首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: We analyzed the expression of critical cell cycle regulators cyclin E and cyclin D1 in familial breast cancer, focusing on BRCA mutation-negative tumors. Cyclin E expression in tumors of BRCA1 or BRCA2 carriers is higher, and cyclin D1 expression lower, than in sporadic tumors. In familial non-BRCA1/2 tumors, cyclin E and cyclin D1 expression has not been studied. EXPERIMENTAL DESIGN: Cyclin E and cyclin D1 immunohistochemical expression was studied in tissue microarrays consisting of 53 BRCA1, 58 BRCA2, 798 familial non-BRCA1/2, and 439 sporadic breast tumors. RESULTS: In univariate analysis, BRCA1 tumors had significantly more frequently high cyclin E (88%) and low cyclin D1 (84%) expression than sporadic (54% and 49%, respectively) or familial non-BRCA1/2 (38% and 45%, respectively) tumors. BRCA2 tumors had significantly more frequently low cyclin D1 expression (68%) than sporadic or familial non-BRCA1/2 tumors and significantly more frequently high cyclin E expression than familial non-BRCA1/2 tumors. In a logistic regression model, cyclin expression, early age of onset, and estrogen receptor (ER) and human epidermal growth factor receptor-2 (HER2) status were the independent factors most clearly distinguishing tumors of BRCA1 mutation carriers from other familial breast cancers. High cyclin E and low cyclin D1 expression were also independent predictors of BRCA2 mutation when compared with familial non-BRCA1/2 tumors. Most interestingly, lower frequency of high cyclin E expression independently distinguished familial non-BRCA1/2 tumors also from sporadic ones. CONCLUSIONS: Cyclin E and cyclin D1 expression distinguishes non-BRCA1/2 tumors from both sporadic and BRCA1- and BRCA2-associated tumors and may reflect different predisposition and pathogenesis in these groups.  相似文献   

2.
Honrado E  Osorio A  Palacios J  Benitez J 《Oncogene》2006,25(43):5837-5845
Tumors arising in BRCA1 and BRCA2 mutation carriers appear to have specific pathological and gene expression profiles, which show a high level of concordance. BRCA1 tumors are high-grade, negative for hormone receptors, have a high proliferation rate, and are positive for some cell cycle promoter genes. BRCA2 tumors present a phenotype opposite to BRCA1 tumors but very similar to sporadic tumors, except that BRCA2 overexpress some DNA repair markers such as CHEK2, show high cytoplasmic expression of RAD51, and are negative for HER-2 amplification and expression. Some of these characteristics have also been found in cDNA expression studies, although more analysis are necessary in order to obtain new markers that can be associated with a germ line mutation in BRCA1 or BRCA2. In this way, some studies in normal tissues of BRCA1/2 carriers suggest that differences exist in the level of expression of some genes when compared with noncarriers. Finally, IHC studies in tumors carrying a mutation in CHEK2 are rare and show contradictory results, probably due to the low number of these cases. However, they represent an example showing how different mutations of the same gene may be associated with specific histological subtypes of cancer.  相似文献   

3.
Five breast cancer subtypes have been described in sporadic breast cancer (SBC) using expression arrays: basal-like, ERBB2, normal breast-like, luminal A and B. These molecular subtypes show different genomic aberration patterns (GAPs). Recently, our group described these breast cancer subtypes in 50 non-BRCA1/2 familial tumors using immunohistochemistry assays. We extended this study to the other classes of familial breast cancer (FBC), including 62 tumors (18 BRCA1, 16 BRCA2 and 28 non-BRCA1/2), with the same panel of 25 immunohistochemical (IHC) markers and histological grade obtaining a similar classification. We combined these data with results generated by a 1 Mb BAC array-based CGH study to evaluate the genomic aberrations of each group. We found that BRCA1-related tumors are preferentially basal-like, whereas non-BRCA1/2 familial tumors are mainly luminal A subtype. We described distinct GAPs related to each IHC subtype. Basal tumors had a greater number of gains/losses, while luminal B tumors had more high-level DNA amplifications. Our data are similar to those obtained in SBC studies, highlighting the existence of distinct genetic pathways of tumor evolution, common to both SBC and FBC.  相似文献   

4.
Telomere shortening is a common event involved in malignant transformation. Critically short telomeres may trigger chromosomal aberrations and produce genomic instability leading to cancer development. Therefore, telomere shortening is a frequent molecular alteration in early stages of many epithelial tumors and in breast cancer correlates with stage and prognosis. A better understanding of the involvement of short telomeres in tumors may have a significant impact on patient management and the design of more specific treatments. To understand the role of telomere length (TL) in breast cancer etiology we measured the length of individual telomere signals in single cells by using quantitative telomere in situ hybridization in paraffin-embedded tissue from hereditary and sporadic breast cancers. A total of 104 tumor tissue samples from 75 familial breast tumors (BRCA1, n = 14; BRCA2, n = 13; non-BRCA1/2, n = 48) and 29 sporadic tumors were analyzed. Assessment of telomere signal intensity allowed estimation of the mean TL and related variables, such as percentage of critically short telomeres and percentage of cells with short telomeres. These data were correlated with the immunohistochemical expression of molecular breast cancer markers. Hereditary BRCA1, BRCA2, and non-BRCA1/2 tumors were characterized by shorter TL comparing to sporadic tumors. Considering all tumors, tumor grade was a strong risk factor determining the proportion of short telomeres or short telomere cells. Moreover, some histopathological features appeared to be differentially associated to hereditary or sporadic subgroups. Short telomeres correlated with ER-negative tumors in sporadic cases but not in familial cases, whereas a high level of apoptosis was associated with shorter telomeres in hereditary BRCA1 and BRCA2 tumors. In addition, TL helped to define a subset of non-BRCA1/2 tumors with short telomeres associated with increased expression of antiapoptotic proteins. These findings highlight the potential interest of TL measurements as markers of aggressiveness in breast cancer.  相似文献   

5.
Six SNPs have been detected in the DNA repair genes RAD51C and RAD51D, not previously characterized. The novel variant E233G in RAD51D is more highly represented in high-risk, site-specific, familial breast cancer cases that are not associated with the BRCA1/2 genes, with a frequency of 5.74% (n = 174) compared to a control population (n = 567) and another subset of breast cancer patients (n = 765) with a prevalence of around 2% only (comparison to controls, OR = 2.6, 95% CI 1.12-6.03; p < 0.021). We found that the immunohistochemical profile detected in available tumors from these patients differs slightly from those described in non-BRCA1/2 tumors. Finally, the structural prediction of the putative functional consequence of this change indicates that it can diminish protein stability and structure. This suggests a role for E233G as a low-penetrance susceptibility gene in the specific subgroup of high-risk familial breast cancer cases that are not related to BRCA1/2.  相似文献   

6.
7.
The frame-shifting mutation 1100delC in the cell-cycle-checkpoint kinase 2 gene (CHEK2) has been reported to be associated with familial breast cancer in families in which mutations in BRCA1 and BRCA2 were excluded. To investigate the role of this variant as a candidate breast cancer susceptibility allele, we determined its prevalence in 237 breast cancer patients and 331 healthy relatives derived from 71 non-BRCA1/BRCA2 multiple-case early onset breast cancer families. Twenty-seven patients (11.4%) were carrying the CHEK2*1100delC variant. At least one carrier was found in 15 of the 71 families (21.1%). There was no evidence of cosegregation between the variant and breast cancer, but carrier patients developed breast cancer earlier than did noncarriers. We studied CHEK2 protein expression in 111, and loss of heterozygosity at CHEK2 in 88 breast tumors from these patients. Twelve of 15 tumors from carriers showed absent protein expression as opposed to 3 of 76 tumors from noncarriers (P < 0.001). CHEK2 loss of heterozygosity was associated with absence of protein expression but not with 1100delC carrier status. Thus, selecting for breast cancer cases with a strong familial background not accounted for by BRCA1 or BRCA2 strongly enriches for carriers of CHEK2*1100delC. Our results support a model in which CHEK2*1100delC interacts with an as yet unknown gene (or genes) to increase breast cancer risk.  相似文献   

8.
Background: Early-onset or familial gastric cancer (GC) is known to have clinicopathologic profiles different fromthose of sporadic GC. We aimed to compare DNA damage response marker expression between early-onset or familialGC and sporadic GC. Methods: GC samples were obtained from patients who underwent gastrectomy for GC at SeoulNational University Hospital. Immunohistochemical analyses of various DNA damage response markers, includingBRCA1, BRCA2, MRE11, RAD51C, and γH2AX, were performed using 54 early-onset GC, 59 familial GC, and 337sporadic GC tissue microarray samples. Correlations between marker expression and clinicopathologic features wereevaluated by univariate and multivariate analyses, and overall survival was analyzed. Results: The rate of γH2AXpositivity was significantly higher (p < 0.001) in early-onset or familial GC than in sporadic GC. In contrast, the rates ofMRE11 negativity and RAD51C negativity were significantly higher in sporadic GC than in early-onset or familial GC.BRCA1 negativity was associated with decreased overall survival in sporadic GC (p = 0.002), and MRE11 negativitywas associated with decreased overall survival in sporadic GC (p = 0.012). Conclusion: Our results show significantdifferences in DNA damage response marker expression between early-onset or familial GC and sporadic GC.  相似文献   

9.
Although a significant proportion of familial aggregation of breast cancer remains unexplained, many of the currently known breast cancer susceptibility genes, including BRCA1, BRCA2 and TP53, play a role in maintaining genome integrity by engaging in DNA repair. RAD51L1 is one of the five RAD51 paralogs involved in homologous recombination (HR) repair of DNA double-strand breaks (DSBs); it also interacts directly with p53. Deleterious mutations have been found in one RAD51 paralog, RAD51C (RAD51L2), in non-BRCA1/2 breast and ovarian cancer families, which suggests that all five paralogs are strong candidate breast cancer susceptibility genes. A genome-wide association study (GWAS) has already identified a single nucleotide polymorphism (SNP) deep within intron 10 of RAD51L1 as a risk locus for breast cancer. Based on its biological functions and association with RAD51C, there is reason to suggest that RAD51L1 (RAD51B/REC2) may also contain high risk mutations in the gene that give rise to multiple-case breast cancer families. In order to investigate this hypothesis, we have used high resolution melt (HRM) analysis to screen RAD51L1 for germline mutations in 188 non-BRCA1/2 multiple-case breast cancer families and 190 controls. We identified a total of seven variants: one synonymous, three intronic, and three previously identified SNPs, but no truncating or nonsense changes. Therefore, our results suggest that RAD51L1 is unlikely to represent a high-penetrance breast cancer susceptibility gene.  相似文献   

10.
We examined the subcellular localization of BRCA1 proteins using immunohistochemical staining with C-terminal (GLK-2 antibody) and N-terminal (Ab-2 antibody) monoclonal antibodies in 44 familial ovarian cancers. Among these, 24 cases were associated with 13 independent germ-line mutations of BRCA1, and loss of heterozygosity (LOH) at one or more BRCA1 microsatellite markers was found in all 21 informative tumors tested. With GLK-2 antibody, cytoplasmic staining was observed in 15 of 16 tumors (93.8%) with mutation in exon 11, and BRCA1 staining was absent in 8 of 8 tumors (100%) with mutation in exons other than exon 11. When immunohistochemical staining was performed with Ab-2 antibody, both nuclear and cytoplasmic staining were observed in 14 of 16 tumors (87.5%) with mutation in exon 11. Interestingly, nuclear staining was observed in 3 of 3 tumors (100%) with mutation downstream of exon 11, even though no staining was detected in 5 of 5 tumors (100%) with mutation upstream of exon 11. On the other hand, in familial ovarian cancers without BRCA1 mutations, nuclear staining or both nuclear and cytoplasmic staining was observed in 18 of 20 specimens (90%) and 20 of 20 specimens (100%) with GLK-2 antibody and with Ab-2 antibody, respectively. These results suggest that an immunohistochemical assay in combination with employing the C-terminal and the N-terminal antibodies appears to have potential as a reliable and useful technique for the screening of BRCA1 mutations, at least to predict the status of mutation, upstream or downstream of exon 11.  相似文献   

11.
We examined the subcellular localization of BRCA1 proteins using immunohistochemical staining with C-terminal (GLK-2 antibody) and N-terminal (Ab-2 antibody) monoclonal antibodies in 44 familial ovarian cancers. Among these, 24 cases were associated with 13 independent germ-line mutations of BRCA1 , and loss of heterozygosity (LOH) at one or more BRCA1 microsatellite markers was found in all 21 informative tumors tested. With GLK-2 antibody, cytoplasmic staining was observed in 15 of 16 tumors (93.8%) with mutation in exon 11, and BRCA1 staining was absent in 8 of 8 tumors (100%) with mutation in exons other than exon 11. When immunohistochemical staining was performed with Ab-2 antibody, both nuclear and cytoplasmic staining were observed in 14 of 16 tumors (87.5%) with mutation in exon 11. Interestingly, nuclear staining was observed in 3 of 3 tumors (100%) with mutation downstream of exon 11, even though no staining was detected in 5 of 5 tumors (100%) with mutation upstream of exon 11. On the other hand, in familial ovarian cancers without BRCA1 mutations, nuclear staining or both nuclear and cytoplasmic staining was observed in 18 of 20 specimens (90%) and 20 of 20 specimens (100%) with GLK-2 antibody and with Ab-2 antibody, respectively. These results suggest that an immunohistochemical assay in combination with employing the C-terminal and the N-terminal antibodies appears to have potential as a reliable and useful technique for the screening of BRCA1 mutations, at least to predict the status of mutation, upstream or downstream of exon 11.  相似文献   

12.
Breast tumors from BRCA1 germ line mutation carriers typically exhibit features of the basal-like molecular subtype. However, the specific genes recurrently mutated as a consequence of BRCA1 dysfunction have not been fully elucidated. In this study, we used gene expression profiling to molecularly subtype 577 breast tumors, including 73 breast tumors from BRCA1/2 mutation carriers. Focusing on the RB1 locus, we analyzed 33 BRCA1-mutated, 36 BRCA2-mutated, and 48 non-BRCA1/2-mutated breast tumors using a custom-designed high-density oligomicroarray covering the RB1 gene. We found a strong association between the basal-like subtype and BRCA1-mutated breast tumors and the luminal B subtype and BRCA2-mutated breast tumors. RB1 was identified as a major target for genomic disruption in tumors arising in BRCA1 mutation carriers and in sporadic tumors with BRCA1 promoter methylation but rarely in other breast cancers. Homozygous deletions, intragenic breaks, or microdeletions were found in 33% of BRCA1-mutant tumors, 36% of BRCA1 promoter-methylated basal-like tumors, 13% of non-BRCA1-deficient basal-like tumors, and 3% of BRCA2-mutated tumors. In conclusion, RB1 was frequently inactivated by gross gene disruption in BRCA1 hereditary breast cancer and BRCA1-methylated sporadic basal-like breast cancer but rarely in BRCA2 hereditary breast cancer and non-BRCA1-deficient sporadic breast cancers. Together, our findings show the existence of genetic heterogeneity within the basal-like breast cancer subtype that is based upon BRCA1 status. Cancer Res; 72(16); 4028-36. ?2012 AACR.  相似文献   

13.
Genomic analysis of the 8p11-12 amplicon in familial breast cancer   总被引:2,自引:0,他引:2  
Amplification of 8p11-12 has been recurrently reported in sporadic breast cancer. These studies define a complex molecular structure with a set of minimal amplified regions, and different putative oncogenes that show a strong correlation between amplification and over-expression such as ZNF703/FLJ14299, SPFH2/C8orf2, BRF2 and RAB11FIP. However, none of these studies were carried out on familial breast malignancies. We have studied the incidence, molecular features and clinical value of this amplification in familial breast tumors associated with BRCA1, BRCA2 and non-BRCA1/2 gene mutations. We detected 9 out of 80 familial tumors with this amplicon by chromosomal comparative genomic hybridization. Next, we used a high-resolution comparative genomic hybridization array covering the 8p11-12 region to characterize this chromosomal region. This approach allowed us to define 2 cores of common amplification that largely overlap with those reported in sporadic tumors. Our findings confirm the molecular complexity of this chromosomal region and indicate that this genomic event is a common alteration in breast cancer, present not only in sporadic but also in familial tumors. Finally, we found correlation between the 8p11-12 amplification and proliferation (Ki-67) and cyclin E expression, which further proves in familial tumors the poor prognosis association previously reported in sporadic breast cancer.  相似文献   

14.
The ataxia-telangiectasia-mutated (ATM) kinase is a key transducer of DNA damage signals within the genome maintenance machinery and a tumour suppressor whose germline mutations predispose to familial breast cancer. ATM signalling is constitutively activated in early stages of diverse types of human malignancies and cell culture models in response to oncogene-induced DNA damage providing a barrier against tumour progression. As BRCA1 and BRCA2 are also components of the genome maintenance network and their mutations predispose to breast cancer, we have examined the ATM expression in human breast carcinomas of BRCA1/2 mutation carriers, sporadic cases and familial non-BRCA1/2 patients. Our results show that ATM protein expression is aberrantly reduced more frequently among BRCA1 (33%; P=0.0003) and BRCA2 (30%; P=0.0009) tumours than in non-BRCA1/2 tumours (10.7%). Furthermore, the non-BRCA1/2 tumours with reduced ATM expression were more often estrogen receptor (ER) negative (P=0.0002), progesterone receptor (PR) negative (P=0.004) and were of higher grade (P=0.0004). In our series of 1013 non-BRCA1/2 cases, ATM was more commonly deficient (20%; P=0.0006) and p53 was overabundant (47%; P<0.0000000001) among the difficult-to-treat ER/PR/ERBB2-triple-negative subset of tumours compared with cases that expressed at least one of these receptors (10 and 16% of aberrant ATM and p53, respectively). We propose a model of 'conditional haploinsufficiency' for BRCA1/2 under conditions of enhanced DNA damage in precancerous lesions resulting in more robust activation and hence increased selection for inactivation or loss of ATM in tumours of BRCA1/2 mutation carriers, with implications for genomic instability and curability of diverse subsets of human breast cancer.  相似文献   

15.
Reduced Fhit expression in sporadic and BRCA2-linked breast carcinomas.   总被引:7,自引:0,他引:7  
Evidence for alteration of the FHIT gene in a significant fraction of breast carcinomas has been reported, in apparent concordance with loss of heterozygosity (LOH) at chromosome region 3p14.2 in breast cancer and benign proliferative breast disease. A significantly higher frequency of LOH at the FHIT locus was reported for BRCA2-/- tumors, possibly due to misrepaired double-strand breaks at this common fragile region. To determine whether such genomic alterations lead to Fhit inactivation, we have assessed the level of Fhit expression by immunohistochemical detection in sporadic tumors and cancers occurring in BRCA2 999del5 carriers. To determine whether Fhit inactivation may have prognostic significance, we have also assessed expression of breast cancer markers and clinical features in sporadic tumors relative to Fhit expression. Of 40 consecutive sporadic breast carcinomas studied for tumor markers, 50% showed reduced Fhit expression. In these sporadic cancers, loss of Fhit expression was not correlated significantly with the presence or absence of other tumor markers. In a study of 58 sporadic and 34 BRCA2 999del5 Icelandic invasive cancers, there was a significant association of LOH at 3p14.2 with reduced expression of Fhit (P = 0.001); also the lower expression of Fhit and higher LOH at 3p14.2 in BRCA2 999del5 tumors relative to sporadic cancers was significant (P = 0.002). Thus, genetic alteration at the fragile site within the FHIT gene leads to loss of Fhit protein in a significant fraction of sporadic breast cancers and a much larger fraction of familial breast cancers with an inherited BRCA2 mutation, consistent with the idea that loss of BRCA2 function affects stability of the FHIT/FRA3B locus.  相似文献   

16.
The breast cancer susceptibility gene BRCA1 encodes a large protein thought to contribute to a variety of cellular processes, although the critical determinants of BRCA1-deficient tumorigenesis remain unclear. Given that BRCA1 is required for cell proliferation, suppressor mutations are believed to modify BRCA1 phenotypes and contribute to the etiology of BRCA1-deficient tumors. Here, we show that overexpression of the homologous recombinase RAD51 in a DT40 BRCA1Delta/Delta mutant rescues defects in proliferation, DNA damage survival, and homologous recombination (HR). In addition, epistasis analysis with BRCA1 and the DNA end-joining factor KU70 indicates that these factors operate independently of one another to repair double-strand breaks. Consistent with this genetic finding, cell synchronization studies show that the ability of BRCA1 to promote radioresistance is restricted to the late S and G2 phases of the cell cycle, as predicted for genes whose function is specific to homology-mediated repair rather than nonhomologous end-joining. Notably, retrospective analyses of microarray expression data reveal elevated expression of RAD51 and two of its late-acting cofactors, RAD54 and RAD51AP1, in BRCA1-deficient versus sporadic breast tumors. Taken together, our results indicate that up-regulation of HR provides a permissive genetic context for cells lacking BRCA1 function by circumventing its requirement in RAD51 subnuclear assembly. Furthermore, the data support a model in which enhanced HR activity contributes to the etiology of BRCA1-deficient tumors.  相似文献   

17.
A single-nucleotide polymorphism (SNP) in the 5′-untranslated region (UTR) of RAD51, 135G>C (rs1801320), was reported to be associated with an increased risk of breast cancer among BRCA2 as well as BRCA1 carriers. A few studies have also investigated the genetic contribution of RAD51 135G>C to the risk of sporadic breast cancers or breast cancer in non-BRCA1/2 carriers, though the results are yet controversial and inconclusive. We, in this study, performed a more precise estimation of the relationship between 135G>C and breast cancer among non-BRCA1/2 mutation carriers by meta-analyzing the currently available evidence from the literature. A total of 12 studies involving 7,065 cases and 6,981 controls were identified. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. When all the studies were pooled into the meta-analysis, there was no evidence for a significant association between 135G>C and breast cancer risk in non-BRCA1/2 mutation carriers (for CC vs. GG: OR = 0.995, 95%CI: 0.741–1.336; for GC vs. GG: OR = 0.959, 95%CI: 0.869–1.057; for dominant model: OR = 0.988, 95%CI: 0.902–1.082; and for recessive model: OR = 1.037, 95%CI: 0.782–1.376). We also performed subgroup analysis by ethnicity (Caucasian) as well as did analysis using the studies fulfilling Hardy–Weinberg equilibrium, and the results did not change. In summary, the present meta-analysis suggests that the RAD51 135G>C does not modify breast cancer risk in non-BRCA1/2 mutation carriers.  相似文献   

18.

Introduction

The RAD21 gene encodes a key component of the cohesin complex, which is essential for chromosome segregation, and together with BRCA1 and BRCA2, for high-fidelity DNA repair by homologous recombination. Although its expression correlates with early relapse and treatment resistance in sporadic breast cancers, it is unclear whether familial breast cancers behave in a similar manner.

Methods

We performed an immunohistochemical analysis of RAD21 expression in a cohort of 94 familial breast cancers (28 BRCA1, 27 BRCA2, and 39 BRCAX) and correlated these data with genotype and clinicopathologic parameters, including survival. In these cancers, we also correlated RAD21 expression with genomic expression profiling and gene copy-number changes and miRNAs predicted to target RAD21.

Results

No significant differences in nuclear RAD21 expression were observed between BRCA1 (12 (43%) of 28), BRCA2 (12 (44%) of 27), and BRCAX cancers (12 (33%) of 39 (p = 0.598). No correlation was found between RAD21 expression and grade, size, or lymph node, ER, or HER2 status (all P > 0.05). As for sporadic breast cancers, RAD21 expression correlated with shorter survival in grade 3 (P = 0.009) and but not in grade 1 (P = 0.065) or 2 cancers (P = 0.090). Expression of RAD21 correlated with poorer survival in patients treated with chemotherapy (P = 0.036) but not with hormonal therapy (P = 0.881). RAD21 expression correlated with shorter survival in BRCA2 (P = 0.006) and BRCAX (P = 0.008), but not BRCA1 cancers (P = 0.713). Changes in RAD21 mRNA were reflected by genomic changes in DNA copy number (P < 0.001) and by RAD21 protein expression, as assessed with immunohistochemistry (P = 0.047). High RAD21 expression was associated with genomic instability, as assessed by the total number of base pairs affected by genomic change (P = 0.048). Of 15 miRNAs predicted to target RAD21, mir-299-5p inversely correlated with RAD21 expression (P = 0.002).

Conclusions

Potential use of RAD21 as a predictive and prognostic marker in familial breast cancers is hence feasible and may therefore take into account the patient's BRCA1/2 mutation status.  相似文献   

19.
Mutations in BRCA1 and BRCA2 genes predispose to breast and ovarian cancer (BC/OC) with a high lifetime risk, whereas mutations in PALB2, CHEK2, ATM, FANCM, RAD51C and RAD51D genes cause a moderately elevated risk. In the Finnish population, recurrent mutations have been identified in all of these genes, the latest being CHEK2 c.319+2T>A and c.444+1G>A. By genotyping 3,156 cases and 2,089 controls, we estimated the frequencies of CHEK2 c.319+2T>A and c.444+1G>A in Finnish BC patients. CHEK2 c.319+2T>A was detected in 0.7% of the patients, and it was associated with a high risk of BC in the unselected patient group (OR = 5.40 [95% CI 1.58–18.45], p = 0.007) and similarly in the familial patient group. CHEK2 c.444+1G>A was identified in 0.1% of all patients. Additionally, we evaluated the combined prevalence of recurrent moderate-risk gene mutations in 2,487 BC patients, 556 OC patients and 261 BRCA1/2 carriers from 109 families. The overall frequency of the mutations was 13.3% in 1,141 BRCA1/2-negative familial BC patients, 7.5% in 1,727 unselected BC patients and 7.2% in 556 unselected OC patients. At least one moderate-risk gene mutation was found in 12.5% of BRCA1 families and 7.1% of BRCA1 index patients, as well as in 17.0% of BRCA2 families and 11.3% of BRCA2 index patients, and the mutations were associated with an additional risk in the BRCA1/2 index patients (OR = 2.63 [1.15–5.48], p = 0.011). These results support gene panel testing of even multiple members of BC families where several mutations may segregate in different individuals.  相似文献   

20.
Reports on the prognosis of familial breast cancer patients have been contradictory. True differences in survival, if they exist, would have important implications for genetic counselling and in treatment of hereditary breast cancer. We assessed the survival rates of 359 familial breast cancer patients (32 patients from BRCA1-positive families, 43 patients from BRCA2-positive families and 284 patients from BRCA1/2-negative breast cancer families) and compared them with those of all other breast cancer patients diagnosed in Finland from 1953 to 1995 (n = 59,517). Cumulative relative survival rates (RSR) were calculated by dividing the observed survival rates by the expected ones. The expected survival rates were derived from the sex, age and calendar year specific life-tables of the general population in Finland. Regression model was used to calculate relative excess risk of death (RR) and to adjust for confounding factors. The overall 5-year RSR of the patients in the BRCA1 families, BRCA2 families, non-BRCA1/2 families and among sporadic cases was 67%, 77%, 86% and 78%, respectively. However, we found no significant differences in the RR adjusted for age, stage and year of diagnosis between the different familial patient groups or the general breast cancer population. In the BRCA1 families the RR tended to be higher [RR 1.30, 95% confidence interval (CI) 0.63--2.70] and in the BRCA2 families lower (RR 0.78, 95% CI 0.39--1.57) than among the general breast cancer patient population. The RR among patients in the non-BRCA1/2 families did not differ from that of the general patient population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号