首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim HW  Kim HE  Knowles JC 《Biomaterials》2004,25(17):3351-3358
Hydroxyapatite (HA) and fluor-hydroxyapatite (FHA) films were deposited on a titanium substrate using a sol-gel technique. Different concentrations of F- were incorporated into the apatite structure during the sol preparation. Typical apatite structures were obtained for all coatings after dipping and subsequent heat treatment at 500 degrees C. The films obtained were uniform and dense, with a thickness of approximately 5 microm. The dissolution rate of the coating layer decreased with increasing F- incorporation within the apatite structure, which demonstrates the possibility of tailoring the solubility by a functional gradient coating of HA and FHA. The cell proliferation rate on the coating layer decreased slightly with increasing F- incorporation. The alkaline phosphatase (ALP) activity of the cells on all the HA and FHA coated samples showed much higher expression levels compared to pure Ti. This confirmed the improved activity of cell functions on the substrates with the sol-gel coating treatment.  相似文献   

2.
A simple sol-gel method was developed for hydroxyapatite/titania (HA/TiO(2)) coatings on non-toxic titanium-zirconium (TiZr) alloy for biomedical applications. The HA/TiO(2)-coated TiZr alloy displayed excellent bioactivity when soaked in a simulated body fluid (SBF) for an appropriate period. Differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy-energy dispersive spectrometry were used to characterize the phase transformations and the surface structures and to assess the in vitro tests. The HA/TiO(2) layers were spin-coated on the surface of TiZr alloy at a speed of 3000rpm for 15s, followed by a heat treatment at 600 degrees C for 20min in an argon atmosphere sequentially. The TiO(2) layer exhibited a cracked surface and an anatase structure and the HA layer displayed a uniform dense structure. Both the TiO(2) and HA layers were 25microm thick, and the total thickness of the HA/TiO(2) coatings was 50microm. The TiZr alloy after the above HA/TiO(2) coatings displayed excellent bone-like apatite-forming ability when soaked in SBF and can be anticipated to be a promising load-bearing implant material.  相似文献   

3.
Kim HW  Koh YH  Li LH  Lee S  Kim HE 《Biomaterials》2004,25(13):2533-2538
Hydroxyapatite (HA) was coated onto a titanium (Ti) substrate with the insertion of a titania (TiO2) buffer layer by the sol-gel method. The HA layer was employed to enhance the bioactivity and osteoconductivity of the Ti substrate, and the TiO2 buffer layer was inserted to improve the bonding strength between the HA layer and Ti substrate, as well as to prevent the corrosion of the Ti substrate. The HA layer coated over the TiO2 showed a typical apatite phase at 400 degrees C and the phase intensity increased above 450 degrees C. The sol-gel derived HA and TiO2 films, with thicknesses of approximately 800 and 200 nm, respectively, adhered tightly to each other and to the Ti substrate. The bonding strength of the HA/TiO2 double layer coating on Ti was markedly improved when compared to that of the HA single coating on Ti. The highest strength of the double layer coating was 55 MPa after heat treatment at 500 degrees C. The improvement in bonding strength with the insertion of TiO2 was attributed to the resulting enhanced chemical affinity of TiO2 toward the HA layer, as well as toward the Ti substrate. Human osteoblast-like cells, cultured on the HA/TiO2 coating surface, proliferated in a similar manner to those on the TiO2 single coating and on the pure Ti surfaces. However, the alkaline phosphatase activity of the cells on the HA/TiO2 double layer was expressed to a higher degree than that on the TiO2 single coating and pure Ti surfaces. The corrosion resistance of Ti was improved by the presence of the TiO2 coating, as confirmed by a potentiodynamic polarization test.  相似文献   

4.
A double-layered coating, consisting of a hydroxyapatite (HA) outer film and a fluor-hydroxyapatite (FHA) inner film, was produced on a Ti substrate by a sol-gel route to improve the biocompatibility and functionality of the system. Dissolution behavior of and in vitro cellular responses to the layered film were investigated. Calcium nitrate and triethyl phosphite were used for calcium and phosphate precursors, respectively, and ammonium fluoride was added as a fluorine-ion source for FHA. The FHA layer was deposited on Ti by spin coating and subsequent heat treatment at 550 degrees C for 30 min in air, and then the HA layer was laid down over the FHA-coated Ti under the same conditions. After heat treatment, characteristic apatite structures and phases were developed on both FHA and HA films. The cross-section view of the HA/FHA film clearly showed a double-layered structure on Ti with each layer approximately 0.6-0.8-microm thickness. The coating layer was highly uniform and dense, and adhered to Ti substrate strongly with an adhesion strength of about 40 MPa. The in vitro solubility of the HA/FHA layered film in a physiological solution was between that of HA and FHA pure film, and the dissolution profile was quite biphasic, that is, an initial rapid period and a slowdown with increasing time, reflecting the gradient solubility of the fast HA outer structure/slow FHA inner structure. The human osteoblast-like HOS TE85 cells cultured on the HA/FHA layered film attached, spread, and grew favorably. The proliferation rate of the cells on the layered film was significantly higher (considered at p < 0.05 for n = 6) than that on Ti substrate and was similar to that on pure HA film. The alkaline phosphatase (ALP) activity and osteocalcin (OC) produced by the cells on the layered film were significantly higher (considered at p < 0.05 for n = 6) than those on Ti substrate. Moreover, the ALP and OC levels of cells on the layered film showed the trends of HA outer/FHA inner structure with respect to culture period, that is, HA initially and FHA later. These observations suggest that the HA/FHA layered film on Ti obtained by a sol-gel route possesses gradient functionality in terms of solubility and cellular responses, and find that those parameters can be tailored for specific use in hard-tissue implants.  相似文献   

5.
In the present work a titania network encapsulating a hydroxyapatite particulate phase is proposed as a bioceramic composite coating. The coating on a titanium substrate was produced starting from a sol containing a mixture of titania colloidal particles and hydroxyapatite submicron particles using the dip-coating technique. The microstructure, the morphology and the surface chemical composition of the coating were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. Adhesion tests were also performed. These analyses showed that the obtained coating was chemically clean, homogeneous, rough, porous, with a low thickness and well-defined phase composition as well as a good adhesion to the substrate.  相似文献   

6.
Hydroxyapatite (HA) coatings loaded with nanosilver particles is an attractive method to impart the HA coating with antibacterial properties. Producing Ag/HA coatings on porous Ti substrates have been an arduous job since commonly used line-of-sight techniques are not able to deposit uniform coatings on the inner pore surfaces of the porous Ti. In this study, porous Ti scaffolds with high porosity and interconnected structures were prepared by polymer impregnating method. A sol-gel process was used to produce uniform Ag/HA composite coatings on the surfaces of porous Ti substrates. Ca(NO(3) )(2) ·4H(2) O and P(2) O(5) in an ethyl alcohol based system was selected to prepare the sol, which ensured the homogeneous distribution of Ag in the sol. The characterization revealed that silver particles uniformly distributed in the coatings without agglomeration. High antibacterial ratio (>95%), against E. coli and S. albus was expressed by the silver-containing coatings (Ag/HA 0.8 and 1.6 wt %). The biocompatibility of the Ag/HA 0.8 surfaces was as good as that of pure HA surface, as revealed by culturing osteoblasts on them. The results indicated that Ag/HA 0.8 had the good balance between the biocompatibility and antibacterial properties of the coatings.  相似文献   

7.
The biocompatibility of titania/hydroxyapatite (TiO2 /HA) composite coatings, at different ratio obtained by sol-gel process, were investigated studying the behaviour of human MG63 osteoblast-like cells. The biocompatibility was evaluated by means of cytotoxicity and cytocompatibility tests. Cytotoxicity tests, i.e., neutral red (NR), MTT and kenacid blue (KB) assays, were performed to assess the influence of the material extracts on lysosomes, mitochondria and cell proliferation, respectively. Cell proliferation, some preliminary indications of cell morphology, alkaline phosphatase activity, collagen and osteocalcin production of MG63 cells, cultured directly onto TiO2/HA substrates, were evaluated. The results showed that these materials have no toxic effects. Cell growth and morphology were similar on all the materials tested: on the contrary, alkaline-phosphatase-specific activity and collagen production of osteoblasts cultured on TiO2/HA coatings were significantly higher than uncoated titanium and polystyrene of culture plate and were influenced by chemical composition of the coatings. In particular, TiO2/HA coating at 1:1 ratio (w/w) seems to stimulate more than others the expression of some differentiation markers of osteoblastic phenotype. TiO2/HA coatings resulted to be bioactive owing to the presence of hydroxyl groups detected on their surface that promote the calcium and phosphate precipitation and improve the interactions with osteoblastic cells.  相似文献   

8.
A simple sol–gel method was developed for hydroxyapatite/titania (HA/TiO2) coatings on non-toxic titanium–zirconium (TiZr) alloy for biomedical applications. The HA/TiO2-coated TiZr alloy displayed excellent bioactivity when soaked in a simulated body fluid (SBF) for an appropriate period. Differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy-energy dispersive spectrometry were used to characterize the phase transformations and the surface structures and to assess the in vitro tests. The HA/TiO2 layers were spin-coated on the surface of TiZr alloy at a speed of 3000 rpm for 15 s, followed by a heat treatment at 600 °C for 20 min in an argon atmosphere sequentially. The TiO2 layer exhibited a cracked surface and an anatase structure and the HA layer displayed a uniform dense structure. Both the TiO2 and HA layers were 25 μm thick, and the total thickness of the HA/TiO2 coatings was 50 μm. The TiZr alloy after the above HA/TiO2 coatings displayed excellent bone-like apatite-forming ability when soaked in SBF and can be anticipated to be a promising load-bearing implant material.  相似文献   

9.
Sato M  Slamovich EB  Webster TJ 《Biomaterials》2005,26(12):1349-1357
Sol-gel processing was used to coat titanium substrates with hydroxyapatite (HA), TiO2, and poly(DL-lactic-glycolic acid). Coating surface characteristics were analyzed with XRD, EDS, AFM, SEM, and water contact angle measurements which indicated that the coatings had a high degree of crystallinity and good resistance to cracking. Coatings were also evaluated by cytocompatibility testing with osteoblast-like cells (or bone-forming cells). The cytocompatibility of the HA composite coatings prepared in the present in vitro study was compared to that of a traditional plasma-sprayed HA coating. Results showed that osteoblast-like cell adhesion was promoted on the novel HA sol-gel coating compared to the traditional plasma-sprayed HA coating. In addition, hydrothermal treatment of the sol-gel coating improved osteoblast-like cell adhesion. Since osteoblast adhesion is a necessary prerequisite for subsequent formation of bone, these results provided evidence that hydrothermally sol-gel processed HA may improve bonding of titanium implants to juxtaposed bone and, thus, warrants further investigation.  相似文献   

10.
本文介绍了硬组织替代材料复合方法从机械共混到超微结构自组装的不断发展过程 ,同时阐明了羟基磷灰石在人工硬组织替代材料复合中所扮演的重要角色  相似文献   

11.
The adhesion of thin (< 10 microm) sol-gel calcium phosphate-titanium dioxide films bonded to a titanium substrate was studied using two different tests: a rotating-bending test and a tensile bond test. The former evaluates the impact of both the coating procedure and the surface pre-treatment on the resistance to fatigue of the substrate as well as the adhesion of the coating; the latter measures the tensile adhesion strength of the coating. Both tests gave similar results. A reduction of the thickness of the coating or an increase of the roughness of the substrate improves the quality of the interface. A comparison of the adhesion of the calcium phosphate-titanium dioxide film with that of a pure calcium phosphate coating obtained by a similar route suggests the involvement of a chemical component in the binding.  相似文献   

12.
背景:介孔结构的二氧化钛涂层除了具有一般介孔材料的优点外,还具有很好的生物相容性和独特的抗菌性,并且在钛及钛合金表面很易形成。 目的:对介孔诱导型二氧化钛涂层和普通的二氧化钛涂层进行形貌结构分析和比较,为钛合金表面介孔结构二氧化钛涂层在生物医学领域的应用提供实验和理论基础。 方法:在Ti-6Al-4V合金表面采用模板法和非模板法制备介孔诱导型二氧化钛涂层和普通二氧化钛涂层,使用场发射扫描电子显微镜、快速比表面积/孔隙分析仪和X射线衍射仪对两种二氧化钛涂层的表面形貌结构进行比较分析。 结果与结论:在Ti-6Al-4V合金表面制备的稳定介孔二氧化钛涂层,其平均介孔孔径、比表面积和孔容分别为6.668 0 nm、124.190 6 m2/g和0.256 470 cm3/g,具有介孔结构大比表面积和孔容的特点,适合对医用钛及钛合金改性。  相似文献   

13.
Surfaces of biocompatible alloys used as implants play a significant role in their osseointegration. Surface sol-gel processing (SSP), a variant of the bulk sol-gel technique, is a relatively new process to prepare bioreactive nanostructured titanium oxide for thin film coatings. The surface topography, roughness, and composition of sol-gel processed Ti6Al4V titanium alloy coatings was investigated by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS). This was correlated with corrosion properties, adhesive strength, and bioreactivity in simulated body fluids (SBF). Electroimpedance spectroscopy (EIS) and polarization studies indicated similar advantageous corrosion properties between sol-gel coated and uncoated Ti6Al4V, which was attributed to the stable TiO2 composition, topography, and adhesive strength of the sol-gel coating. In addition, inductive coupled plasma (ICP) and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) analysis of substrates immersed in SBF revealed higher deposition of calcium and phosphate and low release rates of alloying elements from the sol-gel modified alloys. The equivalent corrosion behavior and the definite increase in nucleation of calcium apatite indicate the potential of the sol-gel coating for enhanced bioimplant applications.  相似文献   

14.
This study evaluates the potential of titanium oxide coatings for short-term delivery of vanadium for improved wound healing around implants. Titanium and vanadium oxides are bioactive agents that elicit different bioresponses in cells, ranging from implant integration and reduction of inflammation to modulation of cell proliferation and morphology. These oxides were combined in biomaterial coatings using metal-organic precursors and rapidly screened in cell-culture microplates to establish how vanadium-loading influences cell proliferation and morphology. Twenty-eight-day elution studies indicated that there was a controlled release of vanadium from stable titanium oxide matrices. Elution profiles were mathematically modeled for vanadium loading of 20-1.25% up to a period of 28 days. Scanning electron microscopy and energy dispersive spectroscopy of the coatings indicated that the vanadium was present as a nanoscale dispersion and not segregated micron-scale islands. The study confirmed that the observed bioresponse of cells was modulated by the soluble release of vanadium into the surrounding medium. Controlled release of vanadium from titania coatings may be used to influence soft-tissue integration of implants by modulating cell proliferation, attachment, inflammation, and wound healing dynamics.  相似文献   

15.
Hydroxyapatite (HA) and gelatin composites were fabricated in a foam type via a novel freeze-drying and crosslinking technique. The morphological and mechanical properties of and in vitro cellular responses to the foams were investigated. The HA powder was added at up to 30 wt % into the gelatin solution, and the mixtures were freeze-dried and further crosslinked. The pure gelatin foam had a well-developed pore configuration with porosity and pore size of approximately 90% and 400-500 microm, respectively. With HA addition, the porosity decreased and pore shape became more irregular. The HA particulates, in sizes of about 2-5 microm, were distributed within the gelatin network homogeneously and made the framework surface rougher. All the foams had high water absorption capacities, showing typical hydrogel characteristics, even though the HA addition decreased the degree of water absorption. The HA addition made the foam much stronger and stiffer (i.e., with increasing HA amount the foams sustained higher compressive stress and had higher elastic modulus in both dry and wet states). The osteoblast-like human osteosarcoma cells spread and grew actively on all the foams. The cell proliferation rate, quantified indirectly on the cells cultured on Ti discs coated with gelatin and gelatin-HA composites using MTT assay, exhibited an up-regulation with gelatin coating compared with bare Ti substrate, but a slight decrease on the composite coatings. However, the alkaline phosphatase activities expressed by the cells cultured on composites foams as well as their coatings on Ti discs were significantly enhanced compared with those on pure gelatin foam and coating. These findings suggest that the gelatin-HA composite foams have great potential for use as hard tissue regeneration scaffolds.  相似文献   

16.
Calcium phosphate (Ca-P) coatings have been applied onto titanium alloys prosthesis to combine the srength of metals with the bioactivity of Ca-P. It has been clearly shown in many publications that Ca-P coating accelerates bone formation around the implant. However, longevity of the Ca-P coating for an optimal bone apposition onto the prosthesis remains controversial. Biomimetic bone-like carbonate apatite (BCA) and Octacalcium Phosphate (OCP) coatings were deposited on Ti6Al4V samples to evaluate their in vitro and in vivo dissolution properties. The coated plates were soaked in alpha-MEM for 1, 2, and 4 weeks, and they were analyzed by Back Scattering Electron Microscopy (BSEM) and by Fourier Transform Infra Red spectroscopy (FTIR). Identical coated plates were implanted subcutaneously in Wistar rats for similar periods. BSEM, FTIR, and histomorphometry were performed on the explants. In vitro and in vivo, a carbonate apatite (CA) formed onto OCP and BCA coatings via a dissolution-precipitation process. In vitro, both coatings dissolved overtime, whereas in vivo BCA calcified and OCP partially dissolved after 1 week. Thereafter, OCP remained stable. This different in vivo behavior can be attributed to (1) different organic compounds that might prevent or enhance Ca-P dissolution, (2) a greater reactivity of OCP due to its large open structure, or (3) different thermodynamic stability between OCP and BCA phases. These structural and compositional differences promote either the progressive loss or calcification of the Ca-P coating and might lead to different osseointegration of coated implants.  相似文献   

17.
18.
The relatively high cost of manufacturing and the inability to produce modular implants have limited the acceptance of tantalum, in spite of its excellent in vitro and in vivo biocompatibility. In this article, we report how to process Ta to create net-shape porous structures with varying porosity using Laser Engineered Net Shaping (LENS?) for the first time. Porous Ta samples with relative densities between 45% and 73% have been successfully fabricated and characterized for their mechanical properties. In vitro cell materials interactions, using a human fetal osteoblast cell line, have been assessed on these porous Ta structures and compared with porous Ti control samples. The results show that the Young’s modulus of porous Ta can be tailored between 1.5 and 20 GPa by changing the pore volume fraction between 27% and 55%. In vitro biocompatibility in terms of MTT assay and immunochemistry study showed excellent cellular adherence, growth and differentiation with abundant extracellular matrix formation on porous Ta structures compared to porous Ti control. These results indicate that porous Ta structures can promote enhanced/early biological fixation. The enhanced in vitro cell–material interactions on the porous Ta surface are attributed to its chemistry, its high wettability and its greater surface energy relative to porous Ti. Our results show that these laser-processed porous Ta structures can find numerous applications, particularly among older patients, for metallic implants because of their excellent bioactivity.  相似文献   

19.
Hydroxyapatite and their use as coatings in dental implants: a review   总被引:3,自引:0,他引:3  
At present, no standard manufacturing guideline exists for depositing hydroxyapatite (HA) on implant surfaces. Although animal and in vitro studies have reported on the benefits of using HA-coated implants as well as the risks of dissolution, these short-term studies did not demonstrate that the dissolution of the HA coating leads to a loss of implants. In addition, many in vivo and clinical studies did not include the chemical and structural characterization of the coatings, and thus comparisons between studies are difficult. In the clinics, the recommendation is that HA-coated screw implants be used for the anterior maxilla and posterior mandible where the bone depth exceeds 10 mm and when the cortical layer is thinner and spongiosia is less dense. In the posterior maxilla or when the cortical layer is very thin with low density, the use of HA-coated cylindrical implants is recommended. However, there are concerns for using HA-coated implants. The clinician needs to take into consideration the enhanced bacterial susceptibility of HA coatings compared with titanium implants. In addition, the clinician needs to consider the possible failure of HA coatings as a result of coating-substrate interfacial fracture. Finally, besides the surgical skills, it is also important that the clinical investigators be well versed with the materials characterization needed for HA-coated implants, the problems associated with the current HA coatings, and the indications for use. In addition, the correlation between well characterized coatings and their effect on bone formation rate and long-term implant success, coating-implant interfacial strength, and alternative superior coating process need to be investigated further.  相似文献   

20.
In the present study, we investigated the dental implant protection from peri-implant inflammation by improving the soft tissue adhesion on the titanium surface. Porous titanium was used to create, at the level of the transmucosal part of the implants (the “neck”), a microstructured 3-dimensional surface that would tightly seal the interface between the implant and soft tissue. Cell-specific adhesion properties were induced via an adhesion peptide derived from laminin-5 coupled to native or cross-linked PLL/PGA multilayered polyelectrolyte films (MPFs), which are used for biomedical device coatings. Porous titanium exhibited good cell-adhesion properties, but the colonisation of the material was further improved by a coating with laminin-5 functionalised MPFs and especially with (PLL/PGA)6,5–PGA–peptide film. Focal contact formation was observed on cross-linked architectures, reflecting cell anchorage on these surfaces. In contrast, when seeded on laminin-5-functionalised native films, epithelial cells formed only very diffuse focal contacts, but adhered via hemidesmosome formation. In vivo experiments confirmed that the porous titanium was colonised by cells of soft tissue. Altogether, the results indicate that the microstructure of the implant neck combined with a specific bioactive coating could constitute efficient routes to improve the integration of soft tissue on titanium dental implants, which could significantly protect implants from peri-implant inflammation and enhance long-term implant stabilisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号