首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Disrupted-In-Schizophrenia 1 (DISC1) was identified as a novel gene disrupted by a (1;11)(q42.1;q14.3) translocation that segregated with schizophrenia in a Scottish family. Predicted DISC1 product has no significant homology to other known proteins. Here, we demonstrated the existence of DISC1 protein and identified fasciculation and elongation protein zeta-1 (FEZ1) as an interacting partner of DISC1 by a yeast two-hybrid study. FEZ1 and its nematode homolog are reported to represent a new protein family involved in axonal outgrowth and fasciculation. In cultured hippocampal neurons, DISC1 and FEZ1 colocalized in growth cones. Interactions of these proteins were associated with F-actin. In the course of neuronal differentiation of PC12 cells, upregulation of DISC1/FEZ1 interaction was observed as along with enhanced extension of neurites by overexpression of DISC1. The present study shows that DISC1 participates in neurite outgrowth through its interaction with FEZ1. Recent studies have provided reliable evidence that schizophrenia is a neurodevelopmental disorder. As there is a high level of DISC1 expression in developing rat brain, dysfunction of DISC1 may confer susceptibility to psychiatric illnesses through abnormal development of the nervous system.  相似文献   

2.
The disrupted in schizophrenia 1 (DISC1) gene has been identified as a schizophrenia susceptibility gene based on linkage and single nucleotide polymorphism (SNP) association studies and clinical data, suggesting that risk SNPs impact on hippocampal structure and function. We hypothesized that altered expression of DISC1 and/or its molecular partners (nuclear distribution element-like [NUDEL], fasciculation and elongation protein zeta-i [FEZ1], and lissencephaly 1 [LIS1]) may underlie its pathogenic role in schizophrenia and explain its genetic association. We examined the expression of DISC1 and its binding partners in the hippocampus and dorsolateral prefrontal cortex of postmortem human brains of schizophrenic patients and controls. We found no difference in the expression of DISC1 mRNA in schizophrenia, and no association with previously identified risk SNPs. However, the expression of NUDEL, FEZ1, and LIS1 was significantly reduced in tissue from schizophrenic subjects, and the expression of each showed association with high-risk DISC1 polymorphisms. These data suggest involvement of genetically linked abnormalities in the DISC1 molecular pathway in the pathophysiology of schizophrenia.  相似文献   

3.
Disrupted in schizophrenia 1 (DISC1) has been identified as a putative risk factor for schizophrenia and affective disorders through study of a Scottish family with a balanced (1;11) (q42.1;q14.3) translocation, which results in the disruption of the DISC1 locus and cosegregates with major psychiatric disease. Several other reports of genetic linkage and association between DISC1 and schizophrenia in a range of patient populations have added credibility to the DISC1-schizophrenia theory, but the function of the DISC1 protein is still poorly understood. Recent studies have suggested that DISC1 plays a role in neuronal outgrowth, possibly through reported interactions with the molecules Nudel and FEZ1. Here we have analyzed the DISC1 protein sequence to identify previously unknown regions that are important for the correct targeting of the protein and conducted imaging studies to identify DISC1 subcellular location. We have identified a central coiled-coil region and show it is critical for the subcellular targeting of DISC1. This domain is independent from the C-terminal Nudel binding domain highlighting the multidomain nature/functionality of the DISC1 protein. Furthermore, we have been able to provide the first direct evidence that DISC1 is localized to mitochondria in cultured cortical neurons that are dependent on an intact cytoskeleton. Surprisingly, Nudel is seen to differentially associate with mitochondrial markers in comparison to DISC1. Disruption of the cytoskeleton results in colocalization of Nudel and mitochondrial markers-the first observation of such a direct relationship. Mitochondrial dysfunction has been implicated to play a role in schizophrenia so we speculate that mutations in DISC1 or Nudel may impair mitochondrial transport or function, initiating a cascade of events culminating in psychiatric illness.  相似文献   

4.
Numerous genetic linkage and association reports have implicated the Disrupted-in-Schizophrenia (DISC1) gene in psychiatric illness. The Scottish family translocation, predicted to encode a C-terminus-truncated protein, suggests involvement of short isoforms in the pathophysiology of mental disorders. We recently reported complex alternative splicing patterns for the DISC1 gene and found that short isoforms are overexpressed in the brains of patients with schizophrenia and in carriers of risk-associated alleles. Investigation into the protein–protein interactions of alternative DISC1 isoforms may provide information about the functional consequences of overexpression of truncated forms in mental illness. Human embryonic kidney (HEK293) cells were transiently co-transfected with human epitope-tagged DISC1 variants and epitope-tagged NDEL1, FEZ1, GSK3β and PDE4B constructs. Co-immunoprecipitation assays demonstrated that all truncated DISC1 variants formed complexes with full-length DISC1. Short DISC1 splice variants LΔ78, LΔ3 and Esv1 showed reduced or no binding to NDEL1 and PDE4B proteins, but fully interacted with FEZ1 and GSK3β. The temporal expression pattern of GSK3β in the human postmortem tissue across the lifespan closely resembled that of the truncated DISC1 variants, suggesting the possibility of interactions between these proteins in the human brain. Our results suggest that complexes of full-length DISC1 with truncated DISC1 variants may result in cellular disturbances critical to DISC1 function.  相似文献   

5.
Disrupted-in-schizophrenia 1 (DISC1) is a gene disrupted by a (1;11) (q42.1;q14.3) translocation that segregates with major psychiatric disorders in a Scottish family. To investigate how DISC1 confers susceptibility to psychiatric disorders, we previously identified fasciculation and elongation protein zeta-1 and Kendrin as DISC1-interacting molecules in a yeast two-hybrid screen of a human brain complementary DNA library. Here, we have further identified a novel DISC1-interacting protein, termed DISC1-Binding Zinc-finger protein (DBZ), which has a predicted C(2)H(2)-type zinc-finger motif and coiled-coil domains. DBZ was co-immunoprecipitated with DISC1 in lysates of PC12 cells and rat brain tissue. The domain of DISC1 interacting with DBZ was close to the translocation breakpoint in the DISC1 gene. DBZ messenger RNA (mRNA) was expressed in human brains, but not in peripheral tissues. In situ hybridization revealed high expression of DBZ mRNA in the hippocampus, olfactory tubercle, cerebral cortex and striatum in rats. Because this pattern of localization was similar to that of the pituitary adenylate cyclase (PAC(1)) receptor for pituitary adenylate cyclase-activating polypeptide (PACAP), which has recently been implicated in neuropsychological functions, we examined whether DISC1/DBZ interaction was involved in the PACAP signaling pathway. PACAP upregulated DISC1 expression and markedly reduced the association between DISC1 and DBZ in PC12 cells. A DISC1-binding domain of DBZ reduced the neurite length in PC12 cells after PACAP stimulation and in primary cultured hippocampal neurons. The present results provide some new molecular insights into the mechanisms of neuronal development and neuropsychiatric disorders.  相似文献   

6.
7.
BACKGROUND: DISC1 has been suggested as a causative gene for psychoses in a large Scottish family. We recently identified FEZ1 as an interacting partner for DISC1. To investigate the role of FEZ1 in schizophrenia and bipolar disorder, case-control association analyses were conducted in Japanese cohorts. METHODS: We performed a mutation screen of the FEZ1 gene and detected 15 polymorphisms. Additional data on informative polymorphisms were obtained from public databases. Eight single nucleotide polymorphisms (SNPs) were analyzed in 119 bipolar disorder and 360 schizophrenic patients and age- and gender-matched control subjects. All genotypes were determined with the TaqMan assay, and selected samples were confirmed by sequencing. RESULTS: The two adjacent polymorphisms displayed a nominally significant association with schizophrenia (IVS2+ 1587G>A, p = .014; 396T相似文献   

8.
Disrupted in Schizophrenia 1 (DISC1) was identified as a potential susceptibility gene for schizophrenia due to its disruption by a balanced t(1;11) (q42;q14) translocation, which has been shown to cosegregate with major psychiatric disease in a large Scottish family. We have recently presented evidence that DISC1 exists in a neurodevelopmentally regulated protein complex with Nudel. In this study, we report the protein expression profile of DISC1 in the adult and developing mouse brain utilizing immunohistochemistry and quantitative Western blot. In the adult mouse brain, DISC1 is expressed in neurons within various brain areas including the olfactory bulb, cortex, hippocampus, hypothalamus, cerebellum and brain stem. During development, DISC1 protein is detected at all stages, from E10 to 6 months old, with two significant peaks of protein expression of a DISC1 isoform at E13.5 and P35. Interestingly, these time points correspond to critical stages during mouse development, the active neurogenesis period in the developing brain and the period of puberty. Together, these results suggest that DISC1 may play a critical role in brain development, consistent with the neurodevelopmental hypothesis of the etiology of schizophrenia.  相似文献   

9.
Schizophrenia and related disorders have a major genetic component. Several large-scale studies have uncovered a number of possible candidate genes, but these have yet to be consistently replicated and their underlying biological function remains elusive. One exception is 'Disrupted in schizophrenia 1' (DISC1), a gene locus originally identified in a large Scottish family, showing a heavy burden of major mental illnesses associated with a balanced t(1;11)(q42.1;q14.3) chromosome translocation. Substantial genetic and biological research on DISC1 has been reported in the intervening 10 years: DISC1 is now recognized as a genetic risk factor for a spectrum of psychiatric disorders and DISC1 impacts on many aspects of central nervous system (CNS) function, including neurodevelopment, neurosignaling, and synaptic functioning. Evidence has emerged from genetic studies showing a relationship between DISC1 and quantitative traits, including working memory, cognitive aging, gray matter volume in the prefrontal cortex, and abnormalities in hippocampal structures and function. DISC1 interacts with numerous proteins also involved in neuronal migration, neurite outgrowth, cytoskeletal modulation, and signal transduction, some of which have been reported as independent genetic susceptibility factors for psychiatric morbidity. Here, we focus on the growing literature relating genetic variation in the DISC1 pathway to functional and structural studies of the brain in humans and in the mouse.  相似文献   

10.
The neural cell adhesion molecule L1 (L1CAM) promotes neurite outgrowth via mechanisms that are not completely understood, but are known to involve the cytoskeleton. Here, we show that L1 binds directly to the microtubule associated protein 2c (MAP2c). This isoform of MAP2 is predominantly expressed in developing neurons. We found that the mRNA and protein levels of MAP2c, but not of MAP2a/b, are reduced in brains of young adult L1-deficient transgenic mice. We show via ELISA, that MAP2c, but not MAP2a/b, binds directly to the intracellular domain of L1. Remarkably, all these MAP2 isoforms co-immunoprecipitate with L1, suggesting that MAP2a/b associates with L1 via intermediate binding partners. The expression levels of MAP2a/b/c correlate with those of L1 in different brain regions of early postnatal mice, while expression levels of heat shock cognate protein 70 (Hsc70) or actin do not. L1 enhances the expression of MAP2a/b/c in cultured hippocampal neurons depending on activation of the mitogen-activated protein kinase (MAPK) pathway. Deficiency in both L1 and MAP2a/b/c expression results in reduced neurite outgrowth in vitro. We propose that the L1-triggered increase in MAP2a/b/c expression is required to promote neurite outgrowth.  相似文献   

11.
The disrupted in schizophrenia 1 (DISC1) gene has been linked to schizophrenia and other serious mental illnesses in multiple pedigrees. This article will review the neurobiology of DISC1 in normal developing and adult brain and the putative role of the mutant form in major mental illness, particularly schizophrenia. The initial genetic finding of an association between DISC1 and schizophrenia in a Scottish population has now been replicated in Finnish, American, Japanese, and Taiwanese populations. DISC1 is present throughout the brain of a variety of species during development and adulthood, including many of the brain regions known to be abnormal in schizophrenia, such as the prefrontal cortex, hippocampus, and thalamus. The functions of DISC1 in the developing brain include neuronal migration, neurite outgrowth, and neurite extension. In the adult, DISC1 has been identified in multiple populations of neurons and in structures associated with synaptic function, suggesting that one of its adult functions may be synaptic plasticity. DISC1 is associated with numerous cognitive functions that are abnormal in schizophrenia. Converging evidence from cell culture, mice mutants, postmortem brain, and genetics implicates mutant DISC1 in the pathophysiology of schizophrenia and other mental illnesses.  相似文献   

12.
Disrupted‐in‐schizophrenia 1 (DISC1) is a genetic risk factor that has been implicated in major mental disorders. DISC1 binds to and stabilizes serine racemase to regulate production of D‐serine by astrocytes, contributing to glutamate (GLU) neurotransmission. However, the possible involvement of astrocytic DISC1 in synthesis, metabolism, reuptake, or secretion of GLU remains unexplored. Therefore, we studied the effects of dominant‐negative mutant DISC1 on various aspects of GLU metabolism by using primary astrocyte cultures and hippocampal tissue from transgenic mice with astrocyte‐restricted expression of mutant DISC1. Although mutant DISC1 had no significant effects on astrocyte proliferation, GLU reuptake, glutaminase, or glutamate carboxypeptidase II activity, expression of mutant DISC1 was associated with increased levels of alanine‐serine‐cysteine transporter 2, vesicular glutamate transporters 1 and 3 in primary astrocytes and in the hippocampus, and elevated expression of the NR1 subunit and diminished expression of the NR2A subunit of N‐methyl‐D‐aspartate (NMDA) receptors in the hippocampus, at postnatal day 21. Our findings indicate that decreased D‐serine production by astrocytic mutant DISC1 might lead to compensatory changes in levels of the amino acid transporters and NMDA receptors in the context of tripartite synapse. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
A common nonsynonymous single nucleotide polymorphism leading to a serine‐to‐cysteine substitution at amino acid 704 (Ser704Cys) in the DISC1 protein sequence has been recently associated with schizophrenia and with specific hippocampal abnormalities. Here, we used multimodal neuroimaging to investigate in a large sample of healthy subjects the putative association of the Ser704Cys DISC1 polymorphism with in vivo brain phenotypes including hippocampal formation (HF) gray matter volume and function (as assessed with functional MRI) as well as HF functional coupling with the neural network engaged during encoding of recognition memory. Individuals homozygous for DISC1 Ser allele relative to carriers of the Cys allele showed greater gray matter volume in the HF. Further, Ser/Ser subjects exhibited greater engagement of the HF together with greater HF–dorsolateral prefrontal cortex functional coupling during memory encoding, in spite of similar behavioral performance. These findings consistently support the notion that Ser704Cys DISC1 polymorphism is physiologically relevant. Moreover, they support the hypothesis that genetic variation in DISC1 may affect the risk for schizophrenia by modifying hippocampal gray matter and function.  相似文献   

14.
A strong candidate gene for schizophrenia and major mental disorders, disrupted-in-schizophrenia 1 (DISC1) was first described in a large Scottish family in which a balanced chromosomal translocation segregates with schizophrenia and other psychiatric illnesses. The translocation mutation may result in loss of DISC1 function via haploinsufficiency or dominant-negative effects of a predicted mutant DISC1 truncated protein product. DISC1 has been implicated in neurodevelopment, including maturation of the cerebral cortex. To evaluate the neuronal and behavioral effects of mutant DISC1, the Tet-off system under the regulation of the CAMKII promoter was used to generate transgenic mice with inducible expression of mutant human DISC1 (hDISC1) limited to forebrain regions, including cerebral cortex, hippocampus and striatum. Expression of mutant hDISC1 was not associated with gross neurodevelopmental abnormalities, but led to a mild enlargement of the lateral ventricles and attenuation of neurite outgrowth in primary cortical neurons. These morphological changes were associated with decreased protein levels of endogenous mouse DISC1, LIS1 and SNAP-25. Compared to their sex-matched littermate controls, mutant hDISC1 transgenic male mice exhibited spontaneous hyperactivity in the open field and alterations in social interaction, and transgenic female mice showed deficient spatial memory. The results show that the neuronal and behavioral effects of mutant hDISC1 are consistent with a dominant-negative mechanism, and are similar to some features of schizophrenia. The present mouse model may facilitate the study of aspects of the pathogenesis of schizophrenia.  相似文献   

15.
Schizophrenia and related disorders have a major genetic component, but despite much effort and many claims, few genes have been consistently replicated and fewer have biological support. One recent exception is "Disrupted in Schizophrenia 1" (DISC1), which was identified at the breakpoint on chromosome 1 of the balanced translocation (1;11)(q42.1;q14.3) that co-segregated in a large Scottish family with a wide spectrum of major mental illnesses. Since then, genetic analysis has implicated DISC1 in schizophrenia, schizoaffective disorder, bipolar affective disorder, and major depression. Importantly, evidence is emerging from genetic studies for a causal relationship between DISC1 and directly measurable trait variables such as working memory, cognitive aging, and decreased gray matter volume in the prefrontal cortex, abnormalities in hippocampal structure and function, and reduction in the amplitude of the P300 event-related potential. Further, DISC1 binds a number of proteins known to be involved in essential processes of neuronal function, including neuronal migration, neurite outgrowth, cytoskeletal modulation, and signal transduction. Thus, both genetic and functional data provide evidence for a critical role for DISC1 in schizophrenia and related disorders, supporting the neurodevelopmental hypothesis for the molecular pathogenesis of these devastating illnesses.  相似文献   

16.
17.
The brain acid-soluble protein BASP1 (CAP-23, NAP-22) belongs to the family of growth-associated proteins, which also includes GAP-43, a protein recently shown to regulate neural cell adhesion molecule (NCAM)-mediated neurite outgrowth. Here, the effects of BASP1 overexpression were investigated in PC12E2 cells and primary hippocampal neurons. BASP1 overexpression stimulated neurite outgrowth in both cell types. The effects of BASP1 and trans-homophilic NCAM interactions were additive, and BASP1-induced neurite outgrowth was not inhibited by ectopic expression of cytoplasmic NCAM domains. Furthermore, inhibition of signaling via the fibroblast growth factor receptor, Src-family nonreceptor tyrosine kinases, protein kinase C, or GSK3beta, and expression of constructs of the cytoskeletal proteins spectrin and tau inhibited NCAM- but not BASP1-induced neurite outgrowth. Expression of BASP1 mutated at the serine-5 phosphorylation site stimulated neurite outgrowth to a degree comparable to that observed in response to overexpression of wild-type BASP1, whereas expression of BASP1 mutated at the myristoylation site at glycine-1 completely abrogated the stimulatory effects of the protein on neurite outgrowth. Finally, coexpression experiments with dominant negative and wild-type versions of GAP-43 and BASP1 demonstrated that the two proteins could substitute for each other with respect to induction of NCAM-independent neurite outgrowth, whereas BASP1 was unable to replace the stimulatory effect of GAP-43 on NCAM-mediated neurite outgrowth. These observations demonstrate that BASP1 and GAP-43 have overlapping, but not identical, functions in relation to neurite outgrowth and indicate that the main function of BASP1 is to regulate the organization and morphology of the plasma membrane.  相似文献   

18.
Disrupted-in-schizophrenia-1 (DISC1), located on chromosome 1q42.1, is linked to rare familial schizophrenia in a large Scottish family. The chromosomal translocation that segregates with the disease results in a truncated protein that impairs neurite outgrowth and proper development of the cerebral cortex, suggesting that lost DISC1 function may underlie neurodevelopmental dysfunction in schizophrenia. DISC1 has been associated with schizophrenia in multiple populations, but there is little evidence of convergence across populations. In the present case-control study three Scandinavian samples of 837 individuals affected with schizophrenia and 1473 controls, were used in an attempt to replicate previously reported associations between single nucleotide polymorphisms (SNPs) in DISC1 and schizophrenia. No SNP with allele frequency above 10% was significantly associated with the disease after correction for multiple testing. However, the minor allele of rs3737597 (frequency 2%) in the 3'-untranslated region (UTR), previously identified as a risk allele in Finnish families, was significantly and consistently associated with the disorder across the three samples, (p-value corrected for multiple testing was 0.002). Our results suggest that a relatively uncommon DISC1 mutation, which increases the susceptibility for schizophrenia may be segregating in the Scandinavian population, and support the view that common DISC1 SNP alleles are unlikely to account for a substantial proportion of the genetic risk of the disease across populations of European descent.  相似文献   

19.
GIT1, a G-protein-coupled receptor kinase interacting protein, has been reported to be involved in neurite outgrowth. However, the neu-robiological functions of the protein remain unclear. In this study, we found that GIT1 was highly expressed in the nervous system, and its expression was maintained throughout all stages of neuritogenesis in the brain. In primary cultured mouse hippocampal neurons from GIT1 knockout mice, there was a signiifcant reduction in total neurite length per neuron, as well as in the average length of axon-like struc-tures, which could not be prevented by nerve growth factor treatment. Overexpression of GIT1 signiifcantly promoted axon growth and fully rescued the axon outgrowth defect in the primary hippocampal neuron cultures from GIT1 knockout mice. The GIT1 N terminal region, including the ADP ribosylation factor-GTPase activating protein domain, the ankyrin domains and the Spa2 homology domain, were sufifcient to enhance axonal extension. Importantly, GIT1 bound to many tubulin proteins and microtubule-associated proteins, and it accelerated microtubule assemblyin vitro. Collectively, our ifndings suggest that GIT1 promotes neurite outgrowth, at least partially by stimulating microtubule assembly. This study provides new insight into the cellular and molecular pathogenesis of GIT1-associated neuro-logical diseases.  相似文献   

20.
BACKGROUND: Converging evidence has demonstrated an association between the Disrupted in Schizophrenia 1 (DISC1) gene and schizophrenia (SZ). Within the DISC1 gene, a single nucleotide polymorphism (SNP), Ser704Cys, has been associated with the structure and function of the hippocampus. Because positive symptoms in SZ have also been associated with hippocampal structure and function, we hypothesized that variation in a DISC1 haplotype containing Ser704Cys would be significantly associated with positive symptomatology in SZ. METHODS: We tested for an association between variation in a haplotype block within the DISC1 gene containing Ser704Cys and lifetime history of positive symptoms in 199 Caucasian patients with SZ. RESULTS: We detected significant associations between a DISC1 haplotype containing Ser704Cys and Ser704Cys genotype and lifetime severity of delusions in SZ. CONCLUSIONS: These data suggest that that the effect of DISC1 genetic variation might be associated with positive symptoms in patients with SZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号