首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pro- and mature brain-derived neurotrophic factor (BDNF) activate two distinct receptors: p75 neurotrophin receptor (p75(NTR)) and TrkB. Mature BDNF facilitates hippocampal synaptic potentiation through TrkB. Here we report that proBDNF, by activating p75(NTR), facilitates hippocampal long-term depression (LTD). Electron microscopy showed that p75(NTR) localized in dendritic spines, in addition to afferent terminals, of CA1 neurons. Deletion of p75(NTR) in mice selectively impaired the NMDA receptor-dependent LTD, without affecting other forms of synaptic plasticity. p75(NTR-/-) mice also showed a decrease in the expression of NR2B, an NMDA receptor subunit uniquely involved in LTD. Activation of p75(NTR) by proBDNF enhanced NR2B-dependent LTD and NR2B-mediated synaptic currents. These results show a crucial role for proBDNF-p75(NTR) signaling in LTD and its potential mechanism, and together with the finding that mature BDNF promotes synaptic potentiation, suggest a bidirectional regulation of synaptic plasticity by proBDNF and mature BDNF.  相似文献   

2.
Development of the hippocampus is not entirely preprogrammed; its structure and function are sensitive to postnatal experience. For instance, neonatal handling/exposure to novelty and peripubertal environmental enrichment enhance hippocampal function and related memory abilities. However, these complex environmental manipulations make it difficult to deduce the primary stimuli that drive more rapid hippocampal maturation, and few experiments have studied the neural mechanisms that support the behavioral modifications. To address these issues, I performed early eyelid opening in rat pups and examined developmental alterations in exploration of a Y-maze and in synaptic transmission measured in hippocampal slices. Early eyelid opening accelerated development of spontaneous alternation. Additionally, early eyelid opening promoted more rapid remodeling of afferent input to the dentate gyrus and area CA1 as well as earlier maturation of perforant path synaptic physiology. These findings implicate visual input as an extrinsic factor that drives hippocampal development and the emergence of hippocampal-dependent behavior.  相似文献   

3.
This study investigated the functional significance of the N2 response to novel stimuli. In one condition, background, target, and deviant stimuli were simple geometric figures. In a second condition, all stimulus types were unfamiliar/unusual figures. In a third condition, background and target stimuli were unusual figures and deviant stimuli were simple shapes. Unusual figures, whether they were deviant, target, or background stimuli, evoked larger N2 responses than their simple, familiar counterparts. N2 elicited by an unusual background stimulus was larger than that evoked by simple, deviant stimuli, a pattern opposite that exhibited by the subsequent P3. Deviance from immediate context had limited influence over N2 amplitude. The results suggest that novelty N2 and novelty P3 reflect the processing of different aspects of "novel" visual stimuli. The novelty P3 is particularly sensitive to deviation from immediate context. In contrast, the novelty N2 is sensitive to deviation from long-term context that renders a stimulus unfamiliar and difficult to encode.  相似文献   

4.
Nicotine is thought to act on brain monoamine systems that normally mediate diverse motivational behaviors. How monoamine-related genes contribute to behavioral traits (e.g. responses to novel stimuli) comorbid with the susceptibility to nicotine addiction is still poorly understood. We examined the impact of constitutive monoamine oxidase A (MAOA) deficiency in mice on nicotine reward and responses to novel stimuli. Age-matched, male Maoa-knockout (KO) mice and wild-type (WT) littermates were tested for nicotine-induced conditioned place preference (CPP); voluntary oral nicotine preference/intake; spontaneous locomotor activity in a novel, inescapable open field; and novelty place preference. Nicotine preference in WT mice was reduced in Maoa-KO mice in the CPP and oral preference/intake tests. Control experiments showed that these phenotypes were not due to abnormalities in nicotine metabolism, fluid intake or response to taste. In contrast, Maoa-KO mice were normal in their behavioral response to a novel, inescapable open field and in their preference for a novel place. The observed phenotypes suggest that a constitutive deficiency of MAOA reduces the rewarding effects of nicotine without altering behavioral responses to novel stimuli in mice. Constitutive MAOA activity levels are likely to contribute to the vulnerability or resiliency to nicotine addiction by altering the rewarding effects of nicotine.  相似文献   

5.
Acute behavioural stress has been recognized as a strong influence on the inducibility of hippocampal long-term synaptic plasticity. We have reported previously that in adult male rats, acute behavioural stress impairs long-term potentiation (LTP) but enhances long-term depression (LTD) in the hippocampal CA1 region. In this study we report that the effects of stress on LTP and LTD were reversed when animals were introduced into a novel 'stimulus-rich' environment immediately after the stress. Novelty exploration-induced reversal of stress effects was prevented when the animals were given the NMDA receptor antagonist d -(−)-2-amino-5-phosphonopentanoic acid, the cholinergic antagonist atropine and the protein phosphatase (PP) 2B inhibitors cyclosporin A and cypermethrin, but not the α1-adrenergic antagonist prazosin, the β-adrenergic antagonist propranolol or the PP1/2A inhibitor okadaic acid, respectively before being subjected to the novel environment. In addition, the ability of novelty exploration to reverse the stress effects was mimicked by a direct application of the cholinergic agonist carbachol. Exposure to the novel environment following stress was accompanied by the activation of both PP2B and striatal-enriched tyrosine phosphatase (STEP). Taken together, these findings suggest that the activation of the cholinergic system and, in turn, the triggering of an NMDA receptor-mediated activation of PP2B to increase STEP activity appear to mediate the novelty exploration-induced reversal of stress-related modulation of hippocampal long-term synaptic plasticity.  相似文献   

6.
Long-term potentiation (LTP) and long-term depression (LTD) are principal reflections of synaptic plasticity that have been implicated in learning and memory. We have previously shown that spatial learning in a newly validated complex maze is accompanied by depression of hippocampal CA1 synaptic activity in hippocampal slices of trained mice ("behavioral LTD"). In the present study, we investigated whether behavioral LTD is accompanied by alterations of subsequent LTP induced by high-frequency stimulation (HFS). Moreover, we were interested in the time course of such alterations in relation to training stage. Animals underwent 1, 2, and 8 days of spatial training in the complex maze, respectively. Hippocampal slices were taken 24 h after the last training session. We found a simultaneous decrease of basal synaptic response and increase of HFS induced LTP magnitude compared with slices of untrained animals. Synaptic plasticity was not influenced by repeated running wheel exercise in an additional control group without spatial learning. The mentioned alterations occurred already after day 2 of maze exploration parallel to the most pronounced improvement of behavioral performance but did not change thereafter until day 8 despite further learning progress. They were also found when animals were trained for 2 days and kept at rest for a subsequent 6 days. In conclusion, spatial learning may be reflected by distinct and persistent measurable alterations of synaptic plasticity in hippocampal CA1 neurons at early training stages.  相似文献   

7.
The role of corticotropin-releasing factor in autonomic regulation of heart rate, heart rate variability and behavior responses was investigated in two genetic mouse models: corticotropin-releasing factor receptor 1-deficient mice, and corticotropin-releasing factor-transgenic mice overexpressing corticotropin-releasing factor. Heart rate was recorded by radio-telemetry during novelty exposure and auditory fear conditioning. Locomotor activity and freezing served as behavioral indices. Locomotor activity and heart rate were invariably increased in response to novelty exposure in both corticotropin-releasing factor receptor 1-deficient mice and littermate wild-type controls. The heart rate responses during retention of conditioned auditory fear and the exponential relationship between heart rate and heart rate variability were unaffected by genotype. Moreover, conditioned fear responses inferred from multiple behavioral measures including freezing did not differ between corticotropin-releasing factor receptor 1-deficient and corticotropin-releasing factor receptor 1 wild-type control mice. Corticotropin-releasing factor-transgenic mice exhibited markedly reduced locomotor activity during novelty exposure when compared with littermate wild-type controls. Baseline and novelty-driven heart rate was slightly elevated in corticotropin-releasing factor-transgenic mice, whereas the novelty-induced increase of heart rate was not different between genotypes. In contrast, corticotropin-releasing factor-transgenic mice did not display a heart rate response indicative of conditioned auditory fear. It is concluded that corticotropin-releasing factor receptor 1-deficiency does not affect heart rate adjustment and behavioral responses to acute fearful stimuli. The resiliency of behavioral and cardiovascular patterns elevation argues against the involvement of corticotropin-releasing factor receptor 1 in acute emotional regulation on these two functional levels despite an absent corticosterone elevation in corticotropin-releasing factor receptor 1-deficient mice. It is hypothesized that the lack of a conditioned heart rate response in corticotropin-releasing factor-transgenic mice is attributable to an impairment of cognitive function. The results are compared with those of corticotropin-releasing factor receptor 2-deficient mice, and the role of the corticotropin-releasing factor system in cardiovascular regulation is discussed.  相似文献   

8.
为了观察慢性复合应激对大鼠学习与记忆的影响和海马内 NMDA受体亚基 NR2 A、NR2 B表达的变化。本研究将成年雄性 Wistar大鼠分为实验组和对照组 ,实验组动物每天交替暴露于复合应激原环境中达 6周 ,用 Morris水迷宫和 Y迷宫作业测试其空间学习与记忆成绩 ,再采用免疫组织化学和图像处理方法分析海马 CA1 、CA3、齿状回区的 NR2 A和 NR2 B的表达。结果显示 :( 1) Morris水迷宫测试 :慢性复合应激组大鼠寻找平台的潜伏期较对照组明显缩短 ,Y迷宫测试 :慢性复合应激组大鼠学会躲避电击的正确次数较对照组明显增多 ;( 2 )慢性复合应激组海马内 NMDA受体亚基 NR2 B表达水平较对照组明显上调 ,NR2 A表达水平无显著变化。结论 :慢性复合应激可增强学习与记忆能力 ,NMDA受体表达变化可能是影响学习与记忆的机制之一  相似文献   

9.
Synaptic plasticity is the foundation of learning and memory. The protein kinase CK2 phosphorylates many proteins related to synaptic plasticity, but whether it is directly involved in it has not been clarified. Here, we examined the role of CK2 in synaptic plasticity in hippocampal slices using the CK2 selective inhibitors 5,6-dichloro-1-β- d -ribofuranosylbenzimidazole (DRB) and 4,5,6,7-tetrabromobenzotriazole (TBB). These significantly inhibited N -methyl- d -aspartate (NMDA) receptor-dependent long-term potentiation (LTP). DRB also inhibited NMDA receptor-mediated synaptic transmission, while leaving NMDA receptor-independent LTP unaffected. NMDA receptors thus appear to be the primary targets of CK2. Although both long-term depression (LTD) and LTP are induced by the influx of Ca2+ through NMDA receptors, surprisingly, LTD was not affected by CK2 inhibitors. We postulated that the LTP-selective modulation by CK2 is due to selective modulation of NMDA receptors, and tested two hypotheses concerning the modulation of NMDA receptors: (i) CK2 selectively modulates NR2A subunits possibly related to LTP, but not NR2B subunits possibly related to LTD; and (ii) CK2 selectively affects synaptic but not extrasynaptic NMDA receptors whose activation is sufficient to induce LTD. DRB decreased NMDA receptor-mediated synaptic transmission in the presence of selective NR2A subunit antagonist. The former hypothesis thus appears unlikely to be correct. However, DRB decreased synaptic NMDA receptor responses in cultured hippocampal neurons without affecting extrasynaptic NMDA receptor current. These findings support the latter hypothesis, that CK2 selectively affects LTP by selective modification of synaptic NMDA receptors in a receptor-location-specific manner.  相似文献   

10.
The electromotor behavior evoked by novel sensory stimuli in the electrogenic teleost fish Gnathonemus petersii was examined. Novelty responses (NRs) consisted of a transient accelerations of the rate of electric organ discharges following a change in sensory input. NRs were basically similar in nontreated and in immobilized (treated with curare) fish. NRs could be evoked reliably by brief novel stimuli of all four sensory modalities (acoustic, visual, electrical. electrolocation) used in this study. Stimuli of a duration longer than 5 s caused an on- and off-response. A sudden change in the quality of an ongoing sensory stimulus also evoked novelty responses. NR properties depended on the stimulus modality, stimulus intensity, stimulus duration, and on the prior stimulus history. Habituation of several response parameters of the NR (latency, duration, maximal amplitude, response probability) occurred within a series of repetitive stimuli of a given sensory modality. Each modality appeared to habituate separately. Rate of habituation depended on stimulus intensity and on interstimulus interval. A strong disruptive stimulus of another modality lead to dishabituation. The novelty response evoked by stimuli of low or medium intensities resembled an "orienting response" as described by Sokolov.  相似文献   

11.
The direction of plasticity at CA3-CA1 hippocampal synapses is determined by the strength of afferent stimulation. Weak stimuli lead to long-term depression (LTD) and strong stimuli to long-term potentiation (LTP), but both require activation of synaptic N-methyl-D-aspartate receptors (NMDARs). These receptors are therefore necessary and required for the induction of plasticity at CA3-CA1 synapses even though they carry little of the current responsible for the basal excitatory post-synaptic potential (EPSP). The influx of Ca(2+) via NMDARs triggers the subsequent and persistent changes in the expression of alpha-amino-3-hydroxy-5 methylisoxazole-4-proprionic acid receptors (AMPARs) and these receptors are responsible for the major part of the basal EPSP. The degree of activity of NMDARs is determined in part by extracellular Mg(2+) and by the co-agonists for this receptor, glycine and D-serine. During strong stimulation, a relief of the voltage-dependent block of NMDARs by Mg(2+) provides a positive feedback for NMDAR Ca(2+) influx into postsynaptic CA1 spines. In this review, we discuss how the induction of LTP at CA3-CA1 synapses requires further signal amplification of NMDAR activity. We discuss how the regulation of NMDARs by protein kinases and phosphatases is brought into play. Evidence is presented that Src family kinases (SFKs) play a "core" role in the induction of LTP by enhancing the function and expression of NMDARs. At CA3-CA1 synapses, NMDARs are largely composed of NR1 (NMDA receptor subunit 1)-NR2A or NR1-NR2B containing subunits. Recent, but controversial, evidence has correlated NR1-NR2A receptors with the induction of LTP and NR1-NR2B receptors with LTD. However, LTP can be induced by activation of either subtype of NMDAR and the ratio of NR2A:NR2B receptors has been proposed as an alternative determinant of the direction of synaptic plasticity. Many transmitters and signal pathways can modify NMDAR function and expression and, for a given stimulus strength, they can potentially lead to a change in the balance between LTP and LTD. As opposed to the "core" mechanisms of LTP and LTD, the resulting alterations in this balance underlie "meta-plasticity." Thus, in addition to their contribution to core mechanisms, we will also discuss how Src-family kinases could preferentially target NR1-NR2A or NR1-NR2B receptors to alter the relative contribution of these receptor subtypes to synaptic plasticity.  相似文献   

12.
Three forms of stress-induced analgesia (electric shock, forced water-swim and novelty) were used to examine the nature of the endogenous antiopiate system. It was hypothesized that a role of the antiopiate system may be to regulate the extent of antinociception within varying environments. The antiopiate properties of Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2), which were manifest by reduction of opiate analgesia in mice on a hot-plate, were best expressed within a defined range of intensities. In each of the 3 analgesic situations, pre-administration of Tyr-MIF-1 (0.1 mg/kg) resulted in an antinociceptive effect after low to moderate stress but not after more intense stress. These observations indicate that the antiopiate system can function differentially under various environmental conditions, thus ensuring that the organism's responses to its perception of the immediate environment are appropriate and specific.  相似文献   

13.
The study of anxiety and fear involves complex interrelationships between psychiatry and the autonomic nervous system. Altered noradrenergic signaling is linked to certain types of depression and anxiety disorders, and treatment often includes specific transporter blockade. The norepinephrine transporter is crucial in limiting catecholaminergic signaling. Norepinephrine transporter-deficient mice have increased circulating catecholamines and elevated heart rate and blood pressure. We hypothesized, therefore, that reduced norepinephrine clearance would heighten the autonomic cardiovascular response to anxiety and fear. In separate experiments, norepinephrine transporter-deficient (norepinephrine transporter-/-) mice underwent tactile startle and trace fear conditioning to measure hemodynamic responses. A dramatic tachycardia was observed in norepinephrine transporter-/- mice compared with controls following both airpuff or footshock stimuli, and pressure changes were also greater. Interestingly, in contrast to normally elevated home cage levels in norepinephrine transporter-deficient mice, prestimulus heart rate and blood pressure were actually higher in norepinephrine transporter+/+ animals throughout behavioral testing. Upon placement in the behavioral chamber, norepinephrine transporter-deficient mice demonstrated a notable bradycardia and depressor effect that was more pronounced in females. Power spectral analysis indicated an increase in low frequency oscillations of heart rate variability; in mice, suggesting increased parasympathetic tone. Finally, norepinephrine transporter-/- mice exhibited sexual dimorphism in freeze behavior, which was greatest in females. Therefore, while reduced catecholamine clearance amplifies immediate cardiovascular responses to anxiety- or fear-inducing stimuli in norepinephrine transporter-/- mice, norepinephrine transporter deficiency apparently prevents protracted hemodynamic escalation in a fearful environment. Conceivably, chronic norepinephrine transporter blockade with transporter-specific drugs might attenuate recognition of autonomic and somatic distress signals in individuals with anxiety disorders, possibly lessening their behavioral reactivity, and reducing the cardiovascular risk factors associated with persistent emotional arousal.  相似文献   

14.
Sensation seeking and early life stress are both risk factors for developing substance use disorders. Neural adaptations resulting from early life stress may mediate individual differences in novelty responsiveness, and, in turn, contribute to drug abuse vulnerability. Animal models also demonstrate associations between novelty responsiveness or early life stress and increased sensitivity to psychostimulants. We investigated whether repeated maternal separation affects responses to novelty during adolescence and to amphetamine during adulthood, and whether maternal separation alters the relationship between these behavioral variables. Rat pups underwent separation (180 min/day) or control procedures (15 min/day) on postnatal days (PND) 2-8. Novel object exploration and amphetamine response were tested at PND 38 and 60, respectively. Adolescent males were less active in a novel environment and approached novel objects more frequently than females, but adult females showed greater amphetamine-induced locomotion. Maternal separation did not affect novelty responsiveness or amphetamine sensitivity. Locomotor activity in an inescapable, novel environment during adolescence predicted amphetamine-induced locomotor activity during adulthood in maternally separated rats, but not in controls. The results of this study suggest that adolescent responses to novelty may be particularly predictive of future substance abuse among survivors of early life trauma. Furthermore, sex differences in novelty and amphetamine responsiveness may complicate the relationship between these behavioral variables.  相似文献   

15.
We explored here the possibility that mid-life stress in rats could have deleterious effects on cognitive abilities during early aging, as well as the potential role of inter-individual differences on the development of such effects. Male Wistar rats were classified according to their reactivity to novelty (4 months old) as highly (HR) or low (LR) reactive and, at mid-life (12 months old), either submitted to chronic stress (28 days) or left undisturbed. At early aging (18 months old), their learning abilities were tested in the water maze, and a number of neuroendocrine (plasma corticosterone; hippocampal corticosteroid receptors) and neurobiological (hippocampal expression of neuronal cell adhesion molecules) parameters were evaluated. Impaired performance was observed in stressed HR rats, as compared to unstressed HR and stressed LR rats. Increased hippocampal mineralocorticoid receptors were found in stressed LR rats when compared with stressed HR and control LR groups. In addition, mid-life stress-induced an increased corticosterone response and a reduction in NCAM-180 isoform and L1 regardless of the behavioral trait of novelty reactivity. These findings highlight a role of stress experienced throughout life on cognitive impairment occurring during the early aging period, as well as the importance of taking into account individual differences to understand variability in such cognitive decline.  相似文献   

16.
In young Wistar rats conditioned emotional stress can be characterized by a learned bradycardiac response to an inescapable footshock. In aged rats this bradycardiac response is attenuated and accompanied by suppressed behavioral arousal in response to novelty. In the present study, cardiac responses to emotional stress and behavioral reactivity to a novel experience in an open field were tested in aged and young rats under the influence of a low dose of d-amphetamine (AMPH, 0.5 mg/kg IP). AMPH administration in 27-month-old rats reinstated the bradycardiac response to emotional stress, while it failed to influence the resting heart rate in the home cage. Age-associated differences in open-field ambulation, present in drug-free conditions, were antagonized by low doses of AMPH (0.25-1.0 mg/kg). It is concluded that enhanced arousal by aminergic stimulation with AMPH in the aged rat invoked cardiac and behavioral response patterns resembling those at younger ages.  相似文献   

17.
Neonatal Borna disease virus (BDV) brain infection results in selective developmental damage to the hippocampal dentate gyrus and the cerebellum. When mature, neonatally BDV-infected rats show extreme locomotor hyperactivity and reduced freezing behavior in novel environments. Traditional interpretation of both of these behavioral abnormalities would suggest decreased anxiety in infected rats compared to normal animals. However, it also possible that the locomotor hyperactivity in infected rats reflects higher rather than reduced anxiety, and is the result of increased escape responses to aversive stimuli. The present experiments were undertaken to test a hypothesis about elevated anxiety in neonatally BDV-infected adult Lewis rats by studying their species-specific fear-related responses. Compared to normal subjects, BDV-infected rats exhibited locomotor hyperactivity and elevated defecation in a highly aversive, brightly lit open field. As expected, in a less aversive, dimly lit open field, uninfected controls increased ambulation, whereas infected rats significantly decreased locomotor activity and defecation. Unlike uninfected rats, BDV-infected rats exhibited an attenuated freezing response immediately after loud auditory stimuli. On the contrary, immediate freezing responses following footshock were comparable in the two groups of animals indicating an intact ability to freeze in BDV-infected rats. Despite a decreased baseline startle responsiveness, BDV-infected rats demonstrated increased sensitization of the startle response by preceding footshocks, suggesting a tendency toward elevated escape responses. Compared to normal subjects, BDV-infected rats showed decreased conditional freezing and elevated conditional defecation response in the context previously paired with aversive stimulation indicating sparing of an autonomic component of fear conditioning. The findings indicate that neonatally BDV-infected adult rats are hyperreactive to aversive stimuli, possibly as a result of chronic emotional abnormalities.  相似文献   

18.
Previous investigations in mice revealed the existence of a set of genes that influence variations in hippocampal anatomy as well as variations in behavioral responses to novelty. In particular, a positive genetic correlation was found between the size of the intra- and infrapyramidal mossy fiber (iip-MF) projection and rearing frequency in an open-field. On the basis of these findings, we hypothesized that genetic selection for rearing would entail correlated changes in hippocampal morphology. This was tested in the inbred selection lines SRH (selection for rearing: high) and SRL (selection for rearing: low). As expected, the SRH mice appeared to possess iip-MF terminal fields that were larger than those of the SRL mice. Because the behavioral difference between the two lines is most probably caused by a single genetic unit, these animals represent valuable material for molecular-genetic investigations into the mechanisms that control behavioral and neuroanatomical variation.  相似文献   

19.
Expression of the NR3A subunit with NR1/NR2 in Xenopus oocytes or mammalian cell lines leads to a reduction in N-methyl-d-aspartate (NMDA)-induced currents and decreased Mg(2+) sensitivity and Ca(2+) permeability compared with NR1/NR2 receptors. Consistent with these findings, neurons from NR3A knockout (KO) mice exhibit enhanced NMDA-induced currents. Recombinant NR3A can also form excitatory glycine receptors with NR1 in the absence of NR2. However, the effects of NR3A on channel properties in neurons and synaptic transmission have not been fully elucidated. To study physiological roles of NR3A subunits, we generated NR3A transgenic (Tg) mice. Cultured NR3A Tg neurons exhibited two populations of NMDA receptor (NMDAR) channels, reduced Mg(2+) sensitivity, and decreased Ca(2+) permeability in response to NMDA/glycine, but glycine alone did not elicit excitatory currents. In addition, NMDAR-mediated excitatory postsynaptic currents (EPSCs) in NR3A Tg hippocampal slices showed reduced Mg(2+) sensitivity, consistent with the notion that NR3A subunits incorporated into synaptic NMDARs. To study the function of endogenous NR3A subunits, we compared NMDAR-mediated EPSCs in NR3A KO and WT control mice. In NR3A KO mice, the ratio of the amplitudes of the NMDAR-mediated component to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated component of the EPSC was significantly larger than that seen in WT littermates. This result suggests that NR3A subunits contributed to the NMDAR-mediated component of the EPSC in WT mice. Taken together, these results show that NR3A subunits contribute to NMDAR responses from both synaptic and extrasynaptic receptors, likely composed of NR1, NR2, and NR3 subunits.  相似文献   

20.
Ishiwata H  Shiga T  Okado N 《Neuroscience》2005,133(4):893-901
Prenatal stress has long-lasting effects on cognitive function and on the hypothalamic-pituitary-adrenal response to stress. We previously reported that the serotonin concentration and synaptic density in the hippocampus were reduced following prenatal stress [Int J Dev Neurosci 16 (1998) 209]. Since serotonin plays a role in the formation and maintenance of synapses, we hypothesized that a neonatal reduction in hippocampal serotonin levels may lead to learning disabilities in prenatally stressed mice. To test this hypothesis, we treated prenatally stressed mice with a selective serotonin reuptake inhibitor in order to normalize their postnatal serotonin turnover levels. What we found was that the oral administration of a selective serotonin reuptake inhibitor to prenatally stressed mice during postnatal weeks 1-3 but not 6-8 normalized their corticosterone response to stress, serotonin turnover in the hippocampus, and density of dendritic spines and synapses in the hippocampal CA3 region. Concomitantly, such treatment partially restored their ability to learn spatial information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号