首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

BACKGROUND AND PURPOSE

Quercetin is anti-inflammatory in macrophages by inhibiting lipopolysaccharide (LPS)-mediated increases in cytokine and nitric oxide production but there is little information regarding the corresponding effect on the vasculature. We have examined the effect of quercetin, and its principal human metabolites, on inflammatory changes in the porcine isolated coronary artery.

EXPERIMENTAL APPROACH

Porcine coronary artery segments were incubated overnight at 37°C in modified Krebs-Henseleit solution with or without 1 µg·mL−1 LPS. Some segments were also co-incubated with quercetin-related flavonoids or Bay 11-7082, an inhibitor of NFκB. Changes in isometric tension of segments to vasoconstrictor and vasodilator agents were recorded. Nitrite content of the incubation solution was estimated using the Griess reaction, while inducible nitric oxide synthase was identified immunohistochemically.

KEY RESULTS

Lipopolysaccharide reduced, by 35–50%, maximal contractions to KCl and U46619, thromboxane A2 receptor agonist, and impaired endothelium-dependent relaxations to substance P. Nitrite content of the incubation medium increased 3- to 10-fold following exposure to LPS and inducible nitric oxide synthase was detected in the adventitia. Quercetin (0.1–10 µM) opposed LPS-induced changes in vascular responses, nitrite production and expression of inducible nitric oxide synthase. Similarly, 10 µM Bay 11-7082, 10 µM quercetin 3′-sulphate and 10 µM quercetin 3-glucuronide prevented LPS-induced changes, while myricetin (10 µM) was inactive. Myricetin (10 µM) prevented quercetin-induced modulation of LPS-mediated nitrite production.

CONCLUSION AND IMPLICATIONS

Quercetin, quercetin 3′-suphate and quercetin 3-glucuronide, exerted anti-inflammatory effects on the vasculature, possibly through a mechanism involving inhibition of NFκB. Myricetin-induced antagonism of the effect of anti-inflammatory action of quercetin merits further investigation.  相似文献   

2.

BACKGROUND AND PURPOSE

To investigate the role of connexin 43 in the maintenance of spontaneous activity in prostate tissue from young and old guinea pigs.

EXPERIMENTAL APPROACH

Conventional intracellular microelectrode and tension recording techniques, coupled with Western blot analysis and immunohistochemistry for connexin 43 (CX43) were used. The effects of three gap junction uncouplers, 18β glycyrrhetinic acid (10 µM, 40 µM), carbenoxolone (10 µM, 50 µM) and octanol (0.5 mM, 1 mM), were studied in cells displaying slow wave activity and on spontaneously contracting tissue from prostate glands of young (2–5 months) and old (9–16 months) guinea pigs.

KEY RESULTS

18β Glycyrrhetinic acid (40 µM), carbenoxolone (50 µM) or octanol (0.5 mM) abolished slow wave activity in prostate tissue from young and old guinea pigs and depolarized membrane potential by approximately 5 mV. These treatments also abolished all contractions in both sets of prostate tissue. These effects were reversed upon washout. Western blot analysis and CX43 immunohistochemistry showed that there was no age-related difference in the expression and distribution of CX43 in prostate tissues.

CONCLUSION AND IMPLICATIONS

When gap junctional communication via CX43 was disrupted, spontaneous activity was abolished at a cellular and whole tissue level; CX43 is therefore essential for the maintenance of spontaneous slow wave activity and subsequent contractile activity in the guinea pig prostate gland.  相似文献   

3.

AIMS

To examine the effects of salbutamol and L-arginine, two compounds acting largely on the endothelium, and the endothelium-independent agent nitroglycerin on blood pressure, arterial compliance, cardiac function and vascular resistance.

METHODS

Continuous radial pulse wave analysis, whole-body impedance cardiography, and plethysmographic blood pressure from fingers in the supine position and during head-up tilt were recorded in nine healthy subjects. Data were captured before and after L-arginine (10 mg mg−1 min−1) or saline infusion, salbutamol (400 µg) or placebo inhalation, and sublingual nitroglycerin (0.25 mg) or placebo resoriblet.

RESULTS

The results of all measurements were comparable before drug administration. The effects of inhaled salbutamol were apparent in the supine position: systemic vascular resistance (−9.2 ± 2.6%) and augmentation index (−4.0 ± 1.5%) decreased, and heart rate (8.6 ± 2.5%) and cardiac output (8.8 ± 3.1%) increased. L-arginine had no clear effects on supine haemodynamics, but during head-up tilt blood pressure was moderately decreased and reduction in aortic reflection time prevented, indicating improved large arterial compliance. Nitroglycerin reduced supine vascular resistance (−6.7 ± 1.8%) and augmentation index (−7.4 ± 1.6%), and increased cardiac output (+9.2 ± 2.7%). During head-up tilt, nitroglycerin increased cardiac output (+10.6 ± 5.6%) and heart rate (+40 ± 7.5%), decreased vascular resistance (−7.8 ± 5.8%) and augmentation index (−18.7 ± 3.2%), and prevented the decrease in aortic reflection time.

CONCLUSIONS

Inhaled salbutamol predominantly changed supine haemodynamics, whereas the moderate effects of L-arginine were observed during the head-up tilt. In contrast, small doses of nitroglycerin induced major changes in haemodynamics both supine and during the head-up tilt. Altogether, these results emphasize the importance of haemodynamic measurements in both the supine and upright positions.  相似文献   

4.

BACKGROUND AND PURPOSE

The conversion of clopidogrel to its active metabolite, R-130964, is a two-step cytochrome P450 (CYP)-dependent process. The current investigations were performed to characterize in vitro the effects of different CYP inhibitors on the biotransformation and on the antiplatelet effect of clopidogrel.

EXPERIMENTAL APPROACH

Clopidogrel biotransformation was studied using human liver microsomes (HLM) or specific CYPs and platelet aggregation using human platelets activated with ADP.

KEY RESULTS

Experiments using HLM or specific CYPs (3A4, 2C19) revealed that at clopidogrel concentrations >10 µM, CYP3A4 was primarily responsible for clopidogrel biotransformation. At a clopidogrel concentration of 40 µM, ketoconazole showed the strongest inhibitory effect on clopidogrel biotransformation and clopidogrel-associated inhibition of platelet aggregation with IC50 values of 0.03 ± 0.07 µM and 0.55 ± 0.06 µM respectively. Clarithromycin, another CYP3A4 inhibitor, impaired clopidogrel biotransformation and antiplatelet activity almost as effectively as ketoconazole. The CYP3A4 substrates atorvastatin and simvastatin both inhibited clopidogrel biotransformation and antiplatelet activity, less potently than ketoconazole. In contrast, pravastatin showed no inhibitory effect. As clopidogrel itself inhibited CYP2C19 at concentrations >10 µM, the CYP2C19 inhibitor lansozprazole affected clopidogrel biotransformation only at clopidogrel concentrations ≤10 µM. The carboxylate metabolite of clopidogrel was not a CYP substrate and did not affect platelet aggregation.

CONCLUSIONS AND IMPLICATIONS

At clopidogrel concentrations >10 µM, CYP3A4 is mainly responsible for clopidogrel biotransformation, whereas CYP2C19 contributes only at clopidogrel concentrations ≤10 µM. CYP2C19 inhibition by clopidogrel at concentrations >10 µM may explain the conflicting results between in vitro and in vivo investigations regarding drug interactions with clopidogrel.  相似文献   

5.

Background and purpose:

Previous work has shown that NG-monomethyl-l-arginine (l-NMMA) paradoxically inhibits basal, but not ACh-stimulated activity of nitric oxide in rat aorta. The aim of this study was to determine if the endogenously produced agent, asymmetric NG, NG-dimethyl-l-arginine (ADMA), also exhibits this unusual selective blocking action.

Experimental approach:

The effect of ADMA on basal nitric oxide activity was assessed by examining its ability to enhance phenylephrine (PE)-induced tone in endothelium-containing rings. Its effect on ACh-induced relaxation was assessed both in conditions where ADMA greatly enhanced PE tone and where tone was carefully matched with control tissues at a range of different levels.

Key results:

ADMA (100 µM) potentiated PE-induced contraction, consistent with inhibition of basal nitric oxide activity. Higher concentrations (300–1000 µM) had no greater effect. Although ADMA (100 µM) also appeared to block ACh-induced relaxation when it enhanced PE tone to maximal levels, virtually no block was seen at intermediate levels of tone in the presence of ADMA. Even ADMA at 1000 µM had no effect on the maximal relaxation to ACh, although it produced a small (two- to threefold) reduction in sensitivity. ADMA and l-NMMA, like l-arginine (all at 1000 µM), protected ACh-induced relaxation against blockade by l-NAME (30 µM).

Conclusions and implications:

In the rat aorta, ADMA, like l-NMMA, blocks basal activity of nitric oxide, but has little effect on that stimulated by ACh. Further studies are required to explain these seemingly anomalous actions of ADMA and l-NMMA.  相似文献   

6.
7.

Aim:

To examine whether iNOS contributes to endothelial dysfunction in aged rats.

Methods:

Male Sprague Dawley rats were divided into three groups: young rats, aged rats treated with vehicle and aged rats treated with N-[3-(Aminomethyl) benzyl] acetamidine (1400W, 1 mg/kg, ip). Vasorelaxation was measured in isolated thoracic aorta. iNOS expression of thoracic aortic arteries was detected using immunohistochemistry and Western blot. Nitrotyrosine (a marker for peroxynitrite formation) content and expression in thoracic aortic tissue were determined using enzyme linked immunosorbent assay and immunohistochemistry.

Results:

Maximal relaxation induced by acetylcholine (10-9 to 10-5 mol/L) in the aged rats treated with vehicle was significantly decreased (70%±15%, P<0.01), as compared with the young rats (95%±8%). However, the maximal relaxation induced by acidified NaNO2 (an endothelium-independent vasodilator) had no significant difference between the two groups. Moreover, iNOS and nitrotyrosine expression increased in the vessels of the aged rats. In the aged rats treated with 1400W (a highly selective iNOS inhibitor) nitrotyrosine expression was reduced and acetylcholine-induced vasorelaxation was markedly improved (maximal relaxation was increased to 87%±8%, P<0.05), but the acidified NaNO2-induced vasorelaxation had no significant change.

Conclusion:

Our study demonstrated that inhibition of iNOS by 1400W increased endothelium-dependent vasodilation in aged rats. The mechanism was related with attenuation of peroxynitrite formation.  相似文献   

8.

Background and purpose:

Current strategies to ameliorate cardiac ischaemic and reperfusion damage, including block of the sodium-hydrogen exchanger, are therapeutically ineffective. Here we propose a different approach, block of the persistent sodium current (INaP).

Experimental approach:

Left ventricular pressure was measured as an index of functional deficit in isolated, Langendorff perfused, hearts from adult rats, subjected to 30 min global ischaemia and reperfusion with vehicle only (control) or riluzole (1–10 µM) in the perfusate. Cell shortening and intracellular Ca2+ concentrations [Ca2+]i were measured in adult rat isolated myocytes subjected to hypoxia and re-oxygenation. The block of transient and persistent sodium currents by concentrations of riluzole between 0.01 and 100 µM were assessed in rat isolated myocytes using patch clamp techniques.

Key results:

In perfused hearts, riluzole produced a concentration-dependent cardioprotective action, with minor protection from 1 µM and produced rapid and almost complete recovery upon reperfusion from 3 and 10 µM. In isolated myocytes, riluzole at 3 and 10 µM greatly attenuated or prevented the hypoxia- and reperfusion-induced rise in [Ca2+]i and the contractile deficit. In patch clamp experiments, riluzole blocked the persistent sodium current with an IC50 of 2.7 µM, whereas the block of the transient sodium current was only apparent at concentrations above 30 µM.

Conclusions and implications:

Riluzole preferentially blocked INaP and was protective in cardiac ischaemia and reperfusion. Thus block of the persistent sodium current would be a viable method of ameliorating cardiac ischaemic and reperfusion damage.  相似文献   

9.

AIM

Angiotensin II receptor blockers (ARBs) improve endothelial cell (EC)-dependent vasodilation in patients with hypertension through suppression of angiotensin II type 1 receptors but may have additional and differential effects on endothelial nitric oxide (NO) synthase (eNOS) function. To investigate this question, we tested the effects of various ARBs on NO release in ECs from multiple donors, including those with eNOS genetic variants linked to higher cardiovascular risk.

METHODS

The effects of ARBs (losartan, olmesartan, telmisartan, valsartan), at 1 µm, on NO release were measured with nanosensors in human umbilical vein ECs obtained from 18 donors. NO release was stimulated with calcium ionophore (1 µm) and its maximal concentration was correlated with eNOS variants. The eNOS variants were determined by a single nucleotide polymorphism in the promoter region (T-786C) and in the exon 7 (G894T), linked to changes in NO metabolism.

RESULTS

All of the ARBs caused an increase in NO release as compared with untreated samples (P < 0.01, n = 4–5 in all eNOS variants). However, maximal NO production was differentially influenced by eNOS genotype. Olmesartan increased maximal NO release by 30%, which was significantly greater (P < 0.01, n = 4–5 in all eNOS variants) than increases observed with other ARBs.

CONCLUSIONS

The ARBs differentially enhanced NO release in ECs in a manner influenced by eNOS single nucleotide polymorphisms. These findings provide new insights into the effects of ARBs on EC-dependent vasodilation and eNOS function.  相似文献   

10.
11.

AIMS

Oral L-arginine supplementation has been used in several studies to improve endothelium-dependent, nitric oxide (NO)-mediated vasodilation. L-Arginine treatment is hampered by extensive presystemic elimination due to intestinal arginase activity. In contrast, L-citrulline is readily absorbed and at least in part converted to L-arginine. The aim of our study was to assess this metabolic conversion and its subsequent pharmacodynamic effects.

METHODS

In a double-blind, randomized, placebo-controlled cross-over study, 20 healthy volunteers received six different dosing regimes of placebo, citrulline, and arginine. Pharmacokinetic parameters (Cmax, Tmax, Cmin, AUC) were calculated after 1 week of oral supplementation. The ratio of plasma L-arginine over asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase (arginine/ADMA ratio), urinary cyclic guanosine monophosphate (cGMP) and nitrate excretion rates, and flow-mediated vasodilation (FMD) was measured to assess pharmacodynamic effects.

RESULTS

L-Citrulline dose-dependently increased AUC and Cmax of plasma L-arginine concentration more effectively than L-arginine (P < 0.01). The highest dose of citrulline (3 g bid) increased the Cmin of plasma L-arginine and improved the L-arginine/ADMA ratio from 186 ± 8 (baseline) to 278 ± 14 [P < 0.01, 95% confidence interval (CI) 66, 121]. Moreover, urinary nitrate and cGMP were increased from 92 ± 10 to 125 ± 15 µmol mmol−1 creatinine (P = 0.01, 95% CI 8, 58) and from 38 ± 3.3 to 50 ± 6.7 nmol mmol−1 creatinine (P = 0.04, 95% CI 0.4, 24), respectively. No treatment improved FMD over baseline. However, pooled analysis of all FMD data revealed a correlation between the increase of arginine/ADMA ratio and improvement of FMD.

CONCLUSION

Our data show for the first time that oral L-citrulline supplementation raises plasma L-arginine concentration and augments NO-dependent signalling in a dose-dependent manner.

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT

  • L-Arginine is a semiessential amino acid that is converted to nitric oxide (NO) by NO synthase (NOS).
  • NO improves endothelial function by elevating cyclic guanosine monophosphate.
  • However, oral L-arginine treatment in humans is hampered by extensive metabolism.

WHAT THIS STUDY ADDS

  • Oral L-citrulline supplementation raises plasma L-arginine concentration and augments NO-dependent signalling in a dose-dependent manner.
  • L-Citrulline may thus be an alternative to L-arginine in patients with impaired NOS activity.
  相似文献   

12.
13.

Background and purpose:

The mechanism(s) of action responsible for the beneficial effects of phosphodiesterase 5 (PDE5) inhibitors including sildenafil on lower urinary tract symptoms suggestive of benign prostate hyperplasia are unclear. In particular, the role of the NO-cGMP signalling pathway in regulating human bladder dome smooth muscle relaxation is questionable. Thus, we assessed the ability of a PDE5 inhibitor, sildenafil, to relax such tissue, and identified the signalling pathways involved in this relaxation.

Experimental approach:

Human bladder samples were obtained from 20 patients with no overactive bladder undergoing cystectomy for bladder cancer. Detrusor strips were mounted isometrically in Krebs–HEPES solution. Concentration–response curves for sildenafil (10 nM–30 µM) were generated in the presence of various inhibitors on carbachol-induced pre-contraction.

Key results:

Sildenafil relaxed carbachol-pre-contracted human detrusor strips, starting at 3 µM. This effect was not modified by NO donors, S-nitroso-N-acetylpenicillamine (10 µM) or sodium nitroprusside (300 nM), but was significantly inhibited by inhibition of guanylate cyclase (with ODQ, 10 µM) or adenylyl cyclase (with MDL-12,330A, 10 µM), by the ATP-sensitive potassium channel inhibitor, glibenclamide (10 µM), or inhibition of the large (with iberiotoxin, 30 nM) or small (with apamin, 100 nM) conductance calcium-activated potassium channels.

Conclusions and implications:

Sildenafil-induced relaxation of human detrusor smooth muscle involved cGMP-, cAMP- and K+ channel-dependent signalling pathways, with a minor contribution from NO. The effect of this sildenafil-induced relaxation on the clinical benefit of PDE5 inhibitors on urinary storage symptoms in men deserves further investigation.  相似文献   

14.

Background and purpose:

It is postulated that nitrite requires reduction to nitric oxide in order to exert its relaxant effect upon isolated hypoxic vessels. Herein, we evaluate the relative contribution of nitric oxide and characterize the downstream mechanisms of nitrite-induced vasorelaxation.

Experimental approach:

Aortic rings were treated with pharmacological agents and exposed to hypoxia (<1% O2). Following pre-constriction, nitrite (10 µM final) was added to appropriate baths; isometric tension was recorded throughout.

Key results:

Nitrite (under hypoxic conditions at physiological pH) is capable of exerting physiological effects that cannot be completely inhibited by the inhibitor of soluble guanylate cyclase (sGC), 1H [1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one or a nitric oxide scavenger (carboxy-2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide). Simultaneous blockade of both sGC and cyclooxygenase (COX) completely inhibited the response to nitrite. With regard to the nitric oxide-dependent component, we confirm that aldehyde oxidase, but not xanthine oxidase or endothelial nitric oxide synthase, was important for the actions of nitrite in our model.

Conclusions and implications:

Nitric oxide generated from nitrite is not exclusively responsible for the physiological actions observed in isolated hypoxic vessels. Nitrite operates via different pathways dependent on the presence or absence of endothelium to produce vasorelaxation. In intact vessels, both sGC and COX enzymes appear to be important. Irrespective of this difference in relaxation mechanism, nitrite is capable of producing the same maximum relaxation, regardless of the presence of endothelium. Having investigated possible nitrite reduction sites, we confirm that aldehyde oxidase is important for the actions of nitrite.  相似文献   

15.

Background and purpose:

Exogenous peroxynitrite from nanomolar to micromolar concentrations exerts cardioprotection. Here, we have assessed its effects on ischaemia- and reperfusion-induced ventricular arrhythmias in vivo and a possible role for mitochondrial KATP channels in these effects, using the channel inhibitor 5-hydroxydecanoate (5-HD).

Experimental approach:

Chloralose-urethane-anaesthetized dogs were treated twice for 5 min with peroxynitrite (100 nM, by intracoronary infusions) in both the absence and presence of 5-HD (150 μg kg−1 min−1), and then subjected to 25 min occlusion of the left anterior descending coronary artery. The severity of ischaemia and of arrhythmias, as well as the levels of nitrotyrosine were assessed and compared with a group of control dogs, subjected only to a 25 min occlusion and reperfusion insult.

Key results:

Compared with controls, infusion of peroxynitrite markedly suppressed the number of ventricular premature beats (388±88 vs 133±44), the incidence of ventricular fibrillation both during occlusion (50% vs 10%) and reperfusion (100% vs 44%), and increased survival (0% vs 50%; all P<0.05). The severity of ischaemia (epicardial ST-segment changes, inhomogeneity of electrical activation) during occlusion and nitrotyrosine levels on reperfusion were significantly less in the peroxynitrite-treated dogs than in the controls. 5-HD did not modify the cardioprotective effects of peroxynitrite.

Conclusion and implications:

Exogenous peroxynitrite provided antiarrhythmic protection in vivo, which might have been on account of a reduction in endogenous peroxynitrite formation. This protection seemed not to be mediated through mitoKATP channels.  相似文献   

16.

BACKGROUND AND PURPOSE

Leukotrienes (LTs) are pro-inflammatory mediators produced by 5-lipoxygenase (5-LO). Currently available 5-LO inhibitors either lack efficacy or are toxic and novel approaches are required to establish a successful anti-LT therapy. Here we provide a detailed evaluation of the effectiveness of the plant-derived alkaloid tryptanthrin as an inhibitor of LT biosynthesis.

EXPERIMENTAL APPROACH

We analysed LT formation and performed mechanistic studies in human neutrophils stimulated with pathophysiologically relevant stimuli (LPS and formyl peptide), as well as in cell-free assays (neutrophil homogenates or recombinant human 5-LO) and in human whole blood. The in vivo effectiveness of tryptanthrin was evaluated in the rat model of carrageenan-induced pleurisy.

KEY RESULTS

Tryptanthrin potently reduced LT-formation in human neutrophils (IC50 = 0.6 µM). However, tryptanthrin is not a redox-active compound and did not directly interfere with 5-LO activity in cell-free assays. Similarly, tryptanthrin did not inhibit the release of arachidonic acid, the activation of MAPKs, or the increase in [Ca2+]i, but it modified the subcellular localization of 5-LO. Moreover, tryptanthrin potently suppressed LT formation in human whole blood (IC50 = 10 µM) and reduced LTB4 levels in the rat pleurisy model after a single oral dose of 10 mg·kg−1.

CONCLUSIONS AND IMPLICATIONS

Our data reveal that tryptanthrin is a potent natural inhibitor of cellular LT biosynthesis with proven efficacy in whole blood and is effective in vivo after oral administration. Its unique pharmacological profile supports further analysis to exploit its pharmacological potential.  相似文献   

17.

BACKGROUND AND PURPOSE

The acute effects of PGE2 on bladder smooth muscle and nerves were examined to determine the origin of PGE2-induced spontaneous rhythmic contractions.

EXPERIMENTAL APPROACH

Contraction studies, confocal Ca2+ imaging and electrophysiological recordings in strips of mouse urinary bladder were used to differentiate the effects of PGE2 on bladder smooth muscle and efferent nerves.

KEY RESULTS

PGE2 (50 µM) increased the tone and caused phasic contractions of detrusor smooth muscle strips. Confocal Ca2+ imaging showed that PGE2 increased the frequency of whole-cell Ca2+ transients (WCTs) (72 ± 5%) and intracellular recordings showed it increased the frequency of spontaneous depolarizations, from 0.31·s−1 to 0.90·s−1. Non-selective inhibition of EP receptors using SC-51322 and AH-6809 (10 µM), or the L-type Ca2+ channel blocker nifedipine (1 µM), prevented these phasic contractions and WCTs, and reduced the tone (by 45 ± 7% and 59 ± 6%, respectively). Blocking P2X1 receptors with NF449 (10 µM) caused a small but significant reduction in the frequency of PGE2-induced phasic contractions (24 ± 9%) and WCTs (28 ± 17%) but had no significant effect on spontaneous depolarizations or tone. Inhibiting muscarinic receptors with cyclopentolate (1 µM) had no significant effect on these measures. Spontaneous WCTs became synchronous in PGE2, implying enhanced functional coupling between neighbouring cells. However, the electrical input resistance was unchanged.

CONCLUSIONS AND IMPLICATIONS

It was concluded that depolarization alone is sufficient to explain a functional increase in intercellular coupling and the ability of PGE2 to increase detrusor spontaneous rhythmic activity does not require parasympathetic nerves.  相似文献   

18.

BACKGROUND AND PURPOSE

A common site for drug binding on voltage-gated ion channels is at the interior face of the channel pore. In this study, we tested the hypothesis that the extent of drug block of the human cardiac KCNA5 (Kv1.5) channel underlying the atrial-specific, ultra-rapidly activating, delayed K+ current (IKur) is modulated by the drug uptake and efflux transporters encoded by organic cation transporter 1 (OCTN1) and multiple drug-resistant gene 1 (MDR1) and expressed in human heart.

EXPERIMENTAL APPROACH

Drug block of KCNA5 was assessed in Chinese hamster ovary cells transiently transfected with KCNA5 alone or in combination with the OCTN1 or MDR1 transporter construct, as well as in an MDR1 stably expressed cell line.

KEY RESUTLS

Co-expression of OCTN1 significantly facilitated block by quinidine (10 µM), verapamil (20 µM), propafenone (5 µM) and clofilium (30 µM). Further evidence of drug transport modulating drug block was the finding that with OCTN1, block developed faster and only partially washed-out, and that block potentiation was prevented by cimetidine, an inhibitor of OCTN1. MDR1 expression attenuated KCNA5 block by erythromycin (an MDR1 substrate). Block was restored by reversin-205 (10 µM, an MDR1 inhibitor). MDR1 did not affect KCNA5 inhibition by KN-93 (1 µM), a blocker acting on the outer mouth of the channel pore.

CONCLUSIONS AND IMPLICATIONS

The extent of drug block of KCNA5 can be modulated by drug uptake and efflux transporters. These data provide further support for the idea that modifying intracellular drug concentrations could modulate the effects of blocking ion channels in patients.  相似文献   

19.

AIM

The mechanisms of action of morphine on the arterial system are not well understood. The aim was to report forearm vascular responses, and their mediation, to intra-arterial morphine in healthy subjects.

METHODS

Three separate protocols were performed: (i) dose ranging; (ii) acute tolerance; (iii) randomized crossover mechanistic study on forearm blood flow (FBF) responses to intrabrachial infusion of morphine using venous occlusion plethysmography. Morphine was infused either alone (study 1 and 2), or with an antagonist: naloxone, combined histamine-1 and histamine-2 receptor blockade or during a nitric oxide clamp.

RESULTS

Morphine caused an increase in FBF at doses of 30 µg min−1[3.25 (0.26) ml min−1 100 ml−1][mean (SEM)] doubling at 100 µg min−1 to 5.23 (0.53) ml min−1 100 ml−1. Acute tolerance was not seen to 50 µg min−1 morphine, with increased FBF [3.96 (0.35) ml min−1 100 ml−1] (P = 0.003), throughout the 30-min infusion period. Vasodilatation was abolished by pretreatment with antihistamines (P = 0.008) and the nitric oxide clamp (P < 0.001), but not affected by naloxone. The maximum FBF with pretreatment with combined H1/H2 blockade was 3.06 (0.48) and 2.90 (0.17) ml min−1 100 ml−1 after 30 min, whereas with morphine alone it reached 4.3 (0.89) ml min−1 100 ml−1.

CONCLUSIONS

Intra-arterial infusion of morphine into the forearm circulation causes vasodilatation through local histamine-modulated nitric oxide release. Opioid receptor mechanisms need further exploration.  相似文献   

20.

Background and purpose:

The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated.

Experimental approach:

LPS-stimulated (1 µg·mL−1) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32–128 µg·mL−1) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein κB-α (IκB-α) levels were evaluated by Western blot analysis. Nuclear factor κB (NF-κB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-α (TNF-α) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated.

Key results:

LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 µg·mL−1) significantly inhibited COX-2 (LPS = 18 ± 2.1; flavocoxid = 3.8 ± 0.9 integrated intensity), 5-LOX (LPS = 20 ± 3.8; flavocoxid = 3.1 ± 0.8 integrated intensity) and iNOS expression (LPS = 15 ± 1.1; flavocoxid = 4.1 ± 0.4 integrated intensity), but did not modify COX-1 expression. PGE2 and LTB4 levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IκB-α protein (LPS = 1.9 ± 0.2; flavocoxid = 7.2 ± 1.6 integrated intensity), blunted increased NF-κB binding activity (LPS = 9.2 ± 2; flavocoxid = 2.4 ± 0.7 integrated intensity) and the enhanced TNF-α mRNA levels (LPS = 8 ± 0.9; flavocoxid = 1.9 ± 0.8 n-fold/β-actin) induced by LPS. Finally, flavocoxid decreased MDA, TNF and nitrite levels from LPS-stimulated macrophages.

Conclusion and implications:

Flavocoxid might be useful as a potential anti-inflammatory agent, acting at the level of gene and protein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号