首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to characterize and compare the pharmacokinetics of acyclovir (ACV) in skin and plasma after iontophoresis, i.v.-bolus, and ointment administrations in rabbit. On five occasions, each separated by at least 1-week washout, rabbits received a 10 mg/kg dose of ACV as i.v.-bolus, ACV iontophoresis for 1 h at different current densities (100, 200, 300 microA/cm2) or a commercially available ointment for two hours. Blood samples were collected serially up to 6 h. Skin ACV concentrations were monitored via microdialysis using linear microdialysis probes (1 cm window). Cathodic iontophoresis was performed using commercially available patches (10 cm2 contact area). Following i.v.-bolus, C(max) in skin occurred with a delay of 38 +/- 4 min compared with plasma. No quantifiable concentration of ACV was detected in the skin on passive drug delivery. Following iontophoresis, skin exposure to ACV was 40, 22, and 11% of that following i.v.-bolus. Conversely, systemic exposure to ACV was negligible and plasma concentrations were below the limit of quantification at any time-point. In skin dialysate, C(max), AUC, and half-life increased with current density. During ointment application, ACV in dermis was detectable only for the first 30 min thereafter ACV skin concentrations were below the LOQ (30 ng/ml).  相似文献   

2.
AIMS: To investigate uptake of fluconazole into the interstitial fluid of human subcutaneous tissue using the microdialysis and suction blister techniques. METHODS: A sterile microdialysis probe (CMA/60) was inserted subcutaneously into the upper arm of five healthy volunteers following an overnight fast. Blisters were induced on the lower arm using gentle suction prior to ingestion of a single oral dose of fluconazole (200 mg). Microdialysate, blister fluid and blood were sampled over 8 h. Fluconazole concentrations were determined in each sample using a validated HPLC assay. In vivo recovery of fluconazole from the microdialysis probe was determined in each subject by perfusing the probe with fluconazole solution at the end of the 8 h sampling period. Individual in vivo recovery was used to calculate fluconazole concentrations in subcutaneous interstitial fluid. A physiologically based pharmacokinetic (PBPK) model was used to predict fluconazole concentrations in human subcutaneous interstitial fluid. RESULTS: There was a lag-time (approximately 0.5 h) between detection of fluconazole in microdialysate compared with plasma in each subject. The in vivo recovery of fluconazole from the microdialysis probe ranged from 57.0 to 67.2%. The subcutaneous interstitial fluid concentrations obtained by microdialysis were very similar to the unbound concentrations of fluconazole in plasma with maximum concentration of 4.29 +/- 1.19 microg ml(-1) in subcutaneous interstitial fluid and 3.58 +/- 0.14 microg ml(-1) in plasma. Subcutaneous interstitial fluid-to-plasma partition coefficient (Kp) of fluconazole was 1.16 +/- 0.22 (95% CI 0.96, 1.35). By contrast, fluconazole concentrations in blister fluid were significantly lower (P < 0.05, paired t-test) than unbound plasma concentrations over the first 3 h and maximum concentrations in blister fluid had not been achieved at the end of the sampling period. There was good agreement between fluconazole concentrations derived from microdialysis sampling and those estimated using a blood flow-limited PBPK model. CONCLUSIONS: Microdialysis and suction blister techniques did not yield comparable results. It appears that microdialysis is a more appropriate technique for studying the rate of uptake of fluconazole into subcutaneous tissue. PBPK model simulation suggested that the distribution of fluconazole into subcutaneous interstitial fluid is dependent on tissue blood flow.  相似文献   

3.
The systemic pharmacokinetics and local drug distribution of sodium diclofenac in skin and underlying tissues was studied. Iontophoresis facilitated local and systemic delivery of diclofenac sodium compared with passive diffusion. The maximum plasma concentration of sodium diclofenac was achieved within 1 h of iontophoresis, and the delivery was proportional to applied current density (371 +/- 141 and 132 +/- 62 microg/L at 0.5 and 0.2 mA/cm(2), respectively). The in vivo delivery efficiency for diclofenac in rabbit was 0.15 mg/mA.h. The concentrations of sodium diclofenac in the skin, subcutaneous tissue, and muscle beneath the drug application site (cathode) were significantly greater than plasma concentrations and concentrations of drug in similar tissues at the untreated sites. The results thus suggest that the cutaneous microvasculature is not always a perfect "sink" and that transdermal iontophoresis facilitated the direct penetration of diclofenac sodium to deeper tissues. No skin irritation was observed up to 0.5 mA/cm(2) current density and 7 mg/mL sodium diclofenac concentration.  相似文献   

4.
Purpose The purpose of this work was to demonstrate the iontophoretic delivery of granisetron hydrochloride by novel, self-contained iontophoretic patches and to determine the subcutaneous and dermal absorption kinetics using microdialysis.Methods In vitro iontophoretic delivery of granisetron hydrochloride was evaluated at 5, 10, or 20 mg/ml concentrations of donor using Franz diffusion cells and hairless rat skin as a membrane. In vivo studies were performed in hairless rats. Animals received either subcutaneous or dermal microdialysis probes and iontophoretic patches filled with drug formulation were applied on the abdominal area such that the probe lies below the anode chamber. Blood and microdialysate samples were collected at different time intervals. Intravenous administration of granisetron was also done to determine the basic pharmacokinetic parameters.Results Iontophoretic patches delivered current constantly throughout the patch application. The patches delivered granisetron hydrochloride at a rate of 14.91 ± 4.53 μg/min/kg. Similar concentrations of granisetron hydrochloride in dermal and subcutaneous tissue were observed. Depot formation was identified in the subcutaneous and dermal profiles, indicating that subcutaneous structures are also responsible for the depot formation of the drug in the dermis.Conclusion The patches successfully delivered granisetron hydrochloride by iontophoresis and depot formation was observed in the dermal and subcutaneous structures in the skin.  相似文献   

5.
The objective of this study was to demonstrate the potential of the application of a short-term iontophoresis on the topical delivery of lidocaine hydrochloride from a microemulsion-based system. Five- and 10-min durations of anodal iontophoresis applied onto porcine skin were examined in combination with a microemulsion containing 2.5% lidocaine hydrochloride. A similar combination (10-min iontophoresis with microemulsion in the anodal electrode) was also examined in vivo in a rat model. It was shown in vitro that by combining microemulsion application with a 10-min iontophoresis of 1.13 mA/cm2 electric current density, a significantly increased flux was obtained compared with a combination of aqueous drug solution with the same iontophoresis protocol. In vivo studies revealed that 57.71 +/- 18.65 and 18.43 +/- 9.17 microg cm(-2) were reached in the epidermis and dermis, respectively, at t = 30 min of microemulsion application, when iontophoresis was applied for 10 min. In contrast, the application of aqueous solution-iontophoresis resulted in a relatively lower drug accumulation (21.44 +/- 10.42 and 5.30 +/- 2.25 microg cm(-2) in the epidermis and dermis, respectively, at t = 30) with more rapid clearance of the drug from the skin. Ten-minute application of a low-current electric field on a new topical microemulsion appears to make significant changes in skin permeability. The potential advantages of this procedure include significantly increased flux, accumulation of a large skin drug depot, short lag times, reduced irritation (compared to long-term iontophoresis), simplicity and ease of compliance.  相似文献   

6.
The purpose of this study was to establish the delivery parameters for the enhanced transdermal delivery of dextran sulfate (MW 5000 Da). Full-thickness pig skin or epidermis separated from human cadaver skin was used. Silver-silver chloride electrodes were used to deliver the current (0.5 mA cm-2). For electroporation experiments, one or more pulses were given using an exponential decay pulse generator. The correct polarity for iontophoresis and pulsing was first established as cathode in the donor. The amount of drug delivered increased with increasing donor concentration up to a point, but not any further. The amount delivered also increased with pulse voltage, the delivery being twice as much as with iontophoresis alone (144.5+/-10.35 microg cm(-2)), when 6 pulses of 500 V were applied at time zero before iontophoresis (276+/-45.2 microg cm(-2)). It was observed that the amount delivered was a function of increasing pulse length when the apparent charge delivered was kept constant. Transport through pig skin (107.4+/-24.4 microg cm(-2)) was found to be comparable with that through human epidermis (84.9+/-18.4 microg cm(-2)). In conclusion, we have demonstrated the transdermal delivery of a 5000 Da molecular weight dextran sulfate using iontophoresis. It was also seen that iontophoretic delivery could be enhanced by simultaneous electroporation.  相似文献   

7.
PURPOSE: This study investigated the penetration of lidocaine around and through a sutured incision following the application of iontophoretic and passive patches in the CD Hairless rat. MATERIALS AND METHODS: Concentrations in localized areas (suture, dermis, subcutaneous, and vascular) were determined using microdialysis sampling followed by analysis using liquid chromatography with UV detection. RESULTS: Iontophoresis significantly enhanced the dermal penetration of lidocaine. In an intact skin model, dermal concentrations were 40 times greater following iontophoretic delivery compared to passive delivery. In a sutured incision model, iontophoresis enhanced localized concentrations in the dermis, suture, and subcutaneous regions by 6-, 15-, and 20-fold, respectively. Iontophoretic delivery to a region containing a sutured incision was focused to the incision resulting in a greater increase in the suture concentration and in the subcutaneous region directly below the incision. CONCLUSIONS: The four microdialysis probe design was successful in the determination of localized drug penetration in a sutured incision model. Iontophoresis enhanced skin penetration and allowed for site specific delivery when applied to a sutured incision.  相似文献   

8.
The objective of this study was to determine the plasma and intrapulmonary pharmacokinetic parameters of intravenously administered levofloxacin in healthy volunteers. Three doses of either 750 mg or 1000 mg levofloxacin were administered intravenously to 4 healthy adult subjects (750 mg) to 20 healthy adult subjects divided into five groups of 4 subjects (1000 mg). Standardised bronchoscopy and timed bronchoalveolar lavage (BAL) were performed following administration of the last dose. Blood was obtained for drug assay prior to drug administration and at the time of BAL. Levofloxacin was measured in plasma, BAL fluid and alveolar cells (ACs) using a sensitive and specific combined high-performance liquid chromatographic tandem mass spectrometric technique (HPLC/MS/MS). Plasma, epithelial lining fluid (ELF) and AC pharmacokinetics were derived using non-compartmental methods. The maximum plasma drug concentration to minimum inhibitory concentration ratio (C(max)/MIC(90)) and the area under the drug concentration curve to minimum inhibitory concentration ratio (AUC/MIC(90)) during the dosing interval were calculated for potential respiratory pathogens with MIC(90) values from 0.03 microg/mL to 2 microg/mL. In the 1000 mg dose group, the C(max) (mean+/-standard deviation (S.D.)), AUC(0-8h) and half-life were: for plasma, 9.2+/-1.9 microg/mL, 103.6 microg h/mL and 7.45 h; for ELF, 25.8+/-7.9 microg/mL, 279.1 microg h/mL and 8.10h; and for ACs, 51.8+/-26.2 microg/mL, 507.5 microg h/mL and 14.32 h. In the 750 mg dose group, the C(max) values in plasma, ELF and ACs were 5.7+/-0.4, 28.0+/-23.6 and 34.2+/-18.7 microg/mL, respectively. Levofloxacin concentrations were significantly higher in ELF and ACs than in plasma at all time points. For pathogens commonly associated with community-acquired pneumonia, C(max)/MIC(90) ratios in ELF ranged from 12.9 for Mycoplasma pneumoniae to 859 for Haemophilus influenzae, and AUC/MIC(90) ratios ranged from 139 to 9303, respectively. The C(max)/MIC(90) ratios in ACs ranged from 25.9 for M. pneumoniae to 1727 for H. influenzae, and AUC/MIC(90) ratios ranged from 254 to 16917, respectively. The C(max)/MIC(90) and AUC/MIC(90) ratios provide a pharmacokinetic rationale for once-daily administration of a 1000 mg dose of levofloxacin and are favourable for the treatment of community-acquired respiratory pathogens.  相似文献   

9.
The objective of this study was to validate subcutaneous (sc) microdialysis sampling to study flurbiprofen pharmacokinetics and plasma protein binding in the awake freely moving rat. A linear microdialysis probe was manufactured using a Hemophane® hollow fiber which was tested in vitro and in vivo for the recovery of flurbiprofen and naproxen used as retrodialysis marker. Flurbiprofen was administered intraperitoneally and intravenously at a dose of 20 mg/kg in rats. In both cases, conventional blood sampling and sc microdialysis sampling were simultaneously performed. The microdialysates were analyzed on-line by high-pressure liquid chromatography. Naproxen, which was shown to have a similar in vivo loss by retrodialysis as flurbiprofen (71.5 ± 0.9% and 71.0 ± 0.8% respectively, n = 3), was used to continuously monitor probe recovery. Concentration-dependent protein binding of flurbiprofen was demonstrated in vivo based on experiments with a simultaneous sc microdialysis and blood sampling. Values of unbound fraction were similar to those reported previously by intravenous microdialysis sampling, demonstrating that the sc unbound concentrations are very similar to those in the central compartment. There was no significant difference among pharmacokinetic parameters (AUC, CL, t1/2z, Vd) for total or unbound flurbiprofen determined after intraperitoneal and intravenous administration. Subcutaneous microdialysis is a simple yet powerful tool to study the pharmacokinetics and the in vivo plasma protein binding of flurbiprofen in the awake unrestrained rat. © 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:1897–1906, 2001  相似文献   

10.
The aim of this study was to characterize and compare the percutaneous penetration kinetics of lidocaine (L) and prilocaine (P) in two local anesthetic formulations by in vivo microdialysis coupled with HPLC. The microdialysis system for studying lidocaine and prilocaine was calibrated by a no-net-flux method in vitro and retrodialysis method in vivo, respectively. A dosage of 0.2 g/cm2 of an in-house P-L formulation (2.5% lidocaine and 2.5% prilocaine, methylcellulose-based) and commercially available Eutectic Mixture of Local Anesthesia (EMLA, 2.5% lidocaine and 2.5% prilocaine, carbopol-based) was separately but symmetrically applied in the dorsal region of pigs. Saline (0.9%, w/v) was perfused into the linear microdialysis probe at a flow rate of 1.5 microl/min. Dialysate was collected upon topical application up to 6 h at 20-min intervals and assessed by HPLC. The results demonstrated the area under the concentration-time curve (AUC(0-6 h)) of lidocaine and prilocaine in EMLA was 71.95+/-23.36 microg h/ml and 38.01+/-14.8 microg h/ml, respectively, in comparison to 167.11+/-56.12 microg h/ml and 87.02+/-30.38 microg h/ml in the P-L formulation. The maximal concentrations (Cmax) of lidocaine and prilocaine in the dermis were 29.2+/-9.08 microg/ml and 16.54+/-5.31 microg/ml in EMLA and 80.93+/-17.98 microg/ml and 43.69+/-12.87 microg/ml in the P-L formulation, respectively. This study indicates a well-calibrated microdialysis system can provide vital real-time information on percutaneous drug delivery and specifically a methylcellulose-based P-L formulation can increase percutaneous absorption of both lidocaine and prilocaine in pigs compared to carbopol-based EMLA.  相似文献   

11.
何海冰  唐星  崔福德 《药学学报》2006,41(5):452-456
目的考察酮洛芬微渗析体内外回收率及影响因素,研究酮洛芬静脉给药后非结合型药物在大鼠体内的药代动力学。方法大鼠颈静脉插入探针后,依次用不同浓度的灌注液对探针进行灌注,测定酮洛芬体内回收率及非结合型酮洛芬在大鼠体内的药代动力学。以高效液相色谱法测定微渗析液中药物浓度。体外回收率的测定采用浓差法。结果增量法及减量法测定的回收率一致。以浓差法测定的体外回收率为28.75%;反渗析法测定体内回收率为(40.3±2.7)%。酮洛芬静脉给药后非结合型药物的T1/2,AUC和CL分别为(181±16) min,(112±27) μg·min·mL-1和(0.22±0.05) min-1。结论血液微渗析技术可用于研究非结合型酮洛芬在大鼠体内的药代动力学。  相似文献   

12.
OBJECTIVE: The objective was to develop a microdialysis set-up to measure the concentration-time course of scopolamine in the interstitium of subcutaneous adipose tissue. MATERIALS AND METHODS: Six healthy male volunteers were eligible for data analysis. Subjects received 0.5 mg scopolamine as a 15-minute intravenous infusion. Microdialysis samples from interstitial space fluid of subcutaneous adipose tissue and blood samples were taken at predefined intervals over a period of 360 minutes. Scopolamine concentrations were measured by liquid chromatography-tandem mass spectrometry (LC-MS-MS). RESULTS: High inter-individual variability was observed in all pharmacokinetic parameters. The mean peak serum concentration (C(max)) of 6.5 +/- 3.9 ng/ml (data in mean +/- SD) was attained after 15 +/- 3 minutes (t(max)), whereas in dialysate, a mean peak concentration of 2.7 +/- 1.7 ng/ml was measured after 27 +/- 8 minutes. The ratio of the area under the concentration versus time curve from 0-360 min for interstitium (AUC(interstitium 0-360 min0) to the AUC for serum (AUC(serum 0-360 min)) was 0.96 +/- 0.7. The elimination half-life of scopolamine was 121 +/- 85 minutes in serum and 166 +/- 117 minutes in dialysate. Values for total clearance and volume of distribution in serum were 99.1 +/- 35.0 1/h and 188 +/- 76 1, respectively. CONCLUSIONS: In the present study, we were able to define a microdialysis set-up, which allows for the measurement of scopolamine concentrations in target tissues. In addition, we demonstrated that the concentrations of scopolamine in subcutaneous adipose tissue resemble closely the concentration-time course in serum of healthy volunteers.  相似文献   

13.
Testosterone exhibits very low oral bioavailability because of its low aqueous solubility and extensive first-pass metabolism. The purpose of this study was to develop a novel bi-layer mucoadhesive wax-film composite (WFC), and to test the relative bioavailability of testosterone via the buccal route in rabbits. The release rate of testosterone from optimal WFCs (3/8-in. diameter) per unit surface area was 5.6 microg x cm(2) x mL(-1) x min(-1) and was zero-order. Bi-layer WFCs (average weight of 14 +/- 2.6 mg and thickness of 186 +/- 34 microns) containing 4 mg of testosterone were applied to the buccal pouch of anesthetized New Zealand white rabbits. Rabbits (n = 3) injected intravenously had C(max) and area under the curve values of 1200 +/- 46 ng/mL, and 48,227 +/- 12,995 ng x min/mL, respectively. Rabbits (n = 3) dosed via the buccal pouch had C(max), T(max), and area under the curve values of 127 +/- 13 ng/mL, 200 +/- 35 min, and 24,221 +/- 1543 ng x min/mL. The relative bioavailability for rabbits treated with the WFC was 50.2 +/- 3.2% with a coefficient of variation of 6.4%. It was concluded that these bi-layer mucoadhesive WFCs disks could deliver physiologically relevant amounts of insoluble drugs such as testosterone across the buccal mucosa.  相似文献   

14.
福多司坦在健康受试者体内的药代动力学   总被引:7,自引:0,他引:7  
丁黎  杨劲  李荣珊  周梅  沈建平  张银娣 《药学学报》2005,40(10):945-949
目的研究健康受试者单剂量及多剂量口服福多司坦片后的药代动力学特征。方法36名健康受试者随机分为高、中、低3个剂量组,每组12人,男女各半,分别单剂量口服福多司坦片600,400和200 mg;中剂量组受试者单次口服福多司坦400 mg后,经过1周清洗期,再每日3次,每次400 mg,连续服药5 d。测定血浆中福多司坦的浓度,计算药代动力学参数。结果高、中、低3个单剂量组福多司坦的消除半衰期及体内平均驻留时间相近,AUC0-10 hCmax均与剂量呈线性关系;男性受试者的TmaxCmax和AUC均小于女性受试者,T1/2均大于女性受试者。统计学结果表明男性与女性间Cmax和AUC的差异与性别无关,而与体重有关。中剂量组多次给药后的平均稳态血药浓度为(4.1±0.8) μg·mL-1,消除半衰期为(2.5±0.4) h。结论剂量在200~600 mg时,福多司坦在健康受试者体内呈线性药代动力学特征,多剂量给药与单剂量给药的药代动力学参数基本一致。  相似文献   

15.
The objective of this study was to investigate the skin distribution of fluconazole, a water-soluble antifungal agent, following intravenous (i.v.) and topical administration in the awake freely moving rat. Following i.v. bolus injection of fluconazole (10 mg/kg), a dual-site microdialysis sampling was performed in jugular vein and dermis in five rats. In addition, cutaneous absorption was studied by dermal microdialysis sampling following topical application of Diflucan Gel 0.5% to 12 rats. Fluconazole microdialysate concentrations were measured by on-line HPLC. To calibrate in vivo the probes, a fluorinated analog (UK-54737) of fluconazole was used as retrodialysis marker after demonstrating that recoveries were no different. Following i.v. bolus injection, fluconazole rapidly penetrates into the dermis. Cutaneous microdialysis sampling provided dermal concentrations of fluconazole, which were very similar to the unbound plasma concentrations determined by vascular microdialysis. The distribution equilibrium was rapidly achieved with a dermis-to-plasma partition coefficient of 1.02+/-0.04 (n=5). Following topical application of 0.5 g of Diflucan Gel containing 0.5% of fluconazole, active unbound concentrations in dermis were measured by cutaneous microdialysis for 11 h after application. The area under the curve (AUC) of fluconazole in dermal dialysate was relatively constant to an implantation depth of approximately 350 microm. Below this depth, the AUC progressively decreased with increasing implantation depth of the probe. Finally, this study shows that cutaneous microdialysis is an effective and minimally invasive tool to evaluate the dermal pharmacokinetics of fluconazole following intravenous or topical administration.  相似文献   

16.
The objective of this study was to determine the pharmacokinetic parameters of miconazole after oral administration of a miconazole/hydroxypropyl-gamma-cyclodextrin(HPgammaCD)/L-tartaric acid inclusion complex produced by supercritical carbon dioxide processing. The pharmacokinetics of the miconazole ternary complex (CPLX), of the corresponding physical mixture (PHYS), and of miconazole alone (MICO) were compared after oral administration. Six mixed-breed pigs received each formulation as a single dose (10 mg miconazole/kg) in a crossover design. Miconazole plasma concentrations were determined by a high-performance liquid chromatography method. Preliminary in vitro dissolution data showed that CPLX exhibits a faster and higher dissolution rate than either PHYS or MICO. Following CPLX oral administration, mean area under the plasma concentration curve (AUC(0-infinity)) for miconazole was 95.0 +/- 55.8 microg/min/mL, with the peak plasma concentration (C(max) 0.59 +/- 0.39 microg/mL) at 19.30 minutes. The AUC(0-infinity) and C(max) values were significantly higher than those after oral administration of PHYS (AUC(0-infinity) 38.5 +/- 12.7 microg/min/mL and C(max) 0.24 +/- 0.08 microg/mL; P < .1) and of MICO (AUC(0-infinity) 24.1 +/- 14.0 microg/min/mL and C(max) 0.1 +/- 0.05 microg/mL; P < .1). There were also significant differences between PHYS and MICO (P < .1). The results of the study indicate that CPLX shows improved dissolution properties and a higher relative oral bioavailability compared with PHYS and MICO.  相似文献   

17.
The aim of this study was to develop a rapid and sensitive method for in vivo and real time monitoring unbound ornidazole (ONZ) and tinidazole (TNZ) in rabbit blood using capillary electrophoresis coupled with microdialysis. The UV wavelength was set at 214 nm and all separations were performed in 20 mM Tris-H3PO4 (pH 1.5) buffer. Microdialysis probes were perfused at 4 microl/min resulting in relative recoveries of 33.1+/-3.6% and 34.8+/-3.3% (n=3) for ONZ and TNZ, respectively. The linearity was studied in the concentration range of 1.0-412 microg/ml for ONZ and 1.0-520 microg/ml for TNZ. The detection limits were 0.7 microg/ml for ONZ and 0.6 microg/ml for TNZ (S/N=3). All separation could be achieved within 15 min. This method has been successfully applied to the pharmacokinetic study of ONZ and TNZ in rabbit blood.  相似文献   

18.
Enhanced transdermal delivery of tetracaine by electroporation   总被引:3,自引:0,他引:3  
The effect of electroporation on the transport of tetracaine through skin in vitro was studied using side-by-side compartment diffusion cells method. After achieving steady state by passive diffusion, fluxes of tetracaine achieved with passive diffusion, electroporative pulse and iontophoresis were compared. Electroporation (square-wave pulse, voltage 130 V, pulse time 0.4 s, pulse frequency 40 pulses min(-1)) or iontophoresis (0.2.mA cm(-2), lasting for 4 h) increased the transport of tetracaine through skin. The flux of tetracaine at 0.25 h after electroporation (pulse number 400) was 54.6+/-6.0 microg.cm(-2).h(-1), that after iontophoresis was 17.4+/-5.8 microg.cm(-2).h(-1) and that after passive diffusion was 8.2+/-0.5 microg.cm(-2).h(-1). In addition, the fluxes of tetracaine increased with the increasing of pulse number. From these results, it is clear that electroporation is effective in enhancing transdermal delivery of tetracaine and its function is better than iontophoresis.  相似文献   

19.
The aim of this study was to evaluate the effect of sodium diclofenac on the bioavailability of amoxicillin. In this randomised, crossover study with a 1-week washout period, 20 volunteers received a 2g oral dose of amoxicillin (Amoxil) (Group 1) or a 2g oral dose of amoxicillin with 100 mg of sodium diclofenac (Voltaren) (Group 2). Blood samples were collected at 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 4, 6, 8, 12 and 24h following drug administration. High-performance liquid chromatography with ultraviolet detection was used to quantify plasma amoxicillin concentrations. Bioassay (Micrococcus luteus ATCC 9341) was performed to verify the antimicrobial efficacy of amoxicillin in vitro. The pharmacokinetic parameters area under the plasma concentration-time curve (AUC), maximum plasma concentration observed during the 24-h study period (C(max)) and renal clearance (CL) were analysed by analysis of variance, and time at which C(max) occurred (T(max)) and volume of distribution (VD) were analysed by Wilcoxon test (P<0.05). For Group 1, the mean (+/- standard deviation) AUC(0-24), C(max) and T(max) values were 3391.8+/-1186.7 microg min/mL, 17.3+/-6.5 microg /mL and 121.5+/-20.6 min, respectively; and for Group 2, the values were 2918.4+/-1024.8 microg min/mL, 15.5+/-5.8 microg /mL and 136.5+/-30.0 min, respectively. Lower values of AUC and C(max) were observed for Group 2 (P<0.05). CL of amoxicillin increased (P< 0.05) by 18.5% in Group 2, suggesting that sodium diclofenac may interfere with amoxicillin renal excretion. In conclusion, sodium diclofenac can significantly reduce the bioavailability of amoxicillin.  相似文献   

20.
A sensitive microbore HPLC method was developed for the simultaneous determination of unbound cefoperazone in rat blood and brain using microdialysis. Two microdialysis probes were inserted into the jugular vein/right atrium and brain striatum of Sprague-Dawley rats. Cefoperazone (50 mgkg(-1), i.v.) was then administered via the femoral vein. Blood and brain dialysates were collected and eluted with a mobile phase containing methanol-100 mM monosodium phosphoric acid (30:70, v/v, pH 5.5). The wavelength of the UV detector was set at 254 nm. The detection limit of cefoperazone was 20 ng mL(-1). Isocratic separation of cefoperazone was achieved within 10 min. The intra- and inter-assay accuracy and precision of the analyses were < or =10% in the range of 0.05-10 microg mL(-1). The ratio of the area under the concentration curve of cefoperazone in rat brain and blood was estimated to be about 7-8%. It is concluded that cefoperazone is capable of penetrating the blood-brain barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号