首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Q Li  S Katsuragawa  K Doi 《Medical physics》2001,28(10):2070-2076
We have been developing a computer-aided diagnostic (CAD) scheme to assist radiologists in improving the detection of pulmonary nodules in chest radiographs, because radiologists can miss as many as 30% of pulmonary nodules in routine clinical practice. A key to the successful clinical application of a CAD scheme is to ensure that there are only a small number of false positives that are incorrectly reported as nodules by the scheme. In order to significantly reduce the number of false positives in our CAD scheme, we developed, in this study, a multiple-template matching technique, in which a test candidate can be identified as a false positive and thus eliminated, if its largest cross-correlation value with non-nodule templates is larger than that with nodule templates. We describe the technique for determination of cross-correlation values for test candidates with nodule templates and non-nodule templates, the technique for creation of a large number of nodule templates and non-nodule templates, and the technique for removal of nodulelike non-nodule templates and non-nodulelike nodule templates, in order to achieve a good performance. In our study, a large number of false positives (44.3%) were removed with reduction of a very small number of true positives (2.3%) by use of the multiple-template matching technique. We believe that this technique can be used to significantly improve the performance of CAD schemes for lung nodule detection in chest radiographs.  相似文献   

2.
A computer-aided diagnosis (CAD) scheme is being developed to identify image regions considered suspicious for lung nodules in chest radiographs to assist radiologists in making correct diagnoses. Automated classifiers—an artificial neural network, discriminant analysis, and a rule-based scheme—are used to reduce the number of false-positive detections of the CAD scheme. The CAD scheme first detects nodule candidates from chest radiographs based on a difference image technique. Nine image features characterizing nodules are extracted automatically for each of the nodule candidates. The extracted image features are then used as input data to the classifiers for distinguishing actual nodules from the false-positive detections. The performances of the classifiers are evaluated by receiver-operating characteristic analysis. On the basis of the database of 30 normal and 30 abnormal chest images, the neural network achieves an AZ value (area under the receiver-operating-characteristic curve) of 0.79 in detecting lung nodules, as tested by the round-robin method. The neural network, after being trained with a training database, is able to eliminate more than 83% of the false-positive detections reported by the CAD scheme. Moreover, the combination of the trained neural network and a rule-based scheme eliminates 96% of the false-positive detections of the CAD scheme.  相似文献   

3.
The objective of this study was to implement and evaluate the performance of a biplane correlation imaging (BCI) technique aimed to reduce the effect of anatomic noise and improve the detection of lung nodules in chest radiographs. Seventy-one low-dose posterior–anterior images were acquired from an anthropomorphic chest phantom with 0.28° angular separations over a range of ±10° along the vertical axis within an 11 s interval. Similar data were acquired from 19 human subjects with institutional review board approval and informed consent. The data were incorporated into a computer-aided detection (CAD) algorithm in which suspect lesions were identified by examining the geometrical correlation of the detected signals that remained relatively constant against variable anatomic backgrounds. The data were analyzed to determine the effect of angular separation, and the overall sensitivity and false-positives for lung nodule detection. The best performance was achieved for angular separations of the projection pairs greater than 5°. Within that range, the technique provided an order of magnitude decrease in the number of false-positive reports when compared with CAD analysis of single-view images. Overall, the technique yielded ~1.1 false-positive per patient with an average sensitivity of 75%. The results indicated that the incorporation of angular information can offer a reduction in the number of false-positives without a notable reduction in sensitivity. The findings suggest that the BCI technique has the potential for clinical implementation as a cost-effective technique to improve the detection of subtle lung nodules with lowered rate of false-positives.  相似文献   

4.
Currently, radiologists can fail to detect lung nodules in up to 30% of actually positive cases. If a computerized scheme could alert the radiologist to locations of suspected nodules, then potentially the number of missed nodules could be reduced. We are developing such a computerized scheme that involves a difference-image approach and various feature-extraction techniques. In this paper, we describe our use of digital morphological processing in the reduction of computer-identified false-positive detections. A feature-extraction technique, which includes the sequential application of nonlinear filters of erosion and dilation, is employed to reduce the camouflaging effect of ribs and vessels on nodule detection. This additional feature-extraction technique reduced the true-positive rate of the computerized scheme by 13% and the false-positive rate by 50%. In a comparison of the scheme with and without the additional feature-extraction technique, inclusion of the additional technique increased the detection sensitivity by about half at the level of three to four false-positive detections per chest image.  相似文献   

5.
Radiologists can fail to detect up to 30% of pulmonary nodules in chest radiographs. A back-propagation neural network was used to detect lung nodules in digital chest radiographs to assist radiologists in the diagnosis of lung cancer. Regions of interest (ROIs) that cantained nodules and normal tissues in the lung were selected from digitized chest radiographs by a previously developed computer-aided diagnosis (CAD) scheme. Different preprocessing techniques were used to produce input data to the neural network. The performance of the neural network was evaluated by receiver operating characteristic (ROC) analysis. We found that subsampling of original 64- × 64-pixel ROIs to smaller 8- × 8-pixel ROIs provides the optimal preprocessing for the neural network to distinguish ROIs containing nodules from false-positive ROIs containing normal regions. The neural network was able to detect obvious nodules very well with an Az value (area under ROC curve) of 0.93, but was unable to detect subtle nodules. However, with a training method that uses different orientations of the original ROIs, we were able to improve the performance of the neural network to detect subtle nodules. Artificial neural networks have the potential to serve as a useful classifier to help to eliminate the false-positive detections of the CAD scheme.  相似文献   

6.
We developed an advanced computer-aided diagnostic (CAD) scheme for the detection of various types of lung nodules on chest radiographs intended for implementation in clinical situations. We used 924 digitized chest images (992 noncalcified nodules) which had a 500 x 500 matrix size with a 1024 gray scale. The images were divided randomly into two sets which were used for training and testing of the computerized scheme. In this scheme, the lung field was first segmented by use of a ribcage detection technique, and then a large search area (448 x 448 matrix size) within the chest image was automatically determined by taking into account the locations of a midline and a top edge of the segmented ribcage. In order to detect lung nodule candidates based on a localized search method, we divided the entire search area into 7 x 7 regions of interest (ROIs: 64 x 64 matrix size). In the next step, each ROI was classified anatomically into apical, peripheral, hilar, and diaphragm/heart regions by use of its image features. Identification of lung nodule candidates and extraction of image features were applied for each localized region (128 x 128 matrix size), each having its central part (64 x 64 matrix size) located at a position corresponding to a ROI that was classified anatomically in the previous step. Initial candidates were identified by use of the nodule-enhanced image obtained with the average radial-gradient filtering technique, in which the filter size was varied adaptively depending on the location and the anatomical classification of the ROI. We extracted 57 image features from the original and nodule-enhanced images based on geometric, gray-level, background structure, and edge-gradient features. In addition, 14 image features were obtained from the corresponding locations in the contralateral subtraction image. A total of 71 image features were employed for three sequential artificial neural networks (ANNs) in order to reduce the number of false-positive candidates. All parameters for ANNs, i.e., the number of iterations, slope of sigmoid functions, learning rate, and threshold values for removing the false positives, were determined automatically by use of a bootstrap technique with training cases. We employed four different combinations of training and test image data sets which was selected randomly from the 924 cases. By use of our localized search method based on anatomical classification, the average sensitivity was increased to 92.5% with 59.3 false positives per image at the level of initial detection for four different sets of test cases, whereas our previous technique achieved an 82.8% of sensitivity with 56.8 false positives per image. The computer performance in the final step obtained from four different data sets indicated that the average sensitivity in detecting lung nodules was 70.1% with 5.0 false positives per image for testing cases and 70.4% sensitivity with 4.2 false positives per image for training cases. The advanced CAD scheme involving the localized search method with anatomical classification provided improved detection of pulmonary nodules on chest radiographs for 924 lung nodule cases.  相似文献   

7.
Early detection and treatment of lung cancer is one of the most effective means of reducing cancer mortality, and to this end, chest X-ray radiography has been widely used as a screening method. A related technique based on the development of computer analysis and a flat panel detector (FPD) has enabled the functional evaluation of respiratory kinetics in the chest and is expected to be introduced into clinical practice in the near future. In this study, we developed a computer analysis algorithm to detect lung nodules and to evaluate quantitative kinetics. Breathing chest radiographs obtained by modified FPD and breath synchronization utilizing diaphragmatic analysis of vector movement were converted into four static images by sequential temporal subtraction processing, morphological enhancement processing, kinetic visualization processing, and lung region detection processing. An artificial neural network analyzed these density patterns to detect the true nodules and draw their kinetic tracks. Both the algorithm performance and the evaluation of clinical effectiveness of seven normal patients and simulated nodules showed sufficient detecting capability and kinetic imaging function without significant differences. Our technique can quantitatively evaluate the kinetic range of nodules and is effective in detecting a nodule on a breathing chest radiograph. Moreover, the application of this technique is expected to extend computer-aided diagnosis systems and facilitate the development of an automatic planning system for radiation therapy.  相似文献   

8.
Computer-assisted interpretation of computer radiography (CR) chest images including lung nodules detection, quantitative texture analysis, etc requires a lung delineation algorithm that restricts the area to be analyzed. This report presents a new lung-segmentation technique. It is performed in three phases. First, a histogram analysis finds a threshold value that eliminates the densest anatomic regions. Then, a gradient analysis separates the lungs from parts of thorax attached to the lungs that have not been removed in the previous phase. A smoothing routine yields the final image. By imposing a testing condition that results from the histogram analysis, underexposed images are not being considered. If being segmented, they exhibit a significant lung penetration. The test increases the accuracy of the procedure and makes it safer for an unsupervised application. The segmentation procedure has been implemented together with preprocessing functions in our clinical picture archiving and communication system.  相似文献   

9.
肺癌是对人类生命健康危害最大的恶性肿瘤之一。计算机辅助诊断系统对肺部CT图像进行自动分析后,可提示医生可疑肺结节,从而克服医生在诊断中的一些主观因素,为此本文提出了一种基于胸部CT图像的可疑肺结节自动检测算法。首先,根据胸部组织的特殊结构,利用一种新的分割算法提取出肺实质部分;在此基础上提取出灰度与结节相近的感兴趣区域,包括结节、肺血管、支气管;然后,以已标记的结节数据作为样本集,计算结节的面积、灰度均值、灰度方差、圆形度、形状矩、体积、球形度等特征值,利用最近邻法建立分类器判别函数;最后,计算测试集感兴趣区域的上述特征,对其进行判别、分类,并标记出结节。试验结果表明,该算法综合考虑了肺结节特征,具有较高的准确度。  相似文献   

10.
Li Q  Sone S  Doi K 《Medical physics》2003,30(8):2040-2051
Computer-aided diagnostic (CAD) schemes have been developed to assist radiologists in the early detection of lung cancer in radiographs and computed tomography (CT) images. In order to improve sensitivity for nodule detection, many researchers have employed a filter as a preprocessing step for enhancement of nodules. However, these filters enhance not only nodules, but also other anatomic structures such as ribs, blood vessels, and airway walls. Therefore, nodules are often detected together with a large number of false positives caused by these normal anatomic structures. In this study, we developed three selective enhancement filters for dot, line, and plane which can simultaneously enhance objects of a specific shape (for example, dot-like nodules) and suppress objects of other shapes (for example, line-like vessels). Therefore, as preprocessing steps, these filters would be useful for improving the sensitivity of nodule detection and for reducing the number of false positives. We applied our enhancement filters to synthesized images to demonstrate that they can selectively enhance a specific shape and suppress other shapes. We also applied our enhancement filters to real two-dimensional (2D) and three-dimensional (3D) CT images to show their effectiveness in the enhancement of specific objects in real medical images. We believe that the three enhancement filters developed in this study would be useful in the computerized detection of cancer in 2D and 3D medical images.  相似文献   

11.
The authors report interim clinical results from an ongoing NIH-sponsored trial to evaluate digital chest tomosynthesis for improving detectability of small lung nodules. Twenty-one patients undergoing computed tomography (CT) to follow up lung nodules were consented and enrolled to receive an additional digital PA chest radiograph and digital tomosynthesis exam. Tomosynthesis was performed with a commercial CsI/a-Si flat-panel detector and a custom-built tube mover. Seventy-one images were acquired in 11 s, reconstructed with the matrix inversion tomosynthesis algorithm at 5-mm plane spacing, and then averaged (seven planes) to reduce noise and low-contrast artifacts. Total exposure for tomosynthesis imaging was equivalent to that of 11 digital PA radiographs (comparable to a typical screen-film lateral radiograph or two digital lateral radiographs). CT scans (1.25-mm section thickness) were reviewed to confirm presence and location of nodules. Three chest radiologists independently reviewed tomosynthesis images and PA chest radiographs to confirm visualization of nodules identified by CT. Nodules were scored as: definitely visible, uncertain, or not visible. 175 nodules (diameter range 3.5-25.5 mm) were seen by CT and grouped according to size: < 5, 5-10, and > 10 mm. When considering as true positives only nodules that were scored definitely visible, sensitivities for all nodules by tomosynthesis and PA radiography were 70% (+/- 5%) and 22% (+/- 4%), respectively, (p < 0.0001). Digital tomosynthesis showed significantly improved sensitivity of detection of known small lung nodules in all three size groups, when compared to PA chest radiography.  相似文献   

12.
Pu J  Zheng B  Leader JK  Wang XH  Gur D 《Medical physics》2008,35(8):3453-3461
The authors present a new computerized scheme to automatically detect lung nodules depicted on computed tomography (CT) images. The procedure is performed in the signed distance field of the CT images. To obtain an accurate signed distance field, CT images are first interpolated linearly along the axial direction to form an isotropic data set. Then a lung segmentation strategy is applied to smooth the lung border aiming to include as many juxtapleural nodules as possible while minimizing over segmentations of the lung regions. Potential nodule regions are then detected by locating local maximas of signed distances in each subvolume with values and the sizes larger than the smallest nodule of interest in the three-dimensional space. Finally, all detected candidates are scored by computing the similarity distance of their medial axis-like shapes obtained through a progressive clustering strategy combined with a marching cube algorithm from a sphere based shape. A free-response receiver operating characteristics curve is computed to assess the scheme performance. A performance test on 52 low-dose CT screening examinations that depict 184 verified lung nodules showed that during the initial stage the scheme achieved an asymptotic maximum sensitivity of 95.1% (175/184) with an average of 1200 suspicious voxels per CT examination. The nine missed nodules included two small solid nodules (with a diameter < or =3.1 mm) and seven nonsolid nodules. The final performance level after the similarity scoring stage was an absolute sensitivity level, namely, including the nine missed during the initial stage, of 81.5% (150/184) with 6.5 false-positive identifications per CT examination. This preliminary study demonstrates the feasibility of applying a simple and robust geometric model using the signed distance field to identify suspicious lung nodules. In the authors' data set the sensitivity of this scheme is not affected by nodule size. In addition to potentially being a stand alone approach, the signed distance field based method can be easily implemented as an initial filtering step in other computer-aided detection schemes.  相似文献   

13.
Introduction: Early detection of lung cancer is one way to improve outcomes. Improving the detection of nodules on chest CT scans is important. Previous artificial intelligence (AI) modules show rapid advantages, which improves the performance of detecting lung nodules in some datasets. However, they have a high false-positive (FP) rate. Its effectiveness in clinical practice has not yet been fully proven. We aimed to use AI assistance in CT scans to decrease FP.Materials and methods: CT images of 60 patients were obtained. Five senior doctors who were blinded to these cases participated in this study for the detection of lung nodules. Two doctors performed manual detection and labeling of lung nodules without AI assistance. Another three doctors used AI assistance to detect and label lung nodules before manual interpretation. The AI program is based on a deep learning framework.Results: In total, 266 nodules were identified. For doctors without AI assistance, the FP was 0.617-0.650/scan and the sensitivity was 59.2-67.0%. For doctors with AI assistance, the FP was 0.067 to 0.2/scan and the sensitivity was 59.2-77.3% This AI-assisted program significantly reduced FP. The error-prone characteristics of lung nodules were central locations, ground-glass appearances, and small sizes. The AI-assisted program improved the detection of error-prone nodules.Conclusions: Detection of lung nodules is important for lung cancer treatment. When facing a large number of CT scans, error-prone nodules are a great challenge for doctors. The AI-assisted program improved the performance of detecting lung nodules, especially for error-prone nodules.  相似文献   

14.
One of the unanswered questions in digital radiography is the connection between physical image quality metrics and clinical detection performance. In this paper, we examine the impact of two physical metrics, resolution and noise, on the detectability of nodules in a pulmonary background for specific digital radiographic detectors. A detection experiment was performed on a simulated image set using anatomical backgrounds from a high-quality lung radiograph and three different simulated nodule sizes (2-3.5 mm). The resolution and noise of the resulting images were modified using existing routines to simulate a selenium-based and a cesium iodide-based flat-panel detector at comparable exposures. A location-known-exactly (LKE) observer performance experiment was performed in which four experienced chest radiologists and three physicists specializing in chest radiology scored the images. The data from the observer experiment were analyzed by receiver operating characteristic (ROC) methodology. The detectability, as measured by the parameter Az, was higher for the selenium detector than the cesium iodide detector for all nodule sizes by an average of 8.5%. For one nodule size (2.75 mm), the difference between detectors was statistically significant (p < 0.01). The findings indicate that for the particular task studied, the superior resolution performance of the selenium-based detector provided better detectability of subtle lung nodules even though the images had greater noise than images obtained with the cesium iodide detector.  相似文献   

15.
We propose to investigate the use of subregion Hotelling observers (SRHOs) in conjunction with perceptrons for the computerized classification of suspicious regions in chest radiographs for being nodules requiring follow up. Previously, 239 regions of interest (ROIs), each containing a suspicious lesion with proven classification, were collected. We chose to investigate the use of SRHOs as part of a multilayer classifier to determine the presence of a nodule. Each SRHO incorporates information about signal, background, and noise correlation for classification. For this study, 225 separate Hotelling observers were set up in a grid across each ROI. Each separate observer discriminates an 8 by 8 pixel area. A round robin sampling scheme was used to generate the 225 features, where each feature is the output of the individual observers. These features were then rank ordered by the magnitude of the weights of a perceptron. Once rank ordered, subsets of increasing number of features were selected to be used in another perceptron. This perceptron was trained to minimize mean squared error and the output was a continuous variable representing the likelihood of the region being a nodule. Performance was evaluated by receiver operating characteristic (ROC) analysis and reported as the area under the curve (Az). The classifier was optimized by adding additional features until the Az declined. The optimized subset of observers then were combined using a third perceptron. A subset of 80 features was selected which gave an Az of 0.972. Additionally, at 98.6% sensitivity, the classifier had a specificity of 71.3% and increased the positive predictive value from 60.7% to 84.1 %. Preliminary results suggest that using SRHOs in combination with perceptrons can provide a successful classification scheme for pulmonary nodules. This approach could be incorporated into a larger computer aided detection system for decreasing false positives.  相似文献   

16.
为了提高肺结节检测的精确度和效率,提出一种基于多特征融合和XGBoost的肺结节检测模型。首先采用阈值分割与形态学运算,获得候选结节区域;然后通过基于超分辨率重建的卷积神经网络进行候选结节的特征增强;其次采用快速鲁棒特征、灰度共生矩阵、灰度不变矩的提取方法获得候选结节的局部与全局的多种特征,采用词袋模型进行降维并融合;最后利用XGBoost-决策树分类模型去除假阳性结节,完成肺结节的检测。在LIDC-IDRI数据上进行的实验表明该模型能达到97.87%的准确率和97.92%的召回率。该模型可用于辅助医生进行肺结节诊断,具有一定的临床应用价值。  相似文献   

17.
Efficient data compression is essential for practical daily operation of computed radiography (CR) systems. In this study the clinical applicability of type III irreversible high data compression using an FCR 9501 chest unit (Fuji Photo Film, Tokyo, Japan) was evaluated. Sixty-eight normal and 93 various abnormal cases, with an additional 15 cases of lung cancers with solitary lung nodules, were selected from the file. A pair of hard copies of original images and images reconstructed using type III compression was made for each case. Six radiologists evaluated the image quality by visual rating and receiver operating characteristic (ROC) curve analysis. For all five anatomic regions of normal cases, “original equal to compressed” was the most common response, followed by “original significantly better than compressed.” When abnormal cases were evaluated for diagnostic information, there was no significant difference between the compressed and original images. ROC curve analysis on lung nodules with lung cancer showed no significant difference between the two. Compressed CR images using the type III irreversible technique are clinically applicable and acceptable despite slight degradation of image quality.  相似文献   

18.
肺结节是肺部最常见的病变之一,肺结节的早期检测和诊断对于肺癌的早期诊治十分重要.近年来,随着多层螺旋CT(MSCT)、高分辨CT(HRCT)及低剂量胸部CT(LDCT)的应用,计算机辅助诊断(CAD)系统的必要性和重要性也日益显现.由于CAD系统可以明显提高诊断医生的工作效率,为更多的患者服务,因此成为国内外相关领域专家的研究热点,近几年来也取得了一定的成果.就肺结节的CT计算机辅助检测和诊断的基本方法和应用作一综述. Abstract: Lung nodules are one of the most common pathological changes, thus early detection of lung nodule is very important for the diagnosis medical treatment of lung eancer. In recent years, as the application of multi-slice spiral CT(MSCT), high-resolution CT(HRCT) and low-dose chest CTCLDCT), computer-aided diagnosis (CAD) system will be more essential and more important. Since CAD system can improve the working efficiency of doctors and provide service to more patients, has become the research hotspot and achievement has been made in relevant area internationally recently. This review summarizes the basic methods and applieations of computer-aided detection and diagnosis of lung nodule based on CT image.  相似文献   

19.
To determine overall detection rates of lung cancer by low-dose CT (LDCT) screening and to compare histopathologic and imaging differences of detected cancers between high- and low-risk groups, this study included 6,406 asymptomatic Korean adults with >or=45 yr of age who underwent LDCT for lung cancer screening. All were classified into high- (>or=20 pack-year smoking; 3,353) and low-risk (3,053; <20 pack-yr smoking and non-smokers) groups. We compared CT findings of detected cancers and detection rates between high- and low-risk. At initial CT, 35% (2,255 of 6,406) had at least one or more non-calcified nodule. Lung cancer detection rates were 0.36% (23 of 6,406). Twenty-one non-small cell lung cancers appeared as solid (n=14) or ground-glass opacity (GGO) (n=7) nodules. Cancer likelihood was higher in GGO nodules than in solid nodules (p<0.01). Fifteen of 23 cancers occurred in high-risk group and 8 in low-risk group (p=0.215). Therefore, LDCT screening help detect early stage of lung cancer in asymptomatic Korean population with detection rate of 0.36% on a population basis and may be useful for discovering early lung cancer in low-risk group as well as in high-risk group.  相似文献   

20.
Li Q  Katsuragawa S  Doi K 《Medical physics》2000,27(8):1934-1942
A contralateral subtraction technique has been developed to assist radiologists in the detection of asymmetric abnormalities such as lung nodules on a single chest radiograph. With this technique, a contralateral subtraction image is obtained by subtracting a right/left reversed "mirror" image from the original one. The lesions in the subtraction image may be enhanced because most of the symmetric skeletal structures, such as peripheral ribs, are eliminated. Although the quality of the previous contralateral subtraction images is relatively good, severe misregistration artifacts, mainly due to serious asymmetry of the ribs in the two lungs of the original image, were observed in some cases, and minor misregistration artifacts were also observed in many cases. In this study, we employed three image warping techniques. An initial global warping technique was applied to reduce severe misregistration artifacts in the subtraction image caused by asymmetric rib structures. Additional two iterative warping techniques based on an elastic matching technique were used for accurate registration of the local structures of ribs, so that minor artifacts present in many subtraction images obtained with the previous technique were greatly reduced. With the new technique, the percentage of chest images, which were rated as being of adequate, good, or excellent quality of subtraction images by use of a subjective evaluation method, was improved from 91% to 97%. In particular, the number of cases with excellent quality was greatly increased from 15% to 42%. The contralateral subtraction technique can be used for detection of asymmetric abnormalities, such as lung nodules, pneumothorax, pneumonia, and emphysema, on peripheral lungs in single chest radiographs, and it therefore has potential utility in a large proportion of abnormal chest images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号