首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the factors that govern human forebrain regionalization along the dorsal-ventral and left-right (L-R) axes is likely to be relevant to a wide variety of neurodevelopmental and neuropsychiatric conditions. Recent work in lower vertebrates has identified several critical signaling molecules involved in embryonic patterning along these axes. Among these are the Wingless-Int (WNT) proteins, involved in the formation of dorsal central nervous system (CNS) structures, as well as in visceral L-R asymmetry. We examined the expression of WNT2b and WNT7b in the human brain, because these genes have highly distinctive expression patterns in the embryonic mouse forebrain. In the human fetal telencephalon, WNT2b expression appears to define the cortical hem, a dorsal signaling center previously characterized in mouse, which is also confirmed by BMP7 expression. In diencephalon, WNT2b expression is restricted to medial dorsal structures, including the developing pineal gland and habenular nucleus, both implicated in CNS L-R asymmetry in lower organisms. At 5 weeks gestation, WNT7b is expressed in cerebral cortical and diencephalic progenitor cells. As the cortical plate develops, WNT7b expression shifts, demarcating deep layer neurons of the neocortex and the hippocampal formation. Spatial and temporal expression patterns show startling similarity between human and mouse, suggesting that the developmental roles of these WNT genes may be highly conserved, despite the far greater size and complexity of the human forebrain.  相似文献   

2.
3.
We have previously demonstrated that MgATP stimulates the release of luteinizing hormone releasing hormone (LHRH) from isolated hypothalamic granules and that this stimulation has a requirement for monovalent ions. To assess the role of the monovalent ions in the release process, granules (isolated from hypothalami of adult male rats) were incubated in buffered medium containing MgATP in the presence or absence of KCl. When granules were incubated in the absence of KCl, MgATP did not lead to LHRH release. However, when KCl was added to the MgATP-treated granules, a rapid (1 min) release of LHRH occurred. Based on these results we propose that the process of MgATP-stimulated release of LHRH from isolated hypothalamic granules is comprised of two distinct events: a priming event and a release event. During the priming event, MgATP interacts with the LHRH granule which leads to a change in the granule such that the release event, initiated by monovalent ions, can occur.  相似文献   

4.
Many new neurons are added to the adult avian brain. Most of them die 3-5 weeks after they are born (Nature (Lond.) 335 (1988) 353; J. Comp. Neurol 411 (1999) 487). Those that survive replace, numerically, older ones that have died (Neuron 25 (2000) 481). It has been suggested that the new neurons enhance the brain's ability to acquire new long-term memories (review in Sci. Am. 260 (1989) 74). If so, perhaps an increase in social complexity affects the survival of new neurons in a social species. To test this hypothesis, we treated adult zebra finches (Taeniopygia guttata) with [3H]-thymidine immediately before introducing them into one of three different social environments that differed in complexity and killed them 40 days later. There was a significant difference between experimental groups in the number of [3H]-labeled neurons in neostriatum caudale (NC), high vocal center (HVC) and Area X, three forebrain regions that are involved in vocal communication. In these regions, birds placed in a large heterosexual group had more new neurons than birds kept singly or as male-female pairs. Regulation of new neuron survival by extent of circuit use may be a general mechanism for ensuring that neuronal replacement is closely attuned to environmental change.  相似文献   

5.
Estrogens play an important role in the control and differentiation of species-typical behavior and in endocrine homeostasis of birds, but the distribution and evolution of cells that contain estrogen receptors in the avian brain are poorly understood. This study therefore surveys 26 species in the avian orders Anseriformes (1 species), Galliformes (2), Columbiformes (3), Psittaciformes (1), Apodiformes (2), and Passeriformes (3 suboscines, 14 oscines). Indirect immunocytochemistry with the estrogen receptor (ER) antibody H222Spy revealed a general pattern of ER-antibody-immunoreactive cells (ER-IRC) in all 26 species, with ER-IRC in consistent, well-defined locations in the limbic forebrain, the midbrain striatum, the hippocampus, the hindbrain, and especially in the preoptic area and the tuberal hypothalamus. For some species, the microdistribution of ER-IRC in some of these general areas differed, such as in the hippocampus and the anterior hypothalamus of suboscine species and in the preoptic area of the Japanese quail. Brains of oscine songbirds of both sexes, unlike brains of nonsongbirds, had ER-IRC in three specific structures of the nonlimbic forebrain: in the area surrounding the nucleus robustus archistriatalis; in the rostral forebrain; and, for all individuals, in the caudale neostriatum, including the nucleus hyperstriatalis ventrale, pars caudale (HVc). Among songbird families or subfamilies, adult males of the Estrildinae had much lower numbers of ER-IRC in HVc than did adult males of the Fringillidae, Paridae, Sturnidae, and Ploceinae. Differences occurred, too, among closely related species: the songbird canary (Serinus canaria) had an ER-IRC area in the rostral forebrain that was lacking in all other songbird species, including other cardueline finches. The cells with ER that are found only in the songbird forebrain but not in reptiles, nonpasserine birds, and nonoscine passerine birds very likely coevolved with steroid-dependent differentiation of vocal control areas. The songbird-specific expression of ER in the forebrain could be an example in which taxon-specific behavior is due to taxon specific neurochemical properties of the brain. © 1993 Wiley-Liss, Inc.  相似文献   

6.
7.
Cholinergic, GABAergic and glutamatergic projection neurons of the basal forebrain (BF) innervate widespread regions of the neocortex and are thought to modulate learning and attentional processes. Although it is known that neuronal cell types in the BF exhibit oscillatory firing patterns, whether the BF as a whole shows oscillatory field potential activity, and whether such neuronal patterns relate to components of cognitive tasks, has yet to be determined. To this end, local field potentials (LFPs) were recorded from the BF of rats performing an associative learning task wherein neutral objects were paired with differently valued reinforcers (pellets). Over time, rats developed preferences for the different objects based on pellet‐value, indicating that the pairings had been well learned. LFPs from all rats revealed robust, short‐lived bursts of beta‐frequency oscillations (~25 Hz) around the time of object encounter. Beta‐frequency LFP events were found to be learning‐dependent, with beta‐frequency peak amplitudes significantly greater on the first day of the task when object–reinforcement pairings were novel than on the last day when pairings were well learned. The findings indicate that oscillatory bursting field potential activity occurs in the BF in freely behaving animals. Furthermore, the temporal distribution of these bursts suggests that they are probably relevant to associative learning.  相似文献   

8.
9.
We assessed the patterning of slow-wave EEG activity during sleep in siblings of sudden infant death syndrome (SIDS) victims over the first 6 months of life. Twelve hour overnight physiologic recordings were obtained from 25 apparently healthy subsequent siblings of SIDS victims and 25 control infants at 1 week, and 1, 2, 3, 4 and 6 months of age. The EEG activity was electronically bandpass filtered, leaving primarily activity ranging from 0.5 to 2.5 Hz (the delta frequency), and the filtered traces were full-wave rectified and integrated over 1 min periods. The recordings were divided into four 3 h segments beginning at sleep onset, and the mean integrated delta activity during quiet sleep was determined for each segment of the night. At 3 and 4 months postnatal age, SIDS siblings displayed increased integrated delta amplitude in the early morning hours relative to control infants. Most SIDS deaths occur in the early morning hours during the 2–4 month age range. We thus speculate that increased delta activity may be indicative of increased arousal thresholds in the early morning, which may contribute to SIDS deaths.  相似文献   

10.
In rat tail artery, short trains of electrical stimuli evoke both ATP-mediated excitatory junction potentials (EJPs) and a slow noradrenaline (NA)-mediated depolarization (NAD). Here we have investigated the contribution of α1- and α2-adrenoceptors to the NAD. The α1-adrenoceptor antagonist, prazosin (0.1 μM), and the α2-antagonist, rauwolscine (1 μM), reduced the amplitude of the NAD and in combination these agents virtually abolished the NAD. The KATP channel blocker, glibenclamide (10 μM) abolished the α2-adrenoceptor-mediated component of the NAD, indicating that activation of these receptors produces closure of KATP channels. The α1-adrenoceptor-mediated component of the NAD was increased in amplitude by glibenclamide. Changes in membrane conductance were monitored by measuring the time constant of decay of EJPs (τEJP). The τEJP was increased during α1-adrenoceptor-mediated depolarization, indicating a decrease in membrane conductance; i.e. closure of K+ channels. Broad-spectrum K+ channel blockers (tetraethylammonium, 4-aminopyridine, Ba2+) and the TASK-1 K+ channel blocker, anandamide (10 μM), did not reduce the α1-adrenoceptor-mediated NAD. The α1-adrenoceptor-mediated NAD was unaffected by the Cl? channel blockers, 9-anthracene carboxylic acid (100 μM) and niflumic acid (10 μM) or by the non-selective cation channel blocker, SKF 96365 (10 μM). These findings indicate that the NAD is produced by activation of both α1-and α2-adrenoceptors. The α2-adrenoceptor-mediated component is produced by closure of KATP channels whereas the α1-adrenoceptor-mediated component is most likely mediated by closure of another type of K+ channel.  相似文献   

11.
Cannabinoids can modulate motor behaviour, learning and memory, cognition and pain perception. These effects correlate with the expression of the cannabinoid receptor 1 (CB1) and with the presence of endogenous cannabinoids in the brain. In trying to obtain further insights into the mechanisms underlying the modulatory effects of cannabinoids, CB1-positive neurons were determined in the murine forebrain at a single cell resolution. We performed a double in situ hybridization study to detect mRNA of CB1 in combination with mRNA of glutamic acid decarboxylase 65k, neuropeptide cholecystokinin (CCK), parvalbumin, calretinin and calbindin D28k, respectively. Our results revealed that CB1-expressing cells can be divided into distinct neuronal subpopulations. There is a clear distinction between neurons containing CB1 mRNA either at high levels or low levels. The majority of high CB1-expressing cells are GABAergic (gamma-aminobutyric acid) neurons belonging mainly to the cholecystokinin-positive and parvalbumin-negative type of interneurons (basket cells) and, to a lower extent, to the calbindin D28k-positive mid-proximal dendritic inhibitory interneurons. Only a fraction of low CB1-expressing cells is GABAergic. In the hippocampus, amygdala and entorhinal cortex area, CB1 mRNA is present at low but significant levels in many non-GABAergic cells that can be considered as projecting principal neurons. Thus, a complex mechanism appears to underlie the modulatory effects of cannabinoids. They might act on principal glutamatergic circuits as well as modulate local GABAergic inhibitory circuits. CB1 is very highly coexpressed with CCK. It is known that cannabinoids and CCK often have opposite effects on behaviour and physiology. Therefore, we suggest that a putative cross-talk between cannabinoids and CCK might exist and will be relevant to better understanding of physiology and pharmacology of the cannabinoid system.  相似文献   

12.
This paper summarises the available evidence that failure of defense mechanisms in (semi)-natural social groups of animals may lead to serious forms of stress pathology. Hence the study of social stress may provide animal models with a high face validity. However, most of the animal models of human stress-disorders have concentrated on the consequences of chronic exposure to stressors. The present paper considers recent data, indicating that a single experience with a major stressor in the form of social defeat may have long-term consequences ranging from hours to days and weeks. It seems that the experience of a major stressor sensitizes the animal to subsequent stressors. The consequences of these long-term temporal dynamics of the stress response to the development of stress-related disorders and stress-vulnerability are discussed.  相似文献   

13.
14.
We investigated the participation of protein kinase C (PKC) in the regulation of vocal plasticity in songbirds. Deafening of adult Bengalese finches causes initial song alteration, followed by stabilization. In parallel, the expression of PKC beta1 increases transiently 2 weeks after deafening, and then decreases gradually in the robust nucleus of the arcopallium (RA) of Bengalese finches, similar to the pattern observed during developmental song learning. First, we showed that in adult zebra finches, whose songs change more gradually after auditory deprivation than those of Bengalese finches, PKC in RA also increased to an equal degree 2 weeks after deafening, despite the species difference. Second, double-labeling with an anterograde tracer and PKC immunofluorescence revealed that PKC immunoreactivity in RA was detected on the synaptic terminals from a high premotor vocal nucleus (HVC), but not from the lateral magnocellular nucleus of the anterior nidopallium (LMAN). To determine what causes deafening-induced PKC increases, we blocked signals from LMAN, the final output nucleus to RA in the anterior forebrain pathway (AFP), by a unilateral LMAN lesion prior to auditory deprivation of adult Bengalese finches. The PKC immunoreactivity increased in RA of the intact hemisphere; however, in RA on the lesioned side, it was less intense than that of the unlesioned side. Thus, the deafening-induced PKC expression was suppressed by lesioning of LMAN. These results suggest that an output signal from the AFP via LMAN induces the increase in PKC activity on HVC-RA synapses that may regulate song plasticity.  相似文献   

15.
Two modes of active eye-head coordination in monkeys   总被引:4,自引:0,他引:4  
  相似文献   

16.
Here we investigate differences in the temporal and spatial patterning, and subunit interactions of two of the major Na(+) channel alpha-subunit isoforms in mammalian brain, the type I and type II Na(+) channels. By using subtype-specific antibodies, we find that both isoforms are abundant in adult rat brain, where both interact with the covalently bound beta2 auxiliary subunit. Immunoblot analysis reveals complementary levels of type I and type II in different brain regions, with the highest levels of type I in brainstem, cortex, substantia nigra, and caudate, where it is found predominantly on the soma of neurons, and the highest levels of type II in globus pallidus, hippocampus and thalamus, where it is preferentially localized to axons. Developmentally, type I Na(+) channel polypeptide expression in brain increases dramatically during the third postnatal week, peaks at the end of the first postnatal month, and then decreases such that adult levels are approximately 50% of those at peak. Type II Na(+) channel polypeptide expression in brain also undergoes large increases in the third postnatal week, but levels continue to increase such that peak expression levels are maintained in adult animals. Type I Na(+) channels are found associated with the auxiliary beta2 subunit at all ages, whereas free type II Na(+) channels exist during the first two postnatal weeks. Thus, although expression of these two Na(+) channel alpha subunits in heterologous systems yields currents with very similar electrophysiological and pharmacological properties, their distinct spatial and temporal patterning, and association with auxiliary subunits in brain, suggest that they perform distinct, nonoverlapping functions in situ.  相似文献   

17.
Development and maintenance of chronic pain is associated with structural and functional brain reorganization. However, few studies have explored the impact of drug treatments on such changes. The extent to which long‐term analgesia is related to brain adaptations and its effects on the reversibility of brain reorganization remain unclear. In a randomized placebo‐controlled clinical trial, we contrasted pain relief (3‐month treatment period), and anatomical (gray matter density [GMD], assessed by voxel‐based morphometry) and functional connectivity (resting state fMRI nodal degree count [DC]) adaptations, in 39 knee osteoarthritis (OA) patients (22 females), randomized to duloxetine (DLX, 60 mg once daily) or placebo. Pain relief was equivalent between treatment types. However, distinct circuitry (GMD and DC) could explain pain relief in each group: up to 85% of variance for placebo analgesia and 49% of variance for DLX analgesia. No behavioral measures (collected at entry into the study) could independently explain observed analgesia. Identified circuitry were outside of nociceptive circuitry and minimally overlapped with OA‐abnormal or placebo response predictive brain regions. Mediation analysis revealed that changes in GMD and DC can influence each other across remote brain regions to explain observed analgesia. Therefore, we can conclude that distinct brain mechanisms underlie DLX and placebo analgesia in OA. The results demonstrate that even in the absence of differences in subjective pain relief, pharmacological treatments can be differentiated from placebo based on objective brain biomarkers. This is a crucial step to untangling mechanisms and advancing personalized therapy approaches for chronic pain.  相似文献   

18.

Objective

Plasticity of the central nervous system likely underlies motor learning. It is however unclear, whether plasticity in cortical motor networks is motor learning stage-, activity-, or connectivity-dependent.

Methods

From electroencephalography (EEG) data, we quantified effective connectivity by the phase slope index (PSI), neuronal activity by event-related desynchronization, and sensorimotor integration by N30 during the stages of visuomotor skill acquisition, consolidation, and interlimb transfer.

Results

Although N30 amplitudes and event-related desynchronization in parietal electrodes increased with skill acquisition, changes in PSI correlated most with motor performance in all stages of motor learning. Specifically, changes in PSI between the premotor, supplementary motor, and primary motor cortex (M1) electrodes correlated with skill acquisition, whereas changes in PSI between electrodes representing M1 and the parietal and primary sensory cortex (S1) correlated with skill consolidation. The magnitude of consolidated interlimb transfer correlated with PSI between bilateral M1s and between S1 and M1 in the non-practiced hemisphere.

Conclusions

Spectral and temporal EEG measures but especially PSI correlated with improvements in complex motor behavior and revealed distinct neural networks in the acquisition, consolidation, and interlimb transfer of motor skills.

Significance

A complete understanding of the neuronal mechanisms underlying motor learning can contribute to optimizing rehabilitation protocols.  相似文献   

19.
Nonlinear temporal dynamics of the cerebral blood flow response   总被引:4,自引:0,他引:4  
The linearity of the cerebral perfusion response relative to stimulus duration is an important consideration in the characterization of the relationship between regional cerebral blood flow (CBF), cerebral metabolism, and the blood oxygenation level dependent (BOLD) signal. It is also a critical component in the design and analysis of functional neuroimaging studies. To study the linearity of the CBF response to different duration stimuli, the perfusion response in primary motor and visual cortices was measured during stimulation using an arterial spin labeling technique with magnetic resonance imaging (MRI) that allows simultaneous measurement of CBF and BOLD changes. In each study, the perfusion response was measured for stimuli lasting 2, 6, and 18 sec. The CBF response was found in general to be nonlinearly related to stimulus duration, although the strength of nonlinearity varied between the motor and visual cortices. In contrast, the BOLD response was found to be strongly nonlinear in both regions studied, in agreement with previous findings. The observed nonlinearities are consistent with a model with a nonlinear step from stimulus to neural activity, a linear step from neural activity to CBF change, and a nonlinear step from CBF change to BOLD signal change.  相似文献   

20.
It has long been theorised that there are two temporally distinctforms of self-reference: extended self-reference linking experiencesacross time, and momentary self-reference centred on the present.To characterise these two aspects of awareness, we used functionalmagnetic resonance imaging (fMRI) to examine monitoring of enduringtraits (’narrative’ focus, NF) or momentary experience(’experiential’ focus, EF) in both novice participantsand those having attended an 8 week course in mindfulness meditation,a program that trains individuals to develop focused attentionon the present. In novices, EF yielded focal reductions in self-referentialcortical midline regions (medial prefrontal cortex, mPFC) associatedwith NF. In trained participants, EF resulted in more markedand pervasive reductions in the mPFC, and increased engagementof a right lateralised network, comprising the lateral PFC andviscerosomatic areas such as the insula, secondary somatosensorycortex and inferior parietal lobule. Functional connectivityanalyses further demonstrated a strong coupling between theright insula and the mPFC in novices that was uncoupled in themindfulness group. These results suggest a fundamental neuraldissociation between two distinct forms of self-awareness thatare habitually integrated but can be dissociated through attentionaltraining: the self across time and in the present moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号