首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Meningiomas are usually benign tumors; however, they can recur after surgical resection and occasionally show histologic progression to a higher grade II and III malignancy. The second most frequently reported genetic abnormality after 22q loss is deletion of 1p, although alterations in 9q, 10q, and 14q are also implicated in meningioma progression. Fourteen tumors comprising six benign, four atypical, and four malignant meningiomas were examined by means of cytogenetic and fluorescence in situ hybridization analysis. All tumors showed losses in different regions of 1p, with 1p11, 1p13, 1p21, 1p22, 1p32, and 1q21 breakpoints; eight tumors also presented alterations of chromosome 14. Five of the six cases with deletions on 1p and normal chromosome 14 were grade I, and two were recurrent. All but one of the eight cases with simultaneous 1p deletion and alterations of chromosome 14 were grade II (3 cases) and grade III (4 cases); all the grade III cases were recurrent. These results support the possible association between changes in 1p and chromosome 14 with the evolution of aggressive meningiomas through tumor progression.  相似文献   

3.
We have previously reported the statistically significant correlation of immunohistochemical expression of MIB-1 and p53 proteins among benign, atypical, and anaplastic meningiomas and p53 protein expression was high in atypical and anaplastic meningiomas. In the present study, we analyzed 22 cases of meningiomas for mutation of p53 gene in its spectrum of exon 5 to 8 using automated genetic analyzer. We did not find any mutation of p53 in any of these cases, thus suggesting the p53 protein expression is wild type. We analyzed 72 cases of meningiomas for determining the methylation status of p14(ARF) gene and the immunohistochemical expression of MDM2 protein to explain p53 protein expression in these meningiomas. We found methylation of p14(ARF) gene in five of 58 cases of benign meningiomas (8.6%), two of 10 cases of atypical meningiomas (20%), and two of four cases of anaplastic meningiomas (50%). In absence of p53 gene mutation, the high percentage of p14(ARF) gene methylation in high-grade meningioma may have been responsible for accumulation of wild-type p53 protein. In addition, we also found the loss of MDM2 protein in high-grade meningiomas. These deregulations of p14-MDM2-p53 pathway may contribute to the malignant progression of meningioma.  相似文献   

4.
Allelic loss of 10q is a common genetic event in malignant gliomas, with three 10q tumor suppressor genes, ERCC6, PTEN, and DMBT1, putatively implicated in the most common type of malignant glioma, glioblastoma. Anaplastic oligodendroglioma, another type of malignant glioma, provides a unique opportunity to study the relevance of particular genetic alterations to chemosensitivity and survival. We therefore analyzed these three genes in 72 anaplastic oligodendrogliomas. Deletion mapping demonstrated 10q loss in 14 of 67 informative cases, with the PTEN and DMBT1 regions involved in all deletions but with the ERCC6 locus spared in two cases. Seven tumors had PTEN gene alterations; two had homozygous DMBT1 deletions, but at least one reflected unmasking of a germline DMBT1 deletion. No mutations were found in ERCC6 exon 2. Chemotherapeutic response occurred in two of the seven tumors with PTEN alterations, but with unexpected short survival times. PTEN gene alterations were not associated with poor therapeutic response in multivariate analysis, but were independently predictive of poor prognosis even after multivariate adjustment for both 10q and 1p loss. In anaplastic oligodendroglioma, therefore, PTEN is a target of 10q loss, and PTEN alterations are associated with poor prognosis, even in chemosensitive cases.  相似文献   

5.
PS6K amplification characterizes a small subset of anaplastic meningiomas   总被引:7,自引:0,他引:7  
PS6K, a putative oncogene mapped to chromosome 17q23, encodes a serine/threonine kinase, which phosphorylates ribosomal subunit 6 and is part of the insulin receptor signal transduction pathway involved in the regulation of messenger RNA translation, protein synthesis, cell cycle progression, and cell size. Comparative genomic hybridization studies have detected 17q23 amplifications in a subset of meningiomas, particularly those with aggressive histologic features. PS6K amplifications have been reported in breast cancer, another hormonally driven neoplasm. We assessed PS6K dosage in 94 archival paraffin-embedded meningiomas using dual-color fluorescence in situ hybridization. We found high-level PS6K amplifications in 3 of 22 anaplastic grade III meningiomas. Amplification was confirmed by differential polymerase chain reaction in 1 of these cases. In contrast, no amplifications were identified in 37 benign (grade I) and 35 atypical (grade II) meningiomas. To our knowledge, this represents the first report of gene amplification in primary human meningiomas. Given its exclusive association with anaplastic meningiomas, PS6K amplification likely occurs during the malignant progression of a small subset of anaplastic tumors. Further studies are needed to map the 17q23 amplicon to determine whether additional genes in this region are amplified in high-grade meningiomas.  相似文献   

6.
This article constitutes a mini-review of the pathology and genetics of meningiomas. Meningiomas are the most common primary intracranial tumors. They are usually durally based and are often found adjacent to venous sinuses and dural infoldings. The majority of these tumors are WHO grade I, although a minority is WHO grade II, atypical, or WHO grade III, anaplastic. Grade II and III meningiomas show a greater tendency than Grade I tumors to recur and metastasize. The current WHO scheme recognizes 15 histologic subtypes of meningiomas. Nine of these are WHO grade I, three are grade II, and three are grade III. In addition to these histologic subtypes, meningiomas can also be graded on the basis of mitotic activity, evidence of brain invasion, growth pattern cellular density, nuclear atypia, and necrosis. Loss of the long arm of chromosome 22, which is usually associated with inactivation of the NF2 gene, is the most common genetic abnormality found in meningiomas. Other chromosomal abnormalities associated with tumorogenesis and increased gradeof meningiomas include loss of heterozygosity for chromosome 1p, loss of 14q, deletion of 9p21, abnormalities of chromosome 10 and 17q. Telomerase activity increases with meningiomas grade as well. The only proven environmental risk factor for meningiomas is ionizing radiation. Radiation-induced meningiomas are more often multiple and have higher recurrence rates than standard meningiomas.  相似文献   

7.
Loss of heterozygosity (LOH) for loci on chromosome arm 1p is a relatively common event in human meningioma, and this anomaly has been proposed to be associated with the development of grade II or grade III forms (atypical and anaplastic meningiomas). Nevertheless, the limited data available do not allow the establishment of the frequency and the extent of the affected 1p regions. To determine the status of chromosome 1p in meningiomas, we have performed a comprehensive analysis of LOH on 1p in 100 meningiomas using a high density of 1p-marker loci. Allelic loss was found in 35% of tumors, most corresponding to nontypical meningiomas that also displayed losses for loci on chromosome 22. Although some tumors displayed complex rearrangements leading to distinct 1p deletions, the patterns of loss indicated two main target regions: 1p36 and 1p34-p32, which represent the most frequently involved regions, whereas 1p22 and 1p21.1-1p13 regions appeared deleted in some tumors. These results suggest that there may be several putative tumor suppressor genes on 1p, the inactivation of which may be important in the pathogenesis of meningiomas, as well as in other tumor types.  相似文献   

8.
Meningiomas are usually benign tumors; however, they can recur after surgical resection and occasionally show histological progression to a higher malignancy grade. Five such rare cases of aggressively recurring meningiomas were present in our departmental cohort of 923 primary meningeal neoplasms operated over a 17-year period. Four other aggressively recurring meningeal tumors with a very similar clinical and histomorphological appearance (three undifferentiated meningeal sarcomas, one hemangiopericytoma) were also included in this study. We investigated whether disease progression can be traced by genetic alterations and whether a pattern of genetic alterations is specific for meningiomas. A total of 40 specimens from primary tumors and multiple recurrences of the nine patients were analyzed with 26 polymorphic allelic markers for deletions on 1p, 1q, 9q, 10q, 14q, and 22q. Loss of heterozygosity (LOH) at 22q was observed in all meningiomas cases at the earliest time point analyzed. Allelic loss at 1p was seen in the original tumor in two cases and upon meningioma recurrence in two others. Deletion on 10q occurred during tumor progression in two cases, and on 9q and 14q in one case. While allelic loss at 22q appears to be an early event in aggressive meningioma disease, there is a clear correlation of further deletions on chromosome arms 1p, 9q, 10q, and 14q with histopathological and clinical progression, as shown in these intraindividual trackings. None of these genetic findings were present in the non-meningiomatous meningeal tumors, indicating that meningothelial cells have their own lineage-specific genetic pathways towards clinical malignancy.  相似文献   

9.
Meningiomas display significant variability in terms of recurrence and survival rates, even within tumor grade. Although several recent modifications of the grading system have improved our ability to predict biologic behavior, additional prognostic markers are needed. Inactivation of the cell cycle regulator, p16 (CDKN2A), has recently been observed in a small subset of atypical and the majority of anaplastic meningiomas. To assess the potential clinical utility of this marker, we performed dual-color FISH on 117 well-characterized archival meningiomas using paired commercial probes to the chromosome 9 centromeric (CEP9) and p16 (9p21) regions. Benign meningiomas (N = 42) were divided into non-recurring versus recurring groups. Atypical meningiomas (N = 52) consisted of proliferative and brain invasive subsets. The 23 anaplastic meningiomas were not further stratified. Deletion of p16 or monosomy 9 was seen in 17% of benign, 52% of atypical, and 74% of anaplastic meningiomas (p < 0.001). No statistically significant differences were found among subsets of benign or subsets of atypical meningioma, though there were more recurrences in those with deletion. Despite potential effects on cell cycle regulation, p16 deletions were not restricted to meningiomas with a high proliferative index. Most importantly, p16 deletion was strongly associated with survival in the anaplastic meningioma cohort, with a risk ratio for death of 6.79 (p = 0.016). Conversely, absence of deletion identified a subset of anaplastic meningioma patients (26%) with prolonged survival. We conclude that chromosome 9p21 deletions are associated with malignant progression of meningiomas and poor prognosis in anaplastic meningiomas.  相似文献   

10.
11.
Histologic grading of meningiomas has prognostic and clinical therapeutic implications. Meningiomas were histologically classified into 3 different World Health Organization grades. Grade II, an atypical meningioma, was defined by major and various minor histologic criteria. However, these histologic criteria sometimes are not fulfilled, and other criteria are necessary. We studied and analyzed the immunohistochemical expression of MIB-1, p53, p21WAF1, p27KIP1 proteins in 146 cases of meningiomas, including 109 benign, 27 atypical, and 10 anaplastic meningiomas. Most of the benign meningiomas expressed low MIB-1 labeling index (mean, 1.5%), and fewer cases had p53 protein expression. In contrast, the anaplastic meningiomas had a high labeling index of MIB-1 (mean, 19.5%) and always expressed p53 protein, with a mean labeling index of 6.3%. The atypical meningiomas had MIB-1 and p53 labeling indexes in the range between benign and anaplastic meningiomas, with mean labeling indexes of 8.1% and 3.5%, respectively. These expressions were statistically significant among benign, atypical, and anaplastic meningiomas (P <.001). We conclude that the immunohistochemistry of MIB-1 and p53 protein will be valuable in discriminating atypical meningiomas from benign or anaplastic meningiomas, at least in histologically borderline cases. In addition, we also found direct correlation of p21 and inverse correlation of p27 expressions in meningiomas with increasing histologic grade and proliferative index.  相似文献   

12.
Deletions at 1p are frequent in meningioma and represent a genetic marker associated with the genesis of atypical WHO grade II forms. Previous mutational analysis of TP73, a structurally and functionally TP53 homologous gene located at 1p36.33, failed to demonstrate a significant rate of sequence variations linked to gene inactivation in meningiomas with 1p loss. As an alternative, TP73 may be inactivated through aberrant 5' CpG island methylation, a primary mechanism participating in the inactivation of tumor suppressor genes during tumorigenesis. We determined the methylation status of the TP73 gene in a series of 60 meningiomas (33 grade I, 24 grade II, and 3 grade III samples), including tumors with deletion at 1p (n=30) and with intact 1p (n=30). Aberrant methylation was detected in 10 cases (33%) with 1p deletion and in 3 tumors (10%) with retention of alleles at this chromosome arm. The distribution of the 13 cases of methylation according to malignancy grade was 7 grade I, 5 grade II, and 1 grade III tumor. Accordingly, although TP73 aberrant methylation was more frequent in meningiomas with 1p deletion (P<0.05), no association with the grade of malignancy could be established. These findings, together with the previously reported increased TP73 expression in malignant meningiomas suggest that opposing functions of this gene may characterize distinct subsets of tumors: suppressed or reduced expression as a result of CpG methylation in some grade I-grade II tumors, and enhanced expression in some more malignant forms.  相似文献   

13.
The pathogenesis of pediatric central nervous system tumors is poorly understood. To increase knowledge about the genetic mechanisms underlying these tumors, we performed genome-wide screening of 17 pediatric gliomas and embryonal tumors combining G-band karyotyping and array comparative genomic hybridization (aCGH). G-banding revealed abnormal karyotypes in 56% of tumor samples (9 of 16; one failed in culture), whereas aCGH found copy number aberrations in all 13 tumors examined. Pilocytic astrocytomas (n = 3) showed normal karyotypes or nonrecurrent translocations by karyotyping but the well-established recurrent gain of 7q34 and 19p13.3 by aCGH. Our series included one anaplastic oligoastrocytoma, a tumor type not previously characterized genomically in children, and one anaplastic neuroepithelial tumor (probably an oligoastrocytoma); both showed loss of chromosome 14 by G-banding and structural aberrations of 6q and loss of 14q, 17p, and 22q by aCGH. Three of five supratentorial primitive neuroectodermal tumors showed aberrant karyotypes: two were near-diploid with mainly structural changes and one was near-triploid with several trisomies. aCGH confirmed these findings and revealed additional recurrent gains of 1q21-44 and losses of 3p21, 3q26, and 8p23. We describe cytogenetically for the first time a cribriform neuroepithelial tumor, a recently identified variant of atypical teratoid/rhabdoid tumor with a favorable prognosis, which showed loss of 1p33, 4q13.2, 10p12.31, 10q11.22, and 22q by aCGH. This study indicates the existence of distinct cytogenetic patterns in pediatric gliomas and embryonal tumors; however, further studies of these rare tumors using a multimodal approach are required before their true genomic aberration pattern can be finally established.  相似文献   

14.
Meningiomas account for approximately 30% of all primary central nervous system tumors and are found in half of neurofibromatosis type 2 patients often causing significant morbidity. Although most meningiomas are benign, 10% are classified as atypical or anaplastic, displaying aggressive clinical behavior. Biallelic inactivation of the neurofibromatosis 2 (NF2) tumor suppressor is associated with meningioma formation in all NF2 patients and 60% of sporadic meningiomas. Deletion of the p16(INK4a)/p14(ARF) locus is found in both benign and malignant meningiomas, while mutation of the p53 tumor suppressor gene is uncommon. Previously, we inactivated Nf2 in homozygous conditional knockout mice by adenoviral Cre delivery and showed that Nf2 loss in arachnoid cells is rate-limiting for meningioma formation. Here, we report that additional nullizygosity for p16(Ink4a) increases the frequency of meningioma and meningothelial proliferation in these mice without modifying the tumor grade. In addition, by using magnetic resonance imaging (MRI) to screen a large cohort of mutant mice, we were able to detect meningothelial proliferation and meningioma development opening the way to future studies in which therapeutic interventions can be tested as preclinical assessment of their potential clinical application.  相似文献   

15.
Rhabdoid cells are encountered in specific entities, such as malignant rhabdoid tumor and atypical teratoid/rhabdoid tumor, as well as in composite rhabdoid tumors derived secondarily from other tumor types. Although rhabdoid tumors are uniformly aggressive, distinction of the entity from the phenotype remains important for its therapeutic implications. The majority of malignant rhabdoid tumors and atypical teratoid/rhabdoid tumors affect infants and young children, harbor chromosome 22q deletions, and inactivate the INI1/hSNF5/BAF47 tumor suppressor gene on 22q11.2. In contrast, most composite rhabdoid tumors are diagnosed in adults, with FISH detectable 22q losses the exception rather than the rule. However, this assay remains limited since 22q dosages are maintained in 20-30% of malignant rhabdoid tumors and atypical teratoid/rhabdoid tumors. Furthermore, chromosome 22 losses are common in some parent tumor types, particularly meningiomas. The recently developed INI1 antibody shows loss of nuclear expression in malignant rhabdoid tumors and atypical teratoid/rhabdoid tumors, though its status in composite rhabdoid tumors is largely unknown. Therefore, we utilized immunohistochemistry and FISH to study INI1 expression and 22q dosages, respectively, in 40 composite rhabdoid tumors, including 16 meningiomas, 15 carcinomas, three melanomas, two sarcomas, two glioblastomas, and 1 neuroblastoma. Approximately 70% of rhabdoid meningiomas had a 22q deletion, but this was rare in other tumor types. Except for one retroperitoneal leiomyosarcoma, nuclear INI1 expression was retained in all composite rhabdoid tumors, including meningiomas with 22q deletion. Therefore, we conclude that INI1 immunohistochemistry is a relatively simple, sensitive, and specific technique for distinguishing malignant rhabdoid tumor and atypical teratoid/rhabdoid tumor from composite rhabdoid tumor.  相似文献   

16.
Oligodendroglial neoplasms are a subgroup of gliomas with distinctive morphological characteristics. In the present study we have evaluated a series of these tumors to define their molecular profiles and to determine whether there is a relationship between molecular genetic parameters and histological pattern in this tumor type. Loss of heterozygosity (LOH) for 1p and 19q was seen in 17/23 (74%) well-differentiated oligodendrogliomas, in 18/23 (83%) anaplastic oligodendrogliomas, and in 3/8 (38%) oligoastrocytomas grades II and III. LOH for 17p and/or mutations of the TP53 gene occurred in 14 of these 55 tumors. Only one of the 14 cases with 17p LOH/TP53 gene mutation also had LOH for 1p and 19q, and significant astrocytic elements were seen histologically in the majority of these 14 tumors. LOH for 9p and/or deletion of the CDKN2A gene occurred in 15 of these 55 tumors, and 11 of these cases were among the 24 (42%) anaplastic oligodendrogliomas. Comparative genomic hybridization (CGH) identified the majority of cases with 1p and 19q loss and, in addition, showed frequent loss of chromosomes 4, 14, 15, and 18. These findings demonstrate that oligodendroglial neoplasms usually have loss of 1p and 19q whereas astrocytomas of the progressive type frequently contain mutations of the TP53 gene, and that 9p loss and CDKN2A deletions are associated with progression from well-differentiated to anaplastic oligodendrogliomas.  相似文献   

17.
Loss of heterozygosity on chromosome 10 (LOH#10) is the most frequent genetic alteration in glioblastomas and occurs in more than 80% of cases. We recently reported that PTEN (MMAC1) on 10q23.3 is mutated in approximately 30% of primary (de novo) glioblastomas but rarely in secondary glioblastomas that progressed from low-grade or anaplastic astrocytomas. Because secondary glioblastomas also show LOH#10, tumor suppressor genes other than PTEN are likely to be involved. We analyzed LOH on chromosomes 10 and 19, using polymorphic microsatellite markers in microdissected foci showing histologically an abrupt transition from low-grade or anaplastic astrocytoma to glioblastoma, suggestive of the emergence of a new tumor clone. When compared to the respective low-grade or anaplastic astrocytoma of the same biopsy, deletions were detected in 7 of 8 glioblastoma foci on 10q25-qter distal to D10S597, covering the DMBT1 and FGFR2 loci. Six of 8 foci showed LOH at one or two flanking markers of PTEN but did not contain PTEN mutations. LOH on 10p and 19q was found in only one case each. These data indicate that acquisition of a highly anaplastic glioblastoma phenotype with marked proliferative activity and lack of glial fibrillary acidic protein expression is associated with loss of a putative tumor suppressor gene on 10q25-qter.  相似文献   

18.
Orbital meningiomas can be classified as primary optic nerve sheath (ON) meningiomas, primary intraorbital ectopic (Ob) meningiomas and spheno‐orbital (Sph‐Ob) meningiomas based on anatomic site. Single‐nucleotide polymorphism (SNP)‐based array analysis with the Illumina 300K platform was performed on formalin‐fixed, paraffin‐embedded tissue from 19 orbital meningiomas (5 ON, 4 Ob and 10 Sph‐Ob meningiomas). Tumors were World Health Organization (WHO) grade I except for two grade II meningiomas, and one was NF2‐associated. We found genomic alterations in 68% (13 of 19) of orbital meningiomas. Sph‐Ob tumors frequently exhibited monosomy 22/22q loss (70%; 7/10) and deletion of chromosome 1p, 6q and 19p (50% each; 5/10). Among genetic alterations, loss of chromosome 1p and 6q were more frequent in clinically progressive tumors. Chromosome 22q loss also was detected in the majority of Ob meningiomas (75%; 3/4) but was infrequent in ON meningiomas (20%; 1/5). In general, Ob tumors had fewer chromosome alterations than Sph‐Ob and ON tumors. Unlike Sph‐Ob meningiomas, most of the Ob and ON meningiomas did not progress even after incomplete excision, although follow‐up was limited in some cases. Our study suggests that ON, Ob and Sph‐Ob meningiomas are three molecularly distinct entities. Our results also suggest that molecular subclassification may have prognostic implications.  相似文献   

19.
Allelic mutation on chromosome 19 has previously been reported as a frequent genetic event in human glial tumors. In an effort to localize specific regions of importance on this chromosome better, 13 highly polymorphic genetic markers distributed along the length of chromosome 19 were used for evaluation of loss of heterozygosity (LOH) and microsatellite instability in a total of 100 brain tumors, including 75 astrocytomas (55 grade 4; 7 grade 3; 5 grade 2; 6 grade 1; and 2 other), 17 oligodendrogliomas (1 grade 4; 5 grade 3; 10 grade 2; and 1 grade 1), and 8 mixed oligoastrocytomas (MOA) (3 grade 4; 2 grade 3; and 3 grade 2). No microsatellite expansion was observed in these glial tumors for any of the chromosome 19 loci examined. LOH for loci on chromosome 19 was detected in 23/74 informative astrocytomas (31%), 11/17 oligodendrogliomas (65%), and 3/8 MOA (38%). Partial deletion of chromosome 19 occurred more frequently (31/37 cases) than did loss of one whole copy of the chromosome, and a morphology-specific pattern of LOH was observed. In 12/14 (86%) instances of chromosome 19 deletion in oligodendrogliomas and MOA, the 19q arm showed LOH, whereas the 19p arm showed no loss for all informative loci. Conversely, in 17/23 (74%) instances of chromosome 19 deletion in astrocytomas, the 19p arm showed LOH, whereas the 19q arm showed no loss for one or more loci. Thus, loss of 19q and retention of 19p are strongly associated with oligodendroglioma and MOA, whereas loss of 19p and retention of distal 19q is associated with astrocytoma. These data indicate that two or more tumor suppressor genes may reside on chromosome 19, one on 19p important in the development of astrocytomas, and one on 19q important in oligodendrogliomas and MOA.  相似文献   

20.
Our previous comparative genomic hybridization study on sporadic endocrine pancreatic tumors (EPTs) revealed frequent losses on chromosomes 11q, 3p, and 6q. The aim of this study was to evaluate the importance of 6q losses in the oncogenesis of sporadic EPTs and to narrow down the smallest regions of allelic deletion. A multimodal approach combining polymerase chain reaction-based allelotyping, double-target fluorescence in situ hybridization, and comparative genomic hybridization was used in a collection of 109 sporadic EPTs from 93 patients. Nine polymorphic microsatellite markers (6q13 to 6q25-q27) were investigated, demonstrating a loss of heterozygosity (LOH) in 62.2% of the patients. A LOH was significantly more common in tumors >2 cm in diameter than below this threshold as well as in malignant than in benign tumors. We were able to narrow down the smallest regions of allelic deletion at 6q22.1 (D6S262) and 6q23-q24 (D6S310-UTRN) with LOH-frequencies of 50.0% and 41.2 to 56.3%, respectively. Several promising tumor suppressor candidates are located in these regions. Additional fluorescence in situ hybridization analysis on 46 EPTs using three locus-specific probes (6q21, 6q22, and 6q27) as well as a centromere 6-specific probe revealed complete loss of chromosome 6 especially in metastatic disease. We conclude that the two hot spots found on 6q may harbor putative tumor suppressor genes involved not only in the oncogenesis but maybe also in the malignant and metastatic progression of sporadic EPTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号