首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
Tao F  Tao YX  Mao P  Zhao C  Li D  Liaw WJ  Raja SN  Johns RA 《Neuroscience》2003,120(3):847-854
To date, the exact role of inducible nitric oxide synthase (iNOS) in inflammatory pain remains controversial. In the present study, we combined a pharmacological strategy (using a selective iNOS inhibitor) with a genomic strategy (using mice lacking the iNOS gene) to address the function of iNOS in the central mechanism of carrageenan-induced persistent inflammatory pain. In the wild type mice, intrathecal administration of L-N(6)-(1-iminoethyl)-lysine, a selective iNOS inhibitor, significantly inhibited thermal hyperalgesia in the late phase but not in the early phase of carrageenan inflammation. Moreover, iNOS mRNA expression in the lumbar enlargement segments of the spinal cord was dramatically induced at 24 h (late phase) after injection of carrageenan into a hind paw. Interestingly, targeted disruption of iNOS gene did not affect carrageenan-induced thermal hyperalgesia in either the early (2-6 h) or late phase. In the lumbar enlargement segments of iNOS knockout mice, nitric oxide synthase (NOS) enzyme activity remained at a similar level to that of the wild type mice at 24 h after carrageenan injection. We found that intrathecal administration of 7-nitroindazole (a selective neuronal NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (a selective endothelial NOS inhibitor), significantly reduced carrageenan-induced thermal hyperalgesia in both the early phase and the late phase in iNOS knockout mice. We also found that expression of neuronal NOS but not endothelial NOS in the lumbar enlargement segments was significantly increased in iNOS knockout mice compared with wild type mice at 24 h after carrageenan injection.Our results indicate that neuronal NOS might compensate for the function of iNOS in the late phase of carrageenan-induced inflammatory pain in iNOS knockout mice. This suggests that iNOS may be sufficient, but not essential, for the late phase of the carrageenan-induced thermal hyperalgesia.  相似文献   

2.
BACKGROUND: Nitric oxide (NO) is a factor in cervical ripening, perhaps under the control of progesterone. We studied the effects of the antiprogesterone mifepristone on the release of NO and on the expression of inducible NO synthase (iNOS) and endothelial NO synthase (eNOS) in the uterine cervix of women in early pregnancy. METHODS: Thirteen women were treated with oral mifepristone (200 mg), and 15 women were studied as controls. Cervical fluid samples were collected before treatment then hourly up to 3 h, and the samples were assayed for the concentration of nitric oxide metabolites (NOx). In addition, cervical biopsy samples from six women treated with mifepristone and from six controls were assessed for iNOS and eNOS by immunohistochemistry and Western blotting. RESULTS: In 1-3 h, mifepristone induced 7.4- to 17.2-fold elevations in cervical fluid NOx concentrations; no change was seen in the controls. The expression of both iNOS and eNOS was detected in the cervical cells. The expression of cervical iNOS was strong in five of the six women treated with mifepristone but was not strong in any of the six control women. CONCLUSION: This is the first study to show that mifepristone stimulates the release of NO and the expression of iNOS in cervical cells of women in early pregnancy. This may be one mechanism by which mifepristone initiates cervical ripening.  相似文献   

3.
Protein-protein interactions controlling nitric oxide synthases   总被引:3,自引:0,他引:3  
  相似文献   

4.
Besides nitric oxide (NO), NO synthases (NOS) also produce superoxide ((*)O(2)()), a primary reactive oxygen species involved in both cell injury and signaling. Neuronal NOS was first found to produce (*)O(2)(-) in vitro. Subsequent studies revealed (*)O(2)(-) generation as a common property of all NOS isoforms. Although NOS was originally shown to produce (*)O(2)(-) under defined conditions such as substrate or cofactor depletion, recent enzymatic studies found that the reduction of oxygen to (*)O(2)(-) is an obligatory step in NO synthesis. Tetrahydrobiopterin appears to play a key role in preventing (*)O(2)(-) release from the NOS oxygenase domain. On the other hand, the NOS reductase domain is also capable of producing significant amounts of (*)O(2)(-). Increasing evidence demonstrates that (*)O(2)(-) generation is involved in both physiological and pathological actions of NOS.  相似文献   

5.
Nitric oxide (NO) and reactive oxygen species (ROS) are important mediators in the pathogenesis of inflammatory bowel disease (IBD). NO in IBD can be either harmful or protective. NO can react with superoxide anions (O2.-), yielding the toxic oxidizing agent peroxynitrite (ONOO-). Peroxynitrite induces nitration of tyrosine residues (nitrotyrosine), leading to changes of protein structure and function. The aim of this study was to identify the cellular source of inducible nitric oxide synthase (iNOS) and to localize superoxide anion-producing cells in mucosal biopsies from patients with active IBD. Additional studies were performed to look at nitrotyrosine formation as a measure of peroxynitrite-mediated tissue damage. For this, antibodies against iNOS, endothelial NOS (eNOS), and nitrotyrosine were used. ROS-producing cells were detected cytochemically. Inflamed mucosa of patients with active IBD showed intense iNOS staining in the epithelial cells. iNOS could not be detected in non-inflamed mucosa of IBD patients and control subjects. eNOS was present in blood vessels, without any difference in the staining intensity between IBD patients and control subjects. ROS-producing cells were increased in the lamina propria of IBD patients; a fraction of these cells were CD15-positive. Nitrotyrosine formation was found on ROS-positive cells. These results show that iNOS is induced in epithelial cells from patients with active ulcerative colitis or Crohn's disease. Nitration of proteins was detected only on the ROS-producing cells at some distance from the iNOS-producing epithelial cells. These findings indicate that tissue damage during active inflammation in IBD patients is probably more related to ROS-producing cells than to NO. One may speculate that NO has a protective role when during active inflammation other mucosal defence systems are impaired.  相似文献   

6.
Nitric oxide (NO) in combination with superoxide produces peroxynitrites and induces protein nitration, which participates in a number of chronic degenerative diseases. NO is produced at high levels in the human emphysematous lung, but its role in this disease is unknown. The aim of this study was to determine whether the NO synthases contribute to the development of elastase-induced emphysema in mice. nNOS, iNOS, and eNOS were quantified and immunolocalized in the lung after a tracheal instillation of elastase in mice. To determine whether eNOS or iNOS had a role in the development of emphysema, mice bearing a germline deletion of the eNOS and iNOS genes and mice treated with a pharmacological iNOS inhibitor were exposed to elastase. Protein nitration was determined by immunofluorescence, protein oxidation was determined by ELISA. Inflammation and MMP activity were quantified by cell counts, RT-PCR and zymography in bronchoalveolar lavage fluid. Cell proliferation was determined by Ki67 immunostaining. Emphysema was quantified morphometrically. iNOS and eNOS were diffusely upregulated in the lung of elastase-treated mice and a 12-fold increase in the number of 3-nitrotyrosine-expressing cells was observed. Over 80% of these cells were alveolar type 2 cells. In elastase-instilled mice, iNOS inactivation reduced protein nitration and increased protein oxidation but had no effect on inflammation, MMP activity, cell proliferation or the subsequent development of emphysema. eNOS inactivation had no effect. In conclusion, in the elastase-injured lung, iNOS mediates protein nitration in alveolar type 2 cells and alleviates oxidative injury. Neither eNOS nor iNOS are required for the development of elastase-induced emphysema.  相似文献   

7.
Angiogenesis, the formation of new vessels from pre-existing vasculature, is impaired in aging. This is due, in part, to a lack of regulatory molecules such as nitric oxide (NO). We wished to test the hypothesis that there are deficits in the pathways that mediate NO production during angiogenesis (as defined by fibrovascular invasion into a polyvinyl alcohol (PVA) sponge implant), in aged mice in comparison to young mice. Sponges were implanted subcutaneously in young (6-8 months old, n=11) and aged (23-25 months old, n=13) mice and sampled at 14 and 19 days. Sections from the implants were stained with antibodies against vascular endothelial growth factor receptor 2 (VEGFR-2), Akt, phosphorylated Akt (p-Akt), endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), inducible NOS (iNOS), and 3-nitrotyrosine (3-NT, a marker for nitrosylated proteins). Expression of VEGFR-2 was similar in the sponges of young and aged mice. Moreover, there were no significant differences in levels of Akt or its phosphorylated form in sponges from young and aged mice at 14 and 19 d. In marked contrast, levels of eNOS, p-eNOS and iNOS were significantly decreased in sponges from aged mice relative to young mice (p<0.02 for eNOS, p-eNOS and <0.01 for iNOS between young and aged mice). Concomitantly, there was diminished expression of 3-NT in the sponges from aged mice (p<0.05). Our data indicate that defects in the activation of nitric oxide synthases result in decreased NO production in aged tissues relative to young tissues. We propose that the subsequent lack of NO contributes to impaired angiogenesis in aging.  相似文献   

8.
To assess the influence of inducible and endothelial nitric oxide synthase gene (NOS2A and NOS3) polymorphisms in susceptibility to Crohn's disease (CD) and ulcerative colitis (UC). A total of 505 inflammatory bowel disease (IBD) patients (221 with UC and 284 with CD) and 332 ethnically matched controls were studied. Patients and controls were genotyped by polymerase chain reaction -based techniques for a multiallelic (CCTTT)(n) repeat and biallelic marker (TAAA)(n) in the promoter region of the NOS2A gene and for a T/C polymorphism at position -786 in the promoter region and a polymorphism in exon 7(298Glu/Asp) of the NOS3 gene. There was not association between NOS2A and NOS3 genotypes, alleles or haplotypes frequencies with UC, CD and controls. Our data suggest that NOS2A and NOS3 polymorphisms do not play a major role in IBD predisposition.  相似文献   

9.
Nitric oxide is believed to play a central role in nonspecific defense of upper airways. Patients with primary ciliary dyskinesia have very low concentration of nasal nitric oxide, which may contribute to the chronic upper airway diseases encountered by these patients. The mechanisms underlying this drop of nasal nitric oxide in primary ciliary dyskinesia are still unknown. The goal of the present work was to study nitric oxide synthases expression in upper airway tissues from patients with primary ciliary dyskinesia. For this purpose, 5 patients with primary ciliary dyskinesia and 10 nonallergic age-matched patients without primary ciliary dyskinesia undergoing nasal polypectomy were included. Nasal nitric oxide concentration was measured before polypectomy, and nitric oxide synthase expression and function were studied in nasal polyps. The nasal nitric oxide in patients with primary ciliary dyskinesia was lower than that in patients without primary ciliary dyskinesia (13 [9-16] ppb versus 210 [167-254] ppb, P < .0001). Nitric oxide synthase 2 immunostaining was prominent at the apical part of the ciliated epithelial cells and was similar in both groups. Nitric oxide synthase 3 staining was restricted to endothelial cells in both groups. In addition, reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity was superimposable to nitric oxide synthases 2 and 3 immunostaining, suggesting a preserved NADPH-activity of nitric oxide synthase. We therefore conclude that the drop in nasal nitric oxide in patients with primary ciliary dyskinesia is not secondary to the loss of nitric oxide synthase expression.  相似文献   

10.
Aim: Lung ischaemia–reperfusion induces nitric oxide synthesis and reactive nitrogen species, decreasing nitric oxide bioavailability. We hypothesized that in the ventilated lung, this process begins during ischaemia and intensifies with reperfusion, contributing to ischaemia–reperfusion‐induced pulmonary vasoconstriction. The aim was to determine whether ischaemia–reperfusion alters inducible and endothelial nitric oxide synthase expression/activity, reactive nitrogen species generation, and nitric oxide bioavailability, potentially affecting pulmonary perfusion. Methods: Ischaemia–reperfusion was induced for various times in anesthetized rabbits with ventilated lungs by reversibly occluding the right pulmonary artery and initiating reperfusion. Nitric oxide synthase activity/expression and phosphorylation, reactive nitrogen species generation and total nitrate/nitrite were determined in lung tissue. Results: Inducible nitric oxide synthase expression and activity, and reactive nitrogen species formation coincided with increased pulmonary vascular resistance during reperfusion and increased with ischaemia duration, further increasing after 2‐h reperfusion. Total nitrate/nitrite also increased with ischaemia but decreased after 2‐h reperfusion. Pre‐treatment with an inducible nitric oxide synthase inhibitor (1400W; Cayman Chemical Company, Ann Arbor, MI, USA) attenuated inducible nitric oxide synthase activity, reactive nitrogen species generation and pulmonary vascular resistance, but did not affect total nitrate/nitrite. Endothelial nitric oxide synthase expression was unchanged by ischaemia–reperfusion; however, its phosphorylation on serine 1177 and dephosphorylation on threonine 495 was uncoupled, suggesting decreased endothelial nitric oxide synthase activity. 1400W prevented uncoupling of endothelial nitric oxide synthase phosphorylation, maintaining its activity during reperfusion. Conclusion: Ischaemia–reperfusion up‐regulates inducible nitric oxide synthesis and/activity, which coincides with reduced endothelial nitric oxide synthase activity as suggested by its uncoupling and may contribute to ischaemia–reperfusion‐induced pulmonary vasoconstriction.  相似文献   

11.
脑缺血再灌注过程中,脑组织一氧化氮(NO)含量呈"双峰样"变化。作用也随其在机体内含量变化具有不同表现;NO主要通过4条信号通路影响细胞凋亡。NO可通过分子修饰使相关蛋白发生S-亚硝基化,调节信号通路,进而影响细胞凋亡。  相似文献   

12.
This study was undertaken to determine whether the blood-brain barrier (BBB) breakdown and cerebral edema occurring post-trauma are associated with overexpression of the endothelial (e) and inducible (i) nitric oxide synthases (NOS), enzymes responsible for nitric oxide (NO) biosynthesis. These enzymes were determined quantitatively at the mRNA level and qualitatively at the protein level in the rat cerebral cortical cold injury model, during a period up to 6 days post-injury. In addition, peroxynitrite generation at the lesion site was detected by immunolocalization of nitrotyrosine as a marker of NO-superoxide interactions. These studies were correlated with the permeability status of the BBB by immunohistochemical detection of endogenous fibronectin extravasation in the same brains. BBB breakdown was immediate in lesion vessels, it was present as early as 10 minutes post-lesion and delayed in perilesional vessels that showed maximal BBB breakdown between 2-4 days. The BBB was restored to normal at 6 days post-lesion. An increase in both eNOS and iNOS mRNA was observed at the lesion site as compared with the contralateral hemisphere at 12 hours, 2 days, and 4 days. The mRNA returned to resting levels by 6 days. Increased eNOS protein was observed in the endothelium of permeable perilesional vessels and neovessels and in the endothelium of the hyperplastic pial vessels overlying the lesion site. iNOS protein was observed initially in polymorphonuclear leukocytes at the lesion site and later in macrophages, endothelial cells, and the smooth muscle cells of the overlying pial vessels. Furthermore, nitrotyrosine was demonstrated at the lesion site up to 5 days. Up-regulation of the NO synthases at both the mRNA and protein level accompanied by presence of nitrotyrosine during BBB breakdown and angiogenesis suggests that NO has a role in the pathogenesis of these processes.  相似文献   

13.
14.
The topography of thymocytes expressing neuronal and inducible nitric oxide synthases and changes in the content of luminescent immunoreactive products in these cells after intraperitoneal injection of bacterial lipopolysaccharide were studied by double immunohistochemical labeling. Under normal conditions neuronal nitric oxide synthase-immunopositive cells formed a wide network in thymus medulla (except for perivascular regions). Inducible nitric oxide synthase was expressed in single cells at the corticomedullary boundary. Lipopolysaccharide markedly increased the intensity of luminescence and number of inducible nitric oxide synthase-immunoreactive cells. However, this agent sharply decreased the intensity of luminescence in neuronal nitric oxide synthase-immunopositive cells of the stroma. Our results indicate that neuronal and inducible nitric oxide synthases are synthesized in various stromal cells of the thymus. Expression of these enzyme isoforms undergoes opposite changes during inflammation.  相似文献   

15.
BackgroundNitric oxide (NO) has various roles in airway physiology and pathophysiology. Monitoring exhaled NO levels is increasingly common to measure airways inflammation and inhaled NO studied for its therapeutic value in premature infants and adult respiratory distress syndrome. NO is produced by 3 isoforms of NO synthase (NOS1, 2, 3), and each can play distinct and perhaps overlapping roles in the airways. However, the distribution, regulation, and functions of NOS in various cells in the upper airways, particularly in leukocytes, are incompletely understood.ObjectiveTo characterize the expression of NOS isoforms in leukocytes in normal middle turbinate tissues (MT) and in inflammatory nasal tissue (nasal polyps, NP).MethodsNormal MT tissue was collected from surgical specimens that were to be discarded. The NP samples were from surgical tissue archives of 15 patients with chronic rhinosinusitis. Isoforms of NOS in cells were identified by double immunostaining using NOS isoform-specific and leukocyte-specific (mast cell, eosinophil, macrophage, neutrophil, or T cell) antibodies.ResultsThe proportion of total cells below the epithelium that were positive for each isoform of NOS was higher in NP than in MT. Each isoform of NOS was found in all leukocyte populations studied, and there were significant differences in the percentage of leukocytes expressing NOS isoforms between MT and NP.ConclusionAll isoforms of NOS are expressed in leukocytes in MT and NP, and their expression varies among leukocyte types. Our data provide a basis to investigate the regulation, cell distribution, and distinct functions of NOS isoforms in normal and inflamed nasal tissues.  相似文献   

16.
It has recently been demonstrated that selective inhibition of both neuronal constitutive and inducible nitric oxide synthases (ncNOS and iNOS) is neuroprotective in a model of dynorphin (Dyn) A(1-17)-induced spinal cord injury. In the present study, various methods including the conversion of 3H-L-arginine to 3H-citrulline, immunohistochemistry and in situ hybridization are employed to determine the temporal profiles of the enzymatic activities, immunoreactivities, and mRNA expression for both ncNOS and iNOS after intrathecal injection of a neurotoxic dose (20 nmol) of Dyn A(1-17). The expression of ncNOS immunoreactivity and mRNA increased as early as 30 min after injection and persisted for 1-4 h. At 24-48 h, the number of ncNOS positive cells remained elevated while most neurons died. The cNOS enzymatic activity in the ventral spinal cord also significantly increased at 30 min 48 h, but no significant changes in the dorsal spinal cord were observed. However, iNOS mRNA expression increased later at 2 h, iNOS immunoreactivity and enzymatic activity increased later at 4 h and persisted for 24-48 h after injection of 20 nmol Dyn A(1-17). These results indicate that both ncNOS and iNOS are associated with Dyn-induced spinal cord injury, with ncNOS predominantly involved at an early stage and iNOS at a later stage.  相似文献   

17.
目的:探讨炎症时阿司匹林(AS)对内皮细胞一氧化氮(NO)的产生及诱导型一氧化氮合酶(iNOS)基因表达的抑制作用。方法:Griess法测上清液NO-2/NO-3水平、黄递酶法测NOS活性、常规生化法测乳酸脱氢酶(LDH)、丙二醛(MDA)浓度,染料排除法测细胞活力,RT-PCR技术分析iNOSmRNA水平。结果:白介素(IL)-1β、肿瘤坏死因子(TNF)-α、γ-干扰素(INF)联用脂多糖(LPS)诱导后上清液中NO-2/NO-3由(4.27±0.75)μmol/L增加到(9.35±1.25)μmol/L,对内皮细胞造成明显的损伤。但3mmol/LAS组NO生成及NOS活性明显降低,LDH释放率及MDA浓度下降,细胞存活率上升,与NO诱导组相比差异显著。并随AS剂量的增加对NO的抑制及对细胞的保护作用更加明显,但AS对生理水平的NO没有抑制作用。同时发现10mmol/L浓度以下AS对iNOSmRNA表达水平没有影响;但10-20mmol/L的AS则可在转录水平上抑制iNOSmRNA的表达。并观察到水杨酸钠及消炎痛不具有抑制NO产生的作用。结论:AS具有明显抑制IL-1β、TNF-α、γ-INF及LPS诱导NO生成的作用,从而保护血管内皮细胞避免炎症时高浓度NO的损伤。  相似文献   

18.
The major aim of this study was to elucidate the role of nitric oxide (NO) in the development of pentylenetetrazole (PTZ)-kindling as an animal model of primary generalized epilepsy. The daily administration of PTZ is associated with an increase in the amount of neuronal nitric oxide synthase (nNOS). NO generation was measured directly by in vivo and ex vivo electron paramagnetic resonance on rodents undergoing progressive convulsions. We found that primary generalized epilepsy is caused by NO induction during the persistent up-regulation of nNOS expression, but that NO induction is not associated with severe generalized seizures following long-term kindling phenomena after PTZ withdrawal. Morphological changes in the brain structure of rats were measured by magnetic resonance imaging during epileptic convulsions induced by repetitive administration of PTZ. Cerebellum volume for kindled rats decreased 20% but not in rats treated with the nNOS inhibitor, 3Br-7NI, suggesting that generation of NO in the cerebellum is related to decrease in cerebellum volume following PTZ-kindling.  相似文献   

19.
The precise role of each nitric oxide (NO) synthase (NOS) isoform in the pathobiology of asthma is not well established. Our objective was to investigate the contribution of constitutive NO synthase (cNOS) and inducible NOS (iNOS) isoforms to lung mechanics and inflammatory and remodeling responses in an experimental model of chronic allergic pulmonary inflammation. Guinea pigs were submitted to seven ovalbumin exposures with increasing doses (1 approximately 5 mg/ml) for 4 wk. The animals received either chronic L-NAME (N-nitro-L-arginine methyl ester, in drinking water) or 1,400 W (iNOS-specific inhibitor, intraperitoneal) treatments. At 72 h after the seventh inhalation of ovalbumin solution, animals were anesthetized, mechanically ventilated, exhaled NO was collected, and lung mechanical responses were evaluated before and after antigen challenge. Both L-NAME and 1,400 W treatments increased baseline resistance and decreased elastance of the respiratory system in nonsensitized animals. After challenge, L-NAME increased resistance of the respiratory system and collagen deposition on airways, and decreased peribronchial edema and mononuclear cell recruitment. Administration of 1,400 W reduced resistance of the respiratory system response, eosinophilic and mononuclear cell recruitment, and collagen and elastic fibers content in airways. L-NAME treatment reduced both iNOS- and neuronal NOS-positive eosinophils, and 1,400 W diminished only the number of eosinophils expressing iNOS. In this experimental model, inhibition of NOS-derived NO by L-NAME treatment amplifies bronchoconstriction and increases collagen deposition. However, blockage of only iNOS attenuates bronchoconstriction and inflammatory and remodeling processes.  相似文献   

20.
The endothelium plays an important role in the maintenance of vascular homeostasis. Central to this role is the endothelial production of nitric oxide (NO), synthesized by the constitutively expressed endothelial isoform of nitric oxide synthase. Vascular diseases, including hypertension, diabetes, and atherosclerosis, are characterized by impaired endothelium-derived NO bioactivity that may contribute to clinical cardiovascular events. Growing evidence indicates that impaired endothelium-derived NO bioactivity is due, in part, to excess vascular oxidative stress. This review outlines how different forms of oxidative stress can impact on NO bioactivity and discusses strategies to prevent oxidative stress-induced endothelial dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号