首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
G-CSF mobilized, T-cell-depleted peripheral blood progenitor cells (PBPC) and T-cell-depleted bone marrow (BM) were given to seven children (6 AL, 1 SCID) to prevent severe graft-versus-host-disease (GvHD) as well as graft rejection after transplantation from HLA-nonidentical parental donors. BM was T-cell-depleted by lectin agglutination and E-rosetting. For T-cell-depletion of the PBPC grafts a combination of CD34+ selection with the Ceprate SC immunoadsorption system and a subsequent depletion of CD2+ cells with immunomagnetic Dynabeads was used. The overall recovery was 0.3 (0.1-1.2)% for nucleated cells, 29 (18-45)% for CD3+ cells, respectively. The purity of CD34+ cells was 87 (68-97)% with a 0.3(0.05-0.7)% residual CD3+ T-cell contamination. In spite of the large T-cell number in the PBPC grafts the combination of CD34 positive and subsequent CD2 negative selection achieved a more than 4 log T-cell depletion and prevents severe GvHD even in HLA-nonidentical transplantation. In addition, if a high dose of progenitor cells ensures stable engraftment, this new approach could increase the possibility of wider use of HLA-mismatched family donors for transplantation.  相似文献   

2.
An allogeneic transplantation programme using immunoselected blood progenitor and bone marrow CD34+ cells has been established. Thirteen healthy HLA-matched, MLC negative sibling donors received two doses of 5 micrograms kg-1 G-CSF (s.c. daily) for 5 days. On days 4 and 5, large-volume mononuclear cell aphereses were performed (COBE Spectra) and on day 5 one unit of autologous blood was obtained. Mononuclear cells were pooled and cryopreserved after CD34+ cell-immunoselection on day 5. Bone marrow (BM) of the same donors was procured under routine conditions 10-45 days later (median: 27 days). The final graft consisted of blood CD34+ cells with either complete BM (n = 5) or immunoselected BM CD34+ cells (n = 8). The present paper describes the progenitor cell mobilization and apheresis protocol and analyzes the cell loss by BM and peripheral blood progenitor cell (PBPC) donation. Considerably larger amounts of mononuclear cells (CD45+), T-lymphocytes (CD3+) and platelets were lost by the apheresis as compared to bone marrow without apparent immediate clinical consequences for the donors. Owing to cross-cellular contamination of the apheresis concentrate, blood platelet count (PC) significantly decreased (mean PC after the second apheresis 116 x 10 microL-1); furthermore on average 3.04 x 10(10) CD3+ cells were removed by two apheresis sessions. This loss did not lead to long-term total lymphocyte count changes (2370 microL-1 versus 1889 microL-1) as observed during the long-term follow-up of 7/13 donors (mean 290 days). Subjectively, the PBPC collections were better accepted than BM donations in all but one family donor.  相似文献   

3.
BACKGROUND: Peripheral blood progenitor cell (PBPC) collections should be safe and efficient. Therefore, the influence and risk factors in large-volume leukaphereses (LVL) with standardized blood volumes was investigated. STUDY DESIGN AND METHODS: In a total of 724 autologous LVL performed at our center, either 4x or 6x the patient's blood volume (PBV) was processed. The group with processing 4x the PBV showed a median of 31 circulating CD34+ cells per microL, and the group with processing 6x the PBV had a median of 13 CD34+ cells per microL before LVL. Individual clinical factors, laboratory factors, and apheresis run variables influencing the yields of PBPCs were retrospectively analyzed. Furthermore, the changes of laboratory variables and adverse effects during LVL were investigated. RESULTS: Multivariate analysis identified "age,"circulating CD34+ cells," and "percentage of mononuclear cells" as only factors influencing the yields of PBPCs. Altogether, processing 6x versus 4x the PBV did not result in significantly higher yields of CD34+ cells for the total group, but requested PBPC yields were achieved more often after processing 6x the PBV in patients below 20 CD34+ cells per microL blood. Processing 6x versus 4x the PBV showed a significant difference for the decrease of platelets, but not for any other laboratory variable. Adverse effects were recorded in 4.97 percent of LVL without accumulation in one group. CONCLUSION: In particular, patients with low amounts of circulating CD34+ cells profited from enlarged LVL demonstrating higher PBPC yields but comparable rates of adverse effects.  相似文献   

4.
为比较脐血和骨髓淋巴细胞及祖细胞分化抗原,通过流式细胞术(FCM)双标法对38份脐血及10份骨髓免疫细胞表型进行了分析研究。研究发现:(1)脐血及骨髓淋巴细胞中均测到稚淋巴细胞(CD3^-CD4^ ),且前中含量较多,但脐血细胞毒T细胞含量(CTL,CD3^ CD16^ 56^ )低于骨髓;(2)脐血中NK细胞(CD3^-CD16^ 56^ )比例高于骨髓;(3)脐血有核细胞中CD34^ 细胞的比值接近于骨髓,但脐血CD34^ 细胞中髓系祖细胞(CD34^ CD13^ ,CD34^ HLA-DR^ )及淋巴系祖细胞(CD34^ CD19^ )含量均低于骨髓,结论:(1)脐血免疫细胞具有不成熟性,这估计是脐血移植后GVHD程度轻的主要原因;(2)脐血淋巴细胞中NK细胞含量较高,推测脐血移植后移植物抗白血病效应(GVL)并不会降低;(3)脐血CD34^ 细胞中髓系祖细胞及淋巴系祖细胞比例均低于骨髓,可能是脐血移植后造血及免疫重建速度较慢的原因之一。  相似文献   

5.
BACKGROUND: The optimal dose of post-chemotherapy granulocyte-colony-stimulating factor (G-CSF) administration before peripheral blood progenitor cell (PBPC) collection has not been determined as yet, although 5 microg per kg per day has been recommended as the standard dose. This study retrospectively analyzed the effect of G-CSF dose on peripheral blood CD34+ cell collection from 91 patients with hematologic malignancies. STUDY DESIGN AND METHODS: Various doses of G-CSF were administered after several chemotherapeutic PBPC mobilization regimens. According to the dose of G-CSF administered, patients were assigned to two groups. Group 1 included 46 patients who received a low dose of G-CSF (median, 3.6 [range, 2.8-4.6] microg/kg/day). Group 2 included 45 patients who received a standard G-CSF dose of 6.0 (5.5-8. 1) microg per kg per day. Patients in the two groups were matched for age, diagnosis, previous therapy, and chemotherapeutic PBPC mobilization regimens. RESULTS: No difference was observed in the median number of CD34+ cells harvested from each group.The number of leukapheresis procedures necessary to obtain a minimum of 3 x 10(6) CD34+ cells per kg was the same in both groups, and the percentage of patients who failed to achieve adequate PBPC collections was similar in the two groups. CONCLUSION: The administration of low-dose G-CSF after chemotherapy appears equivalent to administration of the standard dose in achieving satisfactory PBPC collection.This approach could allow significant savings in medical cost. A randomized and prospective study is necessary, however, to assess the validity of these conclusions.  相似文献   

6.
BACKGROUND: Peripheral blood progenitor cells (PBPC) collection after high dose chemotherapy can be influenced by several factors. We searched for parameters that may predict the best day to start harvesting of PBPC in order to collect most CD34+ cells with the least number of aphereses. METHODS: We studied patients who underwent mobilization chemotherapy for autologous transplantation. The influence of age, sex, diagnosis, number of previous chemotherapy cycles, peripheral blood (PB) counts at day of mobilization (D0), day of neutrophils <1.0 x 10(9) l(-1) and day of nadir and interval between both (delta) on harvesting was investigated. Multivariate linear correlation models were built to predict the best harvesting with principles of parsimony. In patients where sequential CD34+ cell count was performed, the theoretical day of peak was calculated by interpolation in polynomial regression. RESULTS: One hundred and thirty four patients entered the analysis: 36 Hodgkin's lymphoma (HL), 65 B-large cell lymphoma (NHL) and 33 multiple myeloma (MM). Day of harvesting correlated with nr CHT, hemoglobin on D0, day of granulocytes <1.0 x 10(9) l(-1), delta and dosis of mobilization therapy. The day of CD34+ peak could be calculated by the formula = (-0.41) x Hemoglobin D0 + (day peripheral CD34+ cells = 10 x 10(6) microl(-1)) x 0.99 + 7.8. This model could explain 81% of the variance of the peak day and was stable by bootstrap resampling. Day of peripheral CD34+ cells = 10 x 10(6) microl(-1) preceded the calculated peak by 3-9 days. CONCLUSIONS: Although the day of best collection can be predicted using only sequential PB counts after mobilization chemotherapy, a model of prediction using peripheral CD34+ cell count is important especially for optimizing collection in poor mobilizing patients.  相似文献   

7.
BACKGROUND: Selection of CD34+ PBPCs has been applied as a method of reducing graft contamination from neoplastic cells. This procedure seems to delay lymphocyte recovery, while myeloid engraftment is no different from that with unselected PBPC transplants. STUDY DESIGN AND METHODS: Lymphocyte recovery was studied in two groups of patients who underwent autologous CD34+ PBPC transplant with two different technologies (Ceprate SC, Cellpro [n = 17]; CliniMACS, Miltenyi Biotech [n = 13]). The median number of CD34+ cells transfused was 3.88 x 10(6) per kg and 3.32 x 10(6) per kg, respectively. Residual CD3 cells x 10(6) per kg were 4.97 and 0.58, respectively (p = 0.041). Residual CD19 cells x 10(6) per kg were 1.33 and 0.73, respectively (NS). RESULTS: No differences were found between the two groups in total lymphocyte recovery to >0.5 x 10(9) per L, which achieved a stable count by Day 30. During the study period, the CD4+ cell count remained below 0.2 x 10(9) per L, and the B-cell subset showed a trend toward normalization. CD3/HLA-DR+ and CD16/56 increased markedly in both groups by Day 30. An increase in CMV (13%) and adenovirus (17.4%) infection was found in both groups. CONCLUSION: Both CD34+ cell selection technologies used here determined an excellent CD34+ cell purity and an optimal depletion of T cells. The high rate of viral complications is probably due to the inability of residual T cells left from the CD34+ cell selection to generate, immediately after transplant, an adequate number of virus-specific lymphocytes.  相似文献   

8.
The yield of CD34+ PBPC and colony-forming units-granulocyte-macrophage (CFU-GM) in leukapheresis products and the expression of the adhesion molecules CD11a, CD31, CD49d, CD49e, CD54, CD58, CD62L, c-kit (CD117), Thy-1 (CD90), CD33, CD38, and HLA-DR on CD34+ PBPC were analyzed in patients with cancer of the testis (n = 10), breast cancer (n = 10), Hodgkin's disease (n = 20), high-grade (n = 20) and low-grade (n = 20) non-Hodgkin's lymphoma, and healthy donors (n = 20) undergoing G-CSF (filgrastim)-stimulated PBPC mobilization. For each disease entity, G-CSF was administered in two different doses, 10 microg G-CSF/kg body weight (BW)/day s.c. vs. 24 microg G-CSF/kg BW s.c./day in steady-state condition. Data were compared for each dose group separately. Patients with cancer of the testis and breast cancer mobilized significantly more CD34+ cells than patients with high-grade and low-grade non-Hodgkin's lymphoma and Hodgkin's disease (p<0.05). Correspondingly, expression of CD49d on CD34+ PBPC was significantly lower in the same patients with cancer of the testis compared with high-grade and low-grade non-Hodgkin's lymphoma and Hodgkins' disease and in patients with breast cancer compared with high-grade and low-grade non-Hodgkin's lymphoma, Hodgkins's disease, and healthy donors. Similar results were obtained for CD49e. These data suggest that the expression of the adhesion molecules CD49d and CD49e on G-CSF-mobilized CD34+ cells of patients with solid tumors, non-Hodgkin's lymphoma, Hodgkin's disease, and healthy donors is inversely correlated with the amount of mobilized CD34+ cells.  相似文献   

9.
BACKGROUND: The implementation of a quality-assurance program is a major requirement to ensure quality and safety of the final PBPC components intended for clinical use. It is not clear whether the quantification of CFU-GM and CD34+ cells should be done on fresh components and after cryopreservation, which better represents the actual composition of the graft. STUDY DESIGN AND METHODS: Correlation between prefreeze and postthaw MNCs, CD34+ cells, and CFU-GM collected from 126 patients undergoing BMT (n=43) or PBPC (n =83) transplantation were evaluated. The statistical incidence of prefreeze and postthaw parameters as well as patient characteristics and conditioning regimens on hematologic recovery were analyzed. RESULTS: By multivariate analysis, prefreeze and postthaw CD34+ cells were the only two variables significantly and independently correlated to hematologic recovery. Low prefreeze and postthaw CD34+ cell numbers associated to a low CD34+ yield characterize PBPC grafts from patients who have the slowest hematologic recovery. The postthaw PBPC CD34+ cell number can be estimated before conditioning regimen by thawing a small aliquot of the graft. CONCLUSION: In association to prefreeze CD34+ cell number and to CD34+ yield, postthaw CD34+ cell number may be useful in monitoring cell loss during processing and identifying patients at risk of slow PBPC engraftment.  相似文献   

10.
11.
Transplantations of peripheral blood progenitor cells (PBPC) are able to assure a complete haematopoietic and immunologic reconstitution. The efficient mobilization of progenitor cells into peripheral blood is the main factor responsible for quality of the graft as well as timing and technique of collections. The aim of the present paper was to find the optimum time for starting PBPC collections and consequently to minimize the number of procedures required. The study was performed in patients with haematological malignancies using an autologous collection regimen. We attempted to determine a relationship between the concentration of CD 34+ cells in peripheral blood at the beginning of the collection and the number of CD 34+ cells in the leukapheresis product prepared in the standard mode processing 2-3 total blood volumes. We assessed the significance of the CD 34+ cells concentration in peripheral blood for the adequate collection of CD 34+ cells. We also evaluated the time of engraftment in patients after autologous PBPC transplantation whenever possible. The study was performed in 70 patients. Two groups were defined: Group I patients were well mobilized, whereas Group II patients were weakly mobilized. CD 34+ counts, using flow cytometry were found to be useful in predicting the optimal time for collections.  相似文献   

12.
Suh C  Kim S  Kim SH  Kim EK  Lee JL  Park KU  Park JS  Lee J  Kim MW  Chi HS  Park CJ  Kim SW 《Transfusion》2004,44(12):1762-1768
BACKGROUND: The most reliable index for timing peripheral blood progenitor cell (PBPC) collection following mobilization is still to be determined. The techniques to enumerate peripheral blood (PB) CD34+ cells are expensive and time-consuming. The SE9000 (Sysmex) provides an estimate of immature cells, called hematopoietic progenitor cells (HPCs). The aim of this study was to prospectively evaluate the efficacy of PB HPC levels for timing PBPC harvest. STUDY DESIGN AND METHODS: Thirty-five patients (15 non-Hodgkin's lymphoma and 20 multiple myeloma) were enrolled. PB HPCs and harvested CD34+ cells were counted with the SE9000 and flow cytometry, respectively. Circulating HPCs were monitored daily. PBPC harvest was initiated when HPC levels reached at least 5 per mm(3). RESULTS: HPC levels reached 5 per mm(3) or more on Median Day 12 (range, days 9 to 16) of mobilizing chemotherapy. The median number of CD34+ cells collected per patient was 19.40 x 10(6) per kg (range, 1.94 x 10(6)-52.55 x 10(6) per kg). Both successful and optimal harvest was achieved in 97 percent of patients. PBPCs were successfully harvested in 25 patients (71%) in one session. An optimal harvest in a single session was attained in 16 patients (46%). CONCLUSION: This might be the first prospective study showing the PB HPC level for timing PBPC harvest.  相似文献   

13.
We investigated the efficacy of peripheral blood progenitor cell (PBPC) collection during large-volume leukapheresis (LVL) in patients with solid tumours and haematological malignancies (n = 18). The time- and volume-dependent harvest of leucocytes (WBC), mononuclear cells (MNC), CD34+ cells and colony-forming cells (CFU-GM) during LVL was analysed in six sequentially filled collection bags processing four times the patient's blood volumes. The amounts of leucocytes (WBC) and the purity of mononuclear cells (MNC%) did not show any significant changes during LVL. The percentage of CD34+ cells remained constant for the first three bags but consecutively decreased from initially 1.71% CD34+ cells in the beginning of LVL to finally 1.34% CD34+ cells (P = 0.02). The mean numbers of colony-forming cells (CFU-GM) decreased from 74 microL-1 to 59 microL-1 during LVL (P = 0.16). Furthermore, the comparison of volume-dependent PBPC collection for patients with high, medium and low total yields of CD34+ cells showed similar kinetics on different levels for the three groups. We concluded that - relative to the initial total amount of PBPC harvested - comparable numbers of progenitor cells can be collected during all stages of LVL with a slight decreasing trend processing four times the patient's blood volumes.  相似文献   

14.
BACKGROUND: Selection of CD34+ cells by specific immunoselection leads to a significant loss of those cells. The factors influencing the yield and purity are not well identified. The results of CD34+ selection from peripheral blood progenitor cells (PBPCs) with high and low platelet contamination that are harvested with two different cell separators are reported. STUDY DESIGN AND METHODS: A progenitor cell concentrator (Ceprate SC, CellPro) was used to select CD34+ cells from 41 PBPC concentrates from 23 consecutive patients with relapsed non-Hodgkin's lymphoma (n = 3), breast cancer (n = 17), and multiple myeloma (n = 3). PBPC collection was performed by using two cell separators (CS3000 Plus, Fenwal: Group A, n = 11; and Spectra, COBE: Group B, n = 9). To reduce platelet contamination in the Spectra PBPC concentrates, an additional low-speed centrifugation was performed before CD34+ cell selection (Group C, n = 3). Leukapheresis components were stored overnight at 4 degrees C and combined with the next day's collection before the CD34+ selection procedure in 19 patients. RESULTS: A median of 1.5 leukapheresis procedures per patient were performed. Pooled PBPC concentrates showed no statistical difference in median numbers of white cells and CD34+ cells in Groups A and B: 3.2 (0.8-9.2) versus 4.4 (1.6-8. 3) x 10(10) white cells per kg and 15.0 (4.7-24.0) versus 12.0 (5. 6-34.0) x 10(6) CD34+ cells per kg. Platelet contamination was significantly higher in Group B: 0.67 (0.15-2.4) versus 2.3 (0.5-7. 1) x 10(11) (p = 0.0273). After the selection process, there was a significantly greater loss of CD34+ cells in Group B than in Group A: 39.1 versus 63.2 percent (p = 0.0070), with a median purity of 78. 0 percent versus 81.0 percent. An additional low-speed centrifugation before CD34+ cell selection seemed to reduce CD34+ cell loss in Group C with 16.9, 31.9, and 37.5 percent, respectively. CONCLUSION: CD34+ cell selection from PBPC concentrates resulted in an increased loss of CD34+ cells in concentrates with a higher platelet content. To improve CD34+ yield, PBPC concentrates with an initially low platelet contamination should be used, or additional low-speed centrifugation should be performed.  相似文献   

15.
目的 为确定外周血CD34+细胞绝对计数能否可靠预示自体外周血干细胞的采集效果。方法 用流式细胞仪ProCOUNT方法对采集的 2 5份次移植物和采集当天外周血行CD34+细胞绝对计数 ,同时做外周血常规检查和移植物集落形成单位 (CFU)计数 ,每份次移植物以CD34+/kg ,单个核细胞 (MNC) /kg,粒 巨噬细胞集落形成单位 (CFU GM) /kg ,红细胞集落形成单位 (CFU E) /kg等为指标 ,与患者采集当天的外周血CD34+细胞绝对计数、CD34+细胞百分比、WBC ,MNC ,中性粒细胞(NEU)或血小板 (PLT)等各项指标进行相关分析和逐步回归分析。结果  ( 1)Spearman相关分析结果 :外周血CD34+细胞绝对计数与移植物CD34+/kg高度相关 (r=0 790 ,P <0 0 0 1) ,外周血CD34+细胞百分比与移植物CD34+/kg相关 (r=0 6 17,P <0 0 5 )。外周血WBC、MNC、NEU、PLT或RBC与移植物CD34+/kg无关。外周血CD34+细胞绝对计数与移植物CFU E相关 ,而与CFU GM无关。外周血MNC与移植物MNC/kg相关。 ( 2 )逐步回归分析结果 :移植物CD34+/kg只与外周血CD34+细胞绝对计数高度相关 (P <0 0 0 1) ,而与外周血CD34+细胞百分比无关。结论 移植物CD34+/kg只与外周血CD34+细胞绝对计数高度相关 ,外周血CD34+细胞绝对计数能够可靠预示自体外周血干细胞的采集效果  相似文献   

16.
High-dose chemotherapy with autologous stem cell rescue can result in autotransplantation of tumor cells. A possible approach to reduce tumor cell contamination is the positive selection of CD34+ PBPC, but this might be associated with a prolonged recovery time as well as an increased risk of infectious complications because of the loss of committed progenitor cells. To investigate this aspect, we compared two sequentially treated cohorts of high-risk breast cancer patients. Both groups received the same high-dose chemotherapy regimen followed by autologous peripheral stem cell transplantation. Group I received CD34+-selected blood progenitor cells, and group II received nonselected blood progenitor cells. We compared these two identically treated groups with regard to recovery time, need for blood products, infectious complications, need for antibiotic treatment, and length of the transplantation-related hospital stay. We found a prolonged recovery time for neutrophils up to 0.5 x 10(9)/L (14 days in the selected group/10 days in the nonselected group) and platelets up to 30 x 10(9)/L (29/12 days), associated with an increased requirement for RBC transfusions (5/3 U) and platelet transfusions (10/2 U). The rate of severe infectious complications (2/0), the need for nonprophylactic antibiotic treatment (15/10), and the length of the hospital stay (25/21 days) in group I were also increased. We conclude that positive selection of PBPC should not be used routinely until randomized studies show a clear long-term benefit of using CD34+-selected stem cell products in breast cancer patients.  相似文献   

17.
Despite the wide use of mobilized peripheral blood (PB) progenitor cells (PBPC) for clinical transplantation the mechanism(s) underlying their mobilization and subsequent engraftment are still unknown. We compared the adhesive phenotype of CD34(+) colony-forming cells (CFC) in bone marrow (BM) and PB of normal donors before and after administration of granulocyte colony-stimulating factor (G-CSF) for 5 d. G-CSF-mobilized PB CFC cells adhered significantly less to BM stroma, fibronectin, and to the alpha4 beta1 binding fibronectin peptide, CS1, because of decreased expression of the alpha4 integrin. Since incubation of BM CD34(+) cells for 4 d with G-CSF at concentrations found in serum of G-CSF- treated individuals did not affect alpha4-dependent adhesion, G-CSF may not be directly responsible for the decreased alpha4-mediated adhesion of PB CFC. Culture of G-CSF-mobilized PB CD34(+) cells with cytokines at concentrations found in BM stromal cultures upregulated alpha4 expression and restored adhesion of mobilized PB CFC to stroma, fibronectin, and CS1. Adhesion of cultured, mobilized PB CFC to stroma and CS1 could not be further upregulated by the beta1 activating antibody, 8A2. This indicates acquisition of a maximally activated alpha4 beta1 integrin once PB CFC have been removed from the in vivo mobilizing milieu. Thus, decreased alpha4 expression on CD34(+) CFC in PB may be responsible for the aberrant circulation of mobilized PB CD34(+) cells. Reexpression of a maximally activated alpha4 beta1 integrin on mobilized PB CFC removed from the mobilizing in vivo milieu may contribute to the early engraftment of mobilized PBPC.  相似文献   

18.
Retrospective analysis was conducted in 51 autologous peripheral blood progenitor cell (PBPC) collections using the Spectra AutoPBSC System from patients with hematologic malignancies and solid tumors to study the predictive value of CD34+ cell counts in the peripheral blood for the yield of CD34+ cells in the apheresis product. The correlation coefficients for CD34+ cells microL(-1) of peripheral blood with CD34+ cell yield (x 10(6) kg(-1) of body weight and x 10(5) kg(-1) of body weight L(-1) of blood processed) were 0.903 and 0.778 (n=51 collections), respectively. Products collected from patients with CD34+ cell counts below 15 microL(-1) in the peripheral blood contained a median of 0.49 x 10(6) CD34+ cells kg(-1) (range: 0.05-2.55), whereas those with CD34+ cell counts more than 15 microL(-1) contained a median of 3.72 x 10(6) CD34+ cells kg(-1) (range: 1.06-37.57). From these results, a number of at least 15 CD34+ cells microL(-1) in the peripheral blood ensured a minimum yield of 1 x 10(6) CD34+ cells kg(-1) as obtained by a single apheresis procedure. The number of CD34+ cells in the peripheral blood can be used as a good predictor for timing of apheresis and estimating PBPC yield. With regard to our results, apheresis with a possibly poor efficiency should be avoided because the collection procedure is time-consuming and expensive.  相似文献   

19.
BACKGROUND: The optimal dose of post-chemotherapy granulocyte–colony-stimulating factor (G–CSF) administration before peripheral blood progenitor cell (PBPC) collection has not been determined as yet, although 5 μg per kg per day has been recommended as the standard dose. This study retrospectively analyzed the effect of G–CSF dose on peripheral blood CD34+ cell collection from 91 patients with hematologic malignancies.
STUDY DESIGN AND METHODS: Various doses of G–CSF were administered after several chemotherapeutic PBPC mobilization regimens. According to the dose of G–CSF administered, patients were assigned to two groups. Group 1 included 46 patients who received a low dose of G–CSF (median, 3.6 [range, 2.8-4.6] μg/kg/day). Group 2 included 45 patients who received a standard G–CSF dose of 6.0 (5.5-8.1) μg per kg per day. Patients in the two groups were matched for age, diagnosis, previous therapy, and chemotherapeutic PBPC mobilization regimens.
RESULTS: No difference was observed in the median number of CD34+ cells harvested from each group. The number of leukapheresis procedures necessary to obtain a minimum of 3 × 106 CD34+ cells per kg was the same in both groups, and the percentage of patients who failed to achieve adequate PBPC collections was similar in the two groups.
CONCLUSION: The administration of low-dose G–CSF after chemotherapy appears equivalent to administration of the standard dose in achieving satisfactory PBPC collection. This approach could allow significant savings in medical cost. A randomized and prospective study is necessary, however, to assess the validity of these conclusions.  相似文献   

20.
BACKGROUND: Multiple days of apheresis are required for some normal peripheral blood progenitor cell (PBPC) donors, to ensure a sufficient collection of CD34+ cells for allografting. It would be of practical value to be able to identify the patients with poor mobilization on the basis of simple pretreatment clinical or hematologic variables. STUDY DESIGN AND METHODS: Clinical characteristics and laboratory data for 119 normal PBPC donors who underwent apheresis on Days 4 to 6 of treatment with granulocyte-colony-stimulating factor (filgrastim) were analyzed for correlations with CD34+ cell yield from the first day of apheresis. RESULTS: The CD34+ cell yield was significantly lower in donors who were more than 55 years of age, who underwent apheresis on Day 4 of filgrastim therapy, or who were not obese. There were weak direct correlations between CD34+ cell yield and the baseline white cell count, preapheresis white cell count, and preapheresis mononuclear cell count, and there was a weak inverse correlation with age. Twenty- one donors (18%) were considered to have poor mobilization (< 20 × 10(6) CD34+ cells/L blood processed). In the multivariate analysis, the only significant factor was age greater than 55 years, which conferred a 3.8 times greater risk (95% CI, 1.1-13.7) of poor mobilization (p = 0.04). However, poor mobilization occurred in all age groups, so the predictive value of the model was low. CONCLUSION: Donor variables correlated with CD34+ cell yield only weakly, so no particular clinical characteristic can be used to exclude an individual as a PBPC donor if he or she is otherwise suitable for the apheresis procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号