首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Olfactory ensheathing cells (OECs) may support axonal regrowth, and thus might be a viable treatment for spinal cord injury (SCI); however, peripherally-derived OECs remain untested in most animal models of SCI. We have transplanted OECs from the lamina propria (LP) of mice expressing green fluorescent protein (GFP) in all cell types into immunosuppressed rats with cervical or lumbar dorsal root injuries. LP-OECs were deposited into either the dorsal root ganglion (DRG), intact or injured dorsal roots, or the dorsal columns via the dorsal root entry zone (DREZ). LP-OECs injected into the DRG or dorsal root migrated centripetally, and migration was more extensive in the injured root than in the intact root. These peripherally deposited OECs migrated within the PNS but did not cross the DREZ; similarly, large- or small-caliber primary afferents were not seen to regenerate across the DREZ. LP-OEC deposition into the dorsal columns via the DREZ resulted in a laminin-rich injection track: due to the pipette trajectory, this track pierced the glia limitans at the DREZ. OECs migrated centrifugally through this track, but did not traverse the DREZ; axons entered the spinal cord via this track, but were not seen to reenter CNS tissue. We found a preferential association between CGRP-positive small- to medium-diameter afferents and OEC deposits in injured dorsal roots as well as within the spinal cord. In the cord, OEC deposition resulted in increased angiogenesis and altered astrocyte alignment. These data are the first to demonstrate interactions between sensory axons and peripherally-derived OECs following dorsal root injury.  相似文献   

2.
Functional recovery after large excision of dorsal roots is absent because of both the limited regeneration capacity of the transected root, and the inability of regenerating sensory fibers to traverse the dorsal root entry zone. In this study, bioresorbable guidance conduits were used to repair 6-mm dorsal root lesion gaps in rats, while neurotrophin-encoding adenoviruses were used to elicit regeneration into the spinal cord. Polyester conduits with or without microfilament bundles were implanted between the transected ends of lumbar dorsal roots. Four weeks later, adenoviruses encoding NGF or GFP were injected into the spinal cord along the entry zone of the damaged dorsal roots. Eight weeks after injury, nerve regeneration was observed through both types of implants, but those containing microfilaments supported more robust regeneration of calcitonin gene-related peptide (CGRP)-positive nociceptive axons. NGF overexpression induced extensive regeneration of CGRP(+) fibers into the spinal cord from implants showing nerve repair. Animals that received conduits containing microfilaments combined with spinal NGF virus injections showed the greatest recovery in nociceptive function, approaching a normal level by 7-8 weeks. This recovery was reversed by recutting the dorsal root through the centre of the conduit, demonstrating that regeneration through the implant, and not sprouting of intact spinal fibers, restored sensory function. This study demonstrates that a combination of PNS guidance conduits and CNS neurotrophin therapy can promote regeneration and restoration of sensory function after severe dorsal root injury.  相似文献   

3.
Spinal entry route for ventral root afferent fibers in the cat   总被引:1,自引:0,他引:1  
Twelve anesthetized and paralyzed cats were used to study the spinal entry routes of ventral root afferent fibers. In all animals, the spinal cord was transected at two different levels, L5 and S2. The L5 through S2 dorsal roots were cut bilaterally, making spinal cord segments L5-S2 neurally isolated from the body except for the L5-S2 ventral roots. From this preparation, a powerful excitation of the discharge rate of motor neurons and dorsal horn cells within the isolated spinal segments was observed after intraarterial injection of bradykinin (50 micrograms in 0.5 ml saline). This excitation of the spinal neurons can be considered the most convincing evidence of the potential physiologic role of the ventral root afferent fibers entering the spinal cord directly through the ventral root, because the apparent route of neuronal input from the periphery is through the ventral roots. However, additional control experiments conducted in the present study showed that the excitation persisted even after cutting all ventral roots within the isolated spinal segments, indicating that excitation was not mediated by the ventral roots. Furthermore, direct application of bradykinin on the dorsal surface of the spinal cord also increased the motoneuronal discharge rate, suggesting that excitation of spinal neurons produced by intraarterial injection of bradykinin is due to a direct action of bradykinin on the spinal cord. Thus, we provided an alternate explanation for the most convincing evidence indicating that physiologically important ventral root afferent fibers enter the spinal cord directly through the ventral root. Based on existing experimental evidence, it is likely that the majority of physiologically active ventral root afferent fibers travel distally toward the dorsal root ganglion and then enter the spinal cord through the dorsal root.  相似文献   

4.
Previously, we have shown that transplants of olfactory bulb ensheathing cells promoted regeneration of transected dorsal roots into the spinal cord. In this study, we assessed the ability of regenerating axons to make functional connections in the cord. Dorsal roots L3 to L6 were sectioned close to their entrance into the spinal cord and reapposed after injecting a suspension of ensheathing cells into each dorsal root entry zone (Group G). Afferent regeneration into the cord and recovery of spinal reflexes were compared with animals that received no injection (Group S) or culture medium without cells (Group C). Electrophysiological tests, to measure nerve conduction and spinal reflexes (H response and withdrawal reflex) evoked by stimulation of afferents of the sciatic nerve, were performed. At 14 days after surgery, H response was found in only 1 of 7 rats of Group G, and withdrawal reflexes were absent from all animals. At 60 days, the H response reappeared in 7 of 10 rats of Group G, and 1 of 5 of each of Groups C and S. The withdrawal reflex recovered in 4 of 10 rats of Group G, but in none of Groups C and S. Immunohistochemical labeling for CALCITONIN GENE– RELATED PEPTIDE (CGRP) in rats of Group G showed immunoreactive fibers entering the dorsal horn from sectioned roots, although at lower density than in the contralateral side. In conclusion, transplanted ensheathing cells promoted central regeneration and functional reconnection of regenerating sensory afferents. Ann Neurol 1999;45:207–215  相似文献   

5.
To overcome obstacles to the regeneration of crushed dorsal root fibers at the dorsal root entry zone, we have employed specially designed Millipore implants coated with embryonic astrocytes to serve as a substrate for axonal growth. This strategy was successful in promoting the growth of crushed dorsal root axons into the grey matter of the adult mammalian spinal cord in a small number of animals. Fiber ingrowth into the spinal cord was closely associated with the surface of the polymer implant. In addition, unique terminal arbor malformations, not normally present, were seen in several animals. A consistent finding was the presence of a limited inflammatory response in regions immediately adjacent to the implant where axons penetrate the spinal cord. Our findings suggest that providing the dorsal root entry zone with an embryonic milieu can stimulate a limited amount of axonal regeneration into the adult mammalian spinal cord.  相似文献   

6.
Acute experimental allergic neuritis was induced in Lewis rats by inoculation with bovine intradural root myelin and adjuvants. In terminal experiments, sensory conduction was assessed in rats with hindlimb ataxia and weakness by stimulating the exposed sciatic nerve and recording directly from the exposed L-4 spinal nerve, dorsal root ganglion, dorsal root, and dorsal root entry zone. Focal conduction block was present in a high proportion of large-diameter fibers in the dorsal root ganglion. In contrast, nerve conduction in the peripheral nerve and spinal nerve was essentially normal apart from probable conduction block in some fibers in the proximal spinal nerve in a minority of rats. The afferent volley arriving at the dorsal root entry zone of the spinal cord was greatly reduced, as a consequence of the conduction block in the dorsal root ganglion and probable conduction block in the dorsal root. The M wave recorded from the fourth dorsal interosseus muscle of the hindfoot was normal in amplitude but slightly prolonged in latency and the H reflex was absent. These electrophysiological findings correlated well with the histological findings of inflammation and prominent demyelination in the dorsal root ganglia and dorsal roots with minimal involvement of the proximal spinal nerve and no involvement of the sciatic nerve. It is concluded that the hindlimb ataxia in rats with this form of acute experimental allergic neuritis is due to demyelination-induced nerve conduction block in the dorsal root ganglia and probably in the dorsal roots.  相似文献   

7.
López-Vales R  Forés J  Navarro X  Verdú E 《Glia》2007,55(3):303-311
The goal of this study was to ascertain whether olfactory ensheathing cells (OECs) were able to promote axonal regeneration and functional recovery when transplanted 45 days after complete transection of the thoracic spinal cord in adult rats. OECs promoted partial restitution of supraspinal pathways evaluated by motor evoked potentials and modest recovery of hindlimb movements. In addition, OEC grafts reduced lumbar reflex hyperexcitability from the first month after transplantation. Histological results revealed that OECs facilitated corticospinal and raphespinal axons regrowth through the injury site and into the caudal spinal cord segments. Interestingly, raphespinal but not corticospinal fibers regenerated long distances through the gray matter and reached the lower lumbar segments (L5) of the spinal cord. However, delayed OEC grafts failed to reduce posttraumatic astrogliosis. In conclusion, the beneficial effects found in the present study further support the use of OECs for treating chronic spinal cord injuries.  相似文献   

8.
Sectioning the sciatic nerve of experimental animals at the neonatal stage triggers growth of afferent fibers in the ventral root. The present study examined the possibility that the regenerating fiber terminals grow into the spinal cord. The sciatic nerve on one side was cut in neonatal rats. After the rats were fully grown, either an electrophysiological or a histochemical study was performed. The results of electrophysiological experiments showed that stimulation of certain loci in the L5 spinal cord evoked antidromic potentials in the L5 ventral root with a long latency. Various evidence suggests that the long latency potentials are due to activation of C fibers. These C-fiber potentials were on average bigger and were elicited from more numerous loci on the side ipsilateral to the sciatic nerve lesion than on the contralateral side. Furthermore, stimulation of the spinal cord of unoperated normal rats rarely evoked such potentials. For the histochemical study, horseradish peroxidase (HRP) was injected into the L5 spinal cord after cutting the L4-L6 dorsal roots. A lot more cells in the L5 dorsal root ganglion (DRG) on the side ipsilateral to the sciatic nerve lesion were labeled with HRP transported retrogradely through the L5 ventral root than on the contralateral side. Control experiments showed that few DRG cells are labeled with HRP in normal unoperated rats. The combined results of the electrophysiological and histochemical studies suggest invasion of ventral root afferents into the spinal cord, given enough postoperative time. It is not known whether or not these terminals make functional synaptic contacts in the spinal cord.  相似文献   

9.
Sasaki M  Hains BC  Lankford KL  Waxman SG  Kocsis JD 《Glia》2006,53(4):352-359
Transplantation of olfactory ensheathing cells (OECs) into the damaged rat spinal cord leads to directed elongative axonal regeneration and improved functional outcome. OECs are known to produce a number of neurotrophic molecules. To explore the possibility that OECs are neuroprotective for injured corticospinal tract (CST) neurons, we transplanted OECs into the dorsal transected spinal cord (T9) and examined primary motor cortex (M1) to assess apoptosis and neuronal loss at 1 and 4 weeks post-transplantation. The number of apoptotic cortical neurons was reduced at 1 week, and the extent of neuronal loss was reduced at 4 weeks. Biochemical analysis indicated an increase in BDNF levels in the spinal cord injury zone after OEC transplantation at 1 week. The transplanted OECs associated longitudinally with axons at 4 weeks. Thus, OEC transplantation into the injured spinal cord has distant neuroprotective effects on descending cortical projection neurons.  相似文献   

10.
Tumor necrosis factor-alpha (TNF-alpha) is secreted in numerous pathophysiological situations by a variety of cell types. Tactile hypersensitivity (allodynia) is one component of a constellation of "illness behaviors" triggered by TNF-alpha. TNF-alpha is also implicated in neuropathic pain after peripheral nerve injury and apoptosis after spinal cord injury (SCI). It is possible that SCI, illness- and peripheral injury-induced hypersensitivity may share a similar spinal mediated etiology. These studies identify the locus of type-1 TNF (TNFR1 or p55) and type-2 TNF (TNFR2 or p75) receptors within the spinal cord. At all spinal levels, TNFR1 receptor immunoreactivity (TNFR1-ir) was constitutively expressed on cells and afferent fibers within the dorsal root ganglia, afferent fibers of the dorsal root, dorsal root entry zone (REZ) and within lamina I and II of the dorsal horn. Unilateral dorsal rhizotomy eliminated the characteristic pattern of TNFR1-ir at the rhizotomized REZ. In contrast, TNFR2-ir was consistently absent from dorsal root fibers and the region of the root entry zone. Consistent with our previous report, medullary afferent fibers in the solitary tract and spinal trigeminal tract labelled for TNF1-ir, but did not express TNFR2-ir. The presence TNFR1-ir on dorsal horn afferents, suggests that TNF-alpha may be a mechanism responsible for tactile hypersensitivity during illness. The presence of TNFR1 receptors, and perhaps their long-term activation or plasticity, may also play a critical role in the chronic allodynia and hyperreflexia observed after SCI or peripheral nerve damage.  相似文献   

11.
A single fourth lumbar dorsal rootlet was transected at the entry point into the spinal cord. The nerve fibres were labelled with biotin dextran injected into the rootlet. An endogenous matrix containing olfactory-ensheathing cells (OECs) labelled with green fluorescent protein was applied to the opposing cut surfaces of the rootlet and the spinal cord, which were then brought into apposition and held in place by fibrin glue. Two weeks later, a ladderlike bridging structure has been formed by astrocytic processes growing out for about 200-300 microm from the spinal cord. The transplanted cells remained largely confined to this area. They were elongated along the nerve axis but did not enter the spinal cord itself. Labelled dorsal root axons crossed the repaired dorsal root entry zone in alignment with the bridging astrocytic processes and the transplanted cells and then proceeded beyond the transplant to enter the grey matter of the dorsal horn and send axons both rostrally and caudally for at least 10 mm in the white matter of the ascending dorsal columns.  相似文献   

12.
BACKGROUND:Olfactory ensheathing cell(OEC)transplantation promotes repair of spinal cord injury. Neural regeneration inhibits binding of the myelin protein Nogo to its receptor(NgR),activates downstream inhibitory signal RhoA, and leads to axonal degeneration.OBJECTIVE: To determine the relationship between OECs transplantation for spinal cord injury and NogoA, NgR, and RhoA protein expression in the damaged zone.DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed from September 2006 to May 2007 at the Key Laboratory of Environment and Genes in Xi'an Jiaotong University School of Medicine, China.MATERIALS: OECs were harvested from healthy, adult, male, Sprague Dawley rats aged 6 months. Mouse anti-rat NogoA, NgR, and RhoA monoclonal antibodies were utilized for detection.METHODS: A total of 40 adult Sprague Dawley rats were randomly assigned to four groups: normal, model, OECs, and DF12, with 10 animals in each group. Transverse section spinal cord injury was established in the OECs and DF12 groups, followed by injection of 1 μL OECs suspension(1×108/mL)or equivalent DF12 medium at 1 mm above and below the injury site.MAIN OUTCOME MEASURES: Immunohistochemistry and Western blot were utilized to detect NogoA, NgR, and RhoA expression in the spinal cord injury lesions. Morphological changes were observed by argyrophilia staining, and lower extremity function of the animals was assessed using Basso, Beattie, and Bresnahan scores.RESULTS: Eight weeks following OECs transplantation, a significant increase in new axons was observed in the OECs group, and nerve fibers crossed the injury site to repair spinal cord injury.Qualitative and quantitative results from the OECs group were superior to the model and DF12 groups. At 8 weeks after transplantation, Basso, Beattie, and Bresnahan scores were significantly greater in the OECs group compared with the model and DF12 groups(P< 0.01), but expression of NogoA, NgR, and RhoA protein was significantly decreased compared with the model and DF12 groups(P< 0.05).CONCLUSION: OEC transplantation could inhibit NogoA, NgR, and RhoA expression in spinal cord injury lesions, thereby promoting repair of spinal cord injury.  相似文献   

13.
The short- and long-term effects of ricin injections into nerves have been evaluated with light microscopy in the dorsal root ganglia, spinal cord, and peripheral nerves in rats and cats. Dorsal root ganglion cells initially exhibited chromatolysis, followed by gliosis and cell death. These changes were associated with Fink-Heimer degeneration in the somatotopically appropriate region of the dorsal horn. There were no signs of chromatolysis in dorsal horn neurons in ricin-injected animals, but chromatolytic motoneurons were observed. Ricin produced acute necrosis of injected nerves and dissolution of axoplasm. At long survival times (greater than 4 weeks) some apparently regenerating axons were seen in the injection sites of rats. Cell counts indicated that a substantial percentage of dorsal root ganglion neurons associated with the injected nerves were killed, but the presence of regenerating axons suggested that some cells survived the ricin treatment. Although the lesion may not always be complete, even with maximum sublethal doses, this method appears to be useful for specifically destroying afferent fibers associated with a particular nerve without transynaptic destruction of dorsal horn neurons.  相似文献   

14.
To understand whether tissue inhibitors of metalloproteinase (TIMPs) contribute to the failure of regenerating sensory axons to enter the spinal cord, we used in situ hybridization and immunocytochemistry to examine the expression of TIMP1, TIMP2, and TIMP3 in the dorsal root, dorsal root entry zone (DREZ), and dorsal column after dorsal root injury in adult rats. We found that the three TIMPs and their mRNAs were up-regulated in a time-, region-, and cell-type-specific manner. Strong up-regulation of all three TIMPs was seen in the injured dorsal roots. TIMP2 was also significantly up-regulated in the DREZ and degenerating dorsal column, where TIMP1 and TIMP3 showed only moderate up-regulation. Most cells up-regulating the TIMPs in the DREZ and degenerating dorsal column were reactive astrocytes, but TIMP2 was also up-regulated by microglia/macrophages, especially at long postoperative survival times. These results suggest that TIMPs may be involved in controlling tissue remodelling following dorsal root injury and that manipulation of the expression of TIMPs may provide a means of promoting axonal regeneration into and within the injured spinal cord.  相似文献   

15.
We studied the spinal projections of the medial and posterior articular nerves (MAN and PAN) of the knee joint in the cat with the aid of the transganglionic transport of horseradish peroxidase. The afferent fibers of the MAN entered the spinal cord via the lumbar dorsal roots L5 and L6 and those of the PAN entered via the dorsal roots L6 and L7. Within the dorsal root ganglia, most labeled neurons had small to medium diameters. A relatively higher number of medium-size cell bodies were labeled from the PAN than from the MAN. In the spinal cord labeled MAN afferent fibers and terminations were most dense in the L5 and L6 segments, and those of the PAN were most dense in L6 and L7, that is, in the respective segments of entry. Labeled afferent fibers from both nerves projected rostrally at least as far as L1 and caudally as far as S2. Labeled fibers were found in Lissauer's tract as well as in the dorsal column immediately adjacent to the dorsal horn. In the spinal gray matter, both nerves had two main projection fields, one in the cap of the dorsal horn in lamina I, the other in the deep dorsal horn in laminae V-VI and the dorsal part of lamina VII. Both nerves, but particularly the PAN, projected to the medial portion of Clarke's column. No projection was found to laminae II, III, and IV of the dorsal horn or to the ventral horn. Since these findings parallel observations on hindlimb muscle afferent fibers, the present data support the existence of a common pattern for the central distribution of deep somatic afferent fibers.  相似文献   

16.
Plasticity in the nucleus gracilis of the rat   总被引:1,自引:0,他引:1  
The nucleus gracilis of the rat contains a somatotopic map of the hindquarter similar to that in other mammals. Acute deafferentation of this dorsal column nucleus (DCN) either by dorsal root transection (roots L4, 5, and 6), by transection of the spinal cord at L3, or by peripheral nerve transection (the sciatic and saphenous nerves) creates as expected a clearly demarcated region in which cells have no receptive fields (RFs). Plasticity in the nucleus gracilis after four types of chronic deafferentiation was investigated: Experiment 1—15 to 20 days after transection of L4, 5, and 6 dorsal roots, cells in the acutely unresponsive region were found to be excited from nearby intact afferent fibers. This expansion of the effective input of intact afferent fibers is known to occur in the spinal cord. Experiment 2—Chronic transection of the sciatic and saphenous nerves was not followed by expansion of the intact input although this does occur in the spinal cord. Experiment 3—Neonatal treatment with capsaicin which destroys unmyelinated afferent fibers produced adult animals with somatotopically organized nucleus gracilis but with cells which exhibited very large RFs. This enlargement is also known to occur in the spinal cord. Experiment 4—Local application of capsaicin to a sciatic nerve of an adult enlarged the RFs of spinal cord cells after some days but had no effect on the functional organization of nucleus gracilis. Expansion of the RF of nucleus gracilis cells was, therefore, seen after dorsal root transection and after neonatal application of capsaicin but not after peripheral nerve transection or application of capsaicin to the adult single nerve. All four maneuvers produced RF expansion in the spinal cord. We conclude that the DCN has a more limited ability to respond to deafferentation than the spinal cord, and suggested that the former lacks a mechanism of connectivity control. The results are consistent with the hypothesis that primary afferent C fibers which innervate the spinal cord but not the DCN, play a role in the formation and stability of RFs formed by A fibers in adult animals.  相似文献   

17.
Injury to cervical dorsal roots mimics the deafferentation component of brachial plexus injury in humans, with intractable neuropathic pain in the deafferented limb being a common consequence. Such lesions are generally not amenable to surgical repair. The use of olfactory ensheathing cells (OECs) for dorsal root repair, via acute transplantation, has been successful in several studies. From a clinical point of view, delayed transplantation of OECs would provide a more realistic timeframe for repair. In this study we investigated the effect of delayed OEC transplantation on functional recovery of skilled forepaw movements and amelioration of neuropathic pain, using a C7 and C8 dorsal root injury rat model previously established in our lab. We found that OEC transplantation to the dorsal horn 1 week after root injury effectively attenuated neuropathic disturbances associated with dorsal root injury, including spontaneous pain behavior, tactile allodynia and thermal hyperalgesia. The sensory controls of complex, goal-oriented skilled reaching and ladder walking, however, were not improved by delayed OEC transplantation. We did not detect any significant influence of transplanted OECs on injury-induced central reorganisation and afferent sprouting. The anti-nociceptive effect mediated by OEC transplants may therefore be explained by alternative mechanisms such as modification of inflammation and astrogliosis. The significant effect of OEC transplants in mitigating neuropathic pain may be clinically useful in intractable pain syndromes arising from deafferentation. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.  相似文献   

18.
Cell transplantation is a potential treatment for spinal cord injury. Olfactory ensheathing cells (OECs) play an active role in the repair of spinal cord injury as a result of the dual characteristics of astrocytes and Schwann cells. However, the specific mechanisms of repair remain poorly understood. In the present study, a rat model of spinal cord injury was established by transection of T10. OECs were injected into the site, 1 mm from the spinal cord stump. To a certain extent, OEC transplantation restored locomotor function in the hindlimbs of rats with spinal cord injury, but had no effect on the formation or volume of glial scars. In addition, OEC transplantation reduced the immunopositivity of chondroitin sulfate proteoglycans (neural/glial antigen 2 and neurocan) and glial fibrillary acidic protein at the injury site, and increased the immunopositivity of growth-associated protein 43 and neurofilament. These findings suggest that OEC transplantation can regulate the expression of chondroitin sulfate proteoglycans in the spinal cord, inhibit scar formation caused by the excessive proliferation of glial cells, and increase the numbers of regenerated nerve fibers, thus promoting axonal regeneration after spinal cord injury. The study was approved by the Animal Ethics Committee of the Medical College of Xi’an Jiaotong University, China (approval No. 2018-2048) on September 9, 2018.

Chinese Library Classification No. R456; R741; Q636.1  相似文献   

19.
The in vitro HRP application to the dorsal root of the frog spinal cord produced an intensive staining of primary afferent fibers. A double postembedding GABA and glutamate immunocytochemical study revealed GABA- or glutamate-immunopositive presynaptic boutons establishing axo-axonic synapses onto HRP-stained primary afferent fibers in the spinal cord intermedial zone.  相似文献   

20.
Injury to the central processes of primary sensory neurons produces less profound changes in the expression of growth-related molecules and less vigorous axonal regeneration than does injury to their peripheral processes. The left L4, L5, and L6 dorsal roots of deeply anaesthetized adult Sprague-Dawley rats were severed and reanastomosed, and in some animals, the ipsilateral sciatic nerve was crushed to increase the expression of growth-related molecules. After between 28 days and three months, the sciatic nerve of most animals was injected with transganglionic tracers and the animals were killed 2-3 days later. Other animals were perfused for electron microscopy. Very few regenerating axons entered the spinal cord of the rats without sciatic nerve injuries. Labelled axons, however, were always found in the spinal cord of rats with sciatic nerve injuries. They often entered the cord around blood vessels, ran rostrally within the superficial dorsal horn, and avoided the degenerating white matter. The animals with a conditioning sciatic nerve crush had many more myelinated axons around the dorsal root entry zone (DREZ) and on the surface of the cord. Thus, a conditioning lesion of their peripheral processes increased the ability of the central processes of myelinated A fibres to regenerate, including to sites (such as lamina II) they do not normally occupy. Astrocytes, oligodendrocytes, and meningeal fibroblasts in and around the DREZ may have inhibited regeneration in that region, but growth of the axons into the deep grey matter and degenerated dorsal column was also blocked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号