DeltaSH2), factor independence was significantly reduced. In contrast, deletion of the SH2 domain had little impact on the p210BCR-ABL kinase-dependent promotion of erythropoietic differentiation also seen immediately following the BCR-ABL transduction of primitive human CB cells, but not in naturally occurring CML. Thus, p210BCR-ABL has distinct biological effects in primary human hematopoietic cells, which variably mimic features of human CML, and activation of these changes can show different dependencies on the integrity of the SH1 and SH2 domains of p210BCR-ABL.  相似文献   

8.
9.
The chronological history of the important discoveries leading to our present understanding of the essential clinical, biological, biochemical, and molecular features of chronic myelogenous leukemia (CML) are first reviewed, focusing in particular on abnormalities that are responsible for the massive myeloid expansion. CML is an excellent target for the development of selective treatment because of its highly consistent genetic abnormality and qualitatively different fusion gene product, p210(bcr-abl). It is likely that the multiple signaling pathways dysregulated by p210(bcr-abl) are sufficient to explain all the initial manifestations of the chronic phase of the disease, although understanding of the circuitry is still very incomplete. Evidence is presented that the signaling pathways that are constitutively activated in CML stem cells and primitive progenitors cooperate with cytokines to increase the proportion of stem cells that are activated and thereby increase recruitment into the committed progenitor cell pool, and that this increased activation is probably the primary cause of the massive myeloid expansion in CML. The cooperative interactions between Bcr-Abl and cytokine-activated pathways interfere with the synergistic interactions between multiple cytokines that are normally required for the activation of stem cells, while at the same time causing numerous subtle biochemical and functional abnormalities in the later progenitors and precursor cells. The committed CML progenitors have discordant maturation and reduced proliferative capacity compared to normal committed progenitors, and like them, are destined to die after a limited number of divisions. Thus, the primary goal of any curative strategy must be to eliminate all Philadelphia positive (Ph+) primitive cells that are capable of symmetric division and thereby able to expand the Ph+ stem cell pool and recreate the disease. Several highly potent and moderately selective inhibitors of Bcr-Abl kinase have recently been discovered that are capable of killing the majority of actively proliferating early CML progenitors with minimal effects on normal progenitors. However, like their normal counterparts, most of the CML primitive stem cells are quiescent at any given time and are relatively invulnerable to the Bcr-Abl kinase inhibitors as well as other drugs. We propose that survival of dormant Ph+ stem cells may be the most important reason for the inability to cure the disease during initial treatment, while resistance to the inhibitors and other drugs becomes increasingly important later. An outline of a possible curative strategy is presented that attempts to take advantage of the subtle differences in the proliferative behavior of normal and Ph+ stem cells and the newly discovered selective inhibitors of Bcr-Abl.Leukemia (2003) 17, 1211-1262. doi:10.1038/sj.leu.2402912  相似文献   

10.
To further elucidate the role of angiogenesis in the pathogenesis of chronic myelogenous leukemia (CML) we evaluated the effects of the bcr-abl translocation on the secretion of the angiogenic factors VEGF, FGF-2, HGF, IL-8 and matrix metalloproteinases (MMPs) as well as on the angiogenic potential in vivo of bcr-abl+ cells. First, we examined murine FL5.12 cells transfected with the bcr-abl constructs p185, p210 and p230 and found that the transfected cells secreted as much as four-fold more VEGF (p185 > p210 >p230) than wild-type (wt) cells, as well as MMP-9 and MMP-2. When Matrigel fragments containing these bcr-abl+ cells were implanted subcutaneously in SCID or Balb-C mice they became significantly more vascularized and hemoglobinized than implants containing normal or wt cells (p185 > p210 > p230). Similarly, we found that myeloblasts expanded from bone marrow (BM) CD34+ cells derived from Philadelphia-positive CML patients secreted up to 10 times more VEGF, FGF-2, HGF and IL-8 compared to myeloblasts derived from normal donors' BM CD34+ cells and that BM mononuclear cells (MNC) isolated from CML patients induced vascularization of Matrigel implants in mice. Moreover, we found that peripheral blood MNC expressed MMP-2 and membrane-type (MT)1-MMP in about 50% of CML patients studied, and MMP-9 in all of them. Furthermore, VEGF stimulated the secretion of MMP-9 in these primary CML cells. We conclude that stimulation of angiogenesis by angiogenic factors, including MMPs, could play an important role in the pathogenesis of CML, suggesting that therapies targeting the newly formed endothelium could be developed for CML.  相似文献   

11.
The biology of chronic myelogenous leukemia:mouse models and cell adhesion   总被引:8,自引:0,他引:8  
Wertheim JA  Miller JP  Xu L  He Y  Pear WS 《Oncogene》2002,21(56):8612-8628
Chronic myelogenous leukemia (CML) is a biphasic neoplasm of the bone marrow that is precipitated by the Philadelphia chromosome, a t(9;22) balanced translocation that encodes a constitutively activated nonreceptor tyrosine kinase termed P210(BCR-ABL). This oncoprotein has several intracellular functions; however, the most important effect of P210(BCR-ABL) leading to cell transformation is phosphorylation of signaling molecules through a constitutively active tyrosine kinase domain. Despite extensive knowledge of the structure and functional domains of BCR-ABL, its precise function in transformation is not known. Progress has been hampered, in part, by the lack of relevant CML models, as cell culture and in vitro assays do not mimic the pathogenesis of CML. Recently, there has been significant progress toward improving murine models that closely resemble human CML. This has allowed researchers to evaluate critical functions of BCR-ABL and has provided a model to test the efficacy of therapeutic medications that block these pathways. Our laboratory has developed two intersecting research programs to better understand the functioning of P210(BCR-ABL) in leukemogenesis. In one approach, we have developed a murine CML model by transferring HSCs that express BCR-ABL from a retroviral vector. All recipients develop a rapidly fatal MPD that shares several important features with CML. This model has been extremely useful for studying the function of BCR-ABL in the pathogenesis of CML. A second approach utilizes a quantitative cell detachment apparatus capable of measuring small changes in cell adhesion to investigate the mechanism by which P210(BCR-ABL) causes abnormal cell binding. Altered cell adhesion may contribute to the imbalance between proliferation and self-renewal in the hematopoietic progenitor compartment. To better understand the role abnormal adhesion may play in the development of leukemia, we have attempted to correlate the effects of functional P210(BCR-ABL) mutants in regulating adhesion and oncogenicity.  相似文献   

12.
Chronic myelogenous leukemia (CML) is a malignancy of the human hematopoietic stem cell (HSC) caused by the p210BCR/ABL oncoprotein. Although alternative splicing of pre-mRNA is a critical determinant of a cell's protein repertoire, it has not been associated with CML pathogenesis. We identified a BCR/ABL-dependent increase in expression of multiple genes involved in pre-mRNA splicing (eg SRPK1, RNA Helicase II/Gu, and hnRNPA2/B1) by subtractive hybridization of cDNA from p210BCR/ABL-eGFP vs eGFP-transduced umbilical cord blood CD34+ cells. beta1-integrin signaling is important to HSC maintenance and proliferation/differentiation, and is abnormal in CML. As an example of how changes in pre-mRNA processing might contribute to CML pathogenesis, we observed alternative splicing of a gene for a beta1-integrin-responsive nonreceptor tyrosine kinase (PYK2), resulting in increased expression of full-length Pyk2 in BCR/ABL-containing cells. Treatment of p210BCR/ABL-positive cells with the Abl-specific tyrosine kinase inhibitor STI571 reverted PYK2 splicing to a configuration more consistent with normal cells, and correlated with decreased expression of BCR/ABL-induced proteins involved in pre-mRNA processing. Whether altered PYK2 splicing contributes to CML pathogenesis remains undetermined; however, we propose that generic changes in pre-mRNA splicing as a result of p210BCR/ABL kinase activity may contribute to CML pathogenesis.  相似文献   

13.
14.
The tyrphostin AG957 (NSC 654705) inhibits p210bcr/abl, the transforming kinase responsible for most cases of chronic myelogenous leukemia (CML). The present studies were performed to determine the fate of AG957-treated cells and assess the selectivity of AG957 for CML myeloid progenitors. When K562 cells (derived from a patient with blast crisis CML) were treated with AG957, dose- and time-dependent p210bc/abl down-regulation was followed by mitochondrial release of cytochrome c, activation of caspase-9 and caspase-3, and apoptotic morphological changes. These apoptotic changes were inhibited by transfection with cDNA encoding dominant negative caspase-9 but not dominant-negative FADD or blocking anti-Fas antibodies. In additional experiments, a 24-h AG957 exposure caused dose-dependent inhibition of K562 colony formation in soft agar. To extend these studies to clinical samples of CML, peripheral blood mononuclear cells from 10 chronic phase CML patients and normal controls were assayed for the growth of hematopoietic colonies in vitro in the presence of increasing concentrations of AG957. These assays demonstrated selectivity of AG957 for CML progenitors, with median IC50s (CML versus normal) of 7.3 versus >20 microM AG957 in granulocyte colony-forming cells (P < 0.001), 5.3 versus >20 microM in granulocyte/macrophage colony-forming cells (P < 0.05), and 15.5 versus > 20 microM in erythroid colony-forming cells (P > 0.05). The adamantyl ester of AG957 (NSC 680410) down-regulated p210bcr/abl in K562 cells and inhibited granulocyte colony formation in CML specimens at lower concentrations without enhanced toxicity in normal progenitors. These observations not only demonstrate that AG957-induced p210bcr/abl down-regulation is followed by activation of the cytochrome c/Apaf-1/caspase-9 pathway but also indicate that this class of kinase inhibitor exhibits selectivity worthy of further evaluation.  相似文献   

15.
16.
Xu R  Dong Q  Yu Y  Zhao X  Gan X  Wu D  Lu Q  Xu X  Yu XF 《Leukemia research》2006,30(1):17-23
Gleevec, which is an inhibitor of the bcr/abl tyrosine kinase, has been a remarkable success for the treatment of chronic myelogenous leukemia (CML). However, a significant proportion of patients chronically treated with Gleevec develop resistance. Here we describe the activity of a natural small molecular compound, berbamine from plant Berberis amurensis that can selectively induce cell death of both Gleevec-sensitive and -resistant Ph+ CML cells. The IC50 values of berbamine were 8.80 microg/ml in Gleevec-sensitive Ph+ CML cells, 11.34 microg/ml in Gleevec-resistant Ph+ CML cells, and 54.40 microg/ml in Ph- KG-1 cells, respectively. Similarly, berbamine was also found to display a selective anti-proliferative activity of primary leukemia cells from CML patients, and its IC50 values were 4.20-10.50 microg/ml in primary CML cells, and 185.20 microg/ml in normal bone marrow cells, respectively. More importantly, our studies demonstrate that berbamine down-regulates p210bcr/abl oncoprotein level, and induces apoptosis of bcr/abl+ cells through caspase-3-dependent pathway. These data suggest that berbamine might be a novel bcr/abl inhibitor with potent anti-leukemia activity.  相似文献   

17.
Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) is a tyrosine kinase oncogene responsible for the pathogenesis of the majority of human ALK-positive lymphomas. We recently reported that it activated the Rac1 GTPase in anaplastic large-cell lymphoma (ALCL), leading to Rac-dependent formation of active invadopodia required for invasiveness. Herein, we went further into the study of this pathway and used the inhibitor of Rac, NSC23766, to validate its potential as a molecular target in ALCL in vitro and in vivo in a xenograft model and in a conditional model of NPM-ALK transgenic mice. Our data demonstrate that Rac regulates important effectors of NPM-ALK-induced transformation such as Erk1/2, p38 and Akt. Moreover, inhibition of Rac signaling abrogates NPM-ALK-elicited disease progression and metastasis in mice, highlighting the potential of small GTPases and their regulators as additional therapic targets in lymphomas.  相似文献   

18.
19.
Models of chronic myeloid leukemia (CML) have proven invaluable for furthering our understanding of the molecular pathophysiology of this disease. Xenotransplantation of primary human CML cells into immunodeficient mice allows investigation into the nature of the most primitive repopulating cells in this leukemia, but the system is limited by variability and difficulty with experimental manipulation. Accordingly, a large effort has been invested in developing models of CML through expression of the BCR/ABL oncogene in the hematopoietic system of laboratory mice. Despite numerous attempts, an accurate transgenic mouse model of CML has not been produced, possibly because of the toxicity of BCR/ABL. Conditional transgenic mice are a promising new approach to this problem. A more successful strategy is retroviral transduction of BCR/ABL into mouse bone marrow in vitro, followed by transplantation into syngeneic or immunodeficient recipient mice. Recipients of marrow transduced with p210 BCR/ABL develop a fatal myeloproliferative illness that closely resembles human CML. This model is being used to define the signaling pathways required for leukemogenesis by BCR/ABL, and for developing new therapeutic approaches.  相似文献   

20.
Activation of PKA by cAMP agonists, such as 8-Cl-cAMP activation, selectively causes rapid apoptosis in v-abl transformed fibroblasts by inhibiting the Raf-1 kinase. Here we investigated whether 8-Cl-cAMP is useful for the treatment of chronic myelogenous leukaemia (CML), which is hallmarked by the expression of the p210(bcr/abl) oncogene. Autologous bone marrow transplantation is a feasible alternative for patients with no suitable donor, but hampered by the risk of relapse due to the persistence of leukaemia cells in the transplant. To study the effects of 8-Cl-cAMP on primary leukaemic cells, bone marrow cells (BMCs) from eight CML patients (one at diagnosis, three in chronic and four in accelerated phase) were treated. Ex vivo treatment of BMCs obtained in chronic phase of CML with 100 microM 8-Cl-cAMP for 24-48 h led to the selective purging of Philadelphia Chromosome (Ph1 chromosome) without toxic side effects on BMCs from healthy donors as measured by colony-forming unit (CFU) assays. BMCs from patients in accelerated phase showed selective, but incomplete elimination of Ph1 chromosome positive colony forming cells. The mechanism of 8-Cl-cAMP was investigated in FDCP-mix cells transformed by p210(bcr/abl), a cell culture model for CML. The results showed that 8-Cl-cAMP reduced DNA synthesis and viability independent of Raf inhibition as Raf inhibitors had no effect. MEK inhibitors interfered with DNA synthesis, but not with viability. In summary, our results indicate that 8-Cl-cAMP could be useful to purge malignant cells from the bone marrow of patients with CML and certain other forms of leukaemias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号