首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to compare positron emission tomography using fluorine-18 fluorodeoxyglucose (FDG-PET) and technetium-99m methylene diphosphonate (MDP) bone scintigraphy in the detection of osseous metastases from malignant primary osseous tumours. In 70 patients with histologically proven malignant primary bone tumours (32 osteosarcomas, 38 Ewing's sarcomas), 118 FDG-PET examinations were evaluated. FDG-PET scans were analysed with regard to osseous metastases in comparison with bone scintigraphy. The reference methods for both imaging modalities were histopathological analysis, morphological imaging [additional conventional radiography, computed tomography (CT) or magnetic resonance imaging (MRI)] and/or clinical follow-up over 6-64 months (median 20 months). In 21 examinations (18%) reference methods revealed 54 osseous metastases (49 from Ewing's sarcomas, five from osteosarcomas). FDG-PET had a sensitivity of 0.90, a specificity of 0.96 and an accuracy of 0.95 on an examination-based analysis. Comparable values for bone scintigraphy were 0.71, 0.92 and 0.88. On a lesion-based analysis the sensitivity of FDG-PET and bone scintigraphy was 0.80 and 0.72, respectively. Analysing only Ewing's sarcoma patients, the sensitivity, specificity and accuracy of FDG-PET and bone scan were 1.00, 0.96 and 0.97 and 0.68, 0.87 and 0.82, respectively (examination-based analysis). None of the five osseous metastases from osteosarcoma were detected by FDG-PET, but all of them were true-positive using bone scintigraphy. In conclusion, the sensitivity, specificity and accuracy of FDG-PET in the detection of osseous metastases from Ewing's sarcomas are superior to those of bone scintigraphy. However, in the detection of osseous metastases from osteosarcoma, FDG-PET seems to be less sensitive than bone scintigraphy.  相似文献   

2.
PURPOSE: To evaluate the diagnostic properties of FDG-PET and bone scintigraphy in the detection of osseous metastases in patients with breast cancer. MATERIALS AND METHODS: Studies evaluating the diagnostic accuracy of FDG-PET and bone scintigraphy in the diagnosis of osseous metastasis were systematically searched for in the MEDLINE, CINAHL, and EBM Review databases from January 1995 to November 2006. Two reviewers independently abstracted data including research design, sample size, imaging technique and technical characteristics, reference standard, method of image interpretation, and totals of true positives, false positives, true negatives, and false negatives. Per-patient and per-lesion pooled sensitivity and specificity, and area under summary receiver operating characteristic curves were calculated using Meta-Test software. RESULTS: The pooled patient-based sensitivity for FDG-PET was 81% (95% CI: 70%-89%), specificity was 93% (95% CI: 84%-97%), and the area under the curve (AUC) was 0.08. The pooled sensitivity of bone scan was 78% (95% CI: 67%-86%), specificity was 79% (95% CI: 40%-95%), and the AUC was 0.43. The pooled lesion-based sensitivity for FDG-PET was 69% (95% CI: 28%-93%), specificity was 98% (95% CI: 87%-100%), and the AUC was 0.09. The pooled sensitivity for bone scan was 88% (95% CI: 82%-92%), specificity was 87% (95% CI: 29%-99%), and the AUC was 0.81. CONCLUSIONS: It remains inconclusive whether FDG-PET or bone scintigraphy is superior in detecting osseous metastasis from breast cancer. However, FDG-PET does have a higher specificity and may better serve as a confirmatory test than bone scintigraphy and used to monitor response to therapy.  相似文献   

3.

Purpose

The aim of this study was to compare the results of whole-body diffusion-weighted magnetic resonance (DW-MR) imaging with staging based on computed tomography (CT) and nuclear scintigraphy using Tc99m results as the standard of reference.

Methods and materials

Seventeen patients with known malignant tumours were included in the study. The thorax and the abdomen were imaged using breath-hold diffusion-weighted imaging and T1-weighted imaging sequences in the coronal plane. Location and size of osseous metastases were documented by two experienced radiologists. Whole-body DW-MR imaging findings were compared with results obtained at skeletal scintigraphy and CT bone survey.

Results

The mean examination time for whole-body DW-MR imaging was 25.5 min. All bone metastases regardless of the size were identified with whole-body DW-MR imaging; MR imaging depicted more bone metastases than CT. Skeletal scintigraphy depicted osseous metastases in 13 patients (with greater sensitivity to the lower limb), whereas whole-body DW-MR imaging revealed osseous metastases in 13 patients (with greater sensitivity to the spine). DW-MR did not show good results for detection of rib cage metastases. The additional osseous metastases seen with MR imaging were confirmed at follow-up examinations and some had a change in therapy. MR identified 22 % more metastatic lesions when compared to bone scintigraphy and 119 % when compared to CT. Bone scintigraphy identified 80 % more metastatic lesions when compared to CT. On a per-patient basis, whole-body DW-MR imaging revealed sensitivity and specificity values of 100 %.

Conclusion

Whole-body DW-MR imaging was more sensitive in the detection of osseous metastases than were skeletal scintigraphy and CT bone survey.  相似文献   

4.
OBJECTIVE: The purpose of this study was to compare the diagnostic accuracy of whole-body MR imaging, skeletal scintigraphy, and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) for the detection of bone metastases in children. SUBJECTS AND METHODS: Thirty-nine children and young adults who were 2--19 years old and who had Ewing's sarcoma, osteosarcoma, lymphoma, rhabdomyosarcoma, melanoma, and Langerhans' cell histiocytosis underwent whole-body spin-echo MR imaging, skeletal scintigraphy, and FDG PET for the initial staging of bone marrow metastases. The number and location of bone and bone marrow lesions diagnosed with each imaging modality were correlated with biopsy and clinical follow-up as the standard of reference. RESULTS: Twenty-one patients exhibited 51 bone metastases. Sensitivities for the detection of bone metastases were 90% for FDG PET, 82% for whole-body MR imaging, and 71% for skeletal scintigraphy; these data were significantly different (p < 0.05). False-negative lesions were different for the three imaging modalities, mainly depending on lesion location. Most false-positive lesions were diagnosed using FDG PET. CONCLUSION: Whole-body MR imaging has a higher sensitivity than skeletal scintigraphy for the detection of bone marrow metastases but a lower sensitivity than FDG PET.  相似文献   

5.
OBJECTIVE: Bone is one of the most common sites of metastasis in breast cancer patients. Although bone scintigraphy is widely used to detect metastatic breast cancer, the usefulness of 18FDG-PET for detecting bone metastasis has not been clearly evaluated. The purpose of this study was to compare the diagnostic accuracy of 18FDG-PET with bone scintigraphy in detecting bone metastasis in breast cancer patients. METHODS: Forty-four women aged 35 to 81 years (mean, 56 years) with breast cancer were examined in this study. Both 18FDG-PET and bone scintigraphy were performed for each patient with 0-69 day intervals (mean, 11.5 days). The results of each image interpretation were compared retrospectively. Whole-body bones were classified into 9 anatomical regions. Metastases were confirmed at 45/187 regions in 14 patients by bone biopsy or clinical follow-up including other imaging techniques for a period of at least 6 months afterwards. RESULTS: On a region basis, the sensitivity, specificity, and accuracy of 18FDG-PET were 84%, 99% and 95%, respectively. Although these results were comparable to those of bone scintigraphy, the combination of 18FDG-PET and bone scintigraphy improved the sensitivity (98%) and accuracy (97%) of detection. False negative lesions of bone scintigraphy were mostly bone marrow metastases and those of 18FDG-PET were mostly osteoblastic metastases. 18FDG-PET was superior to bone scintigraphy in the detection of osteolytic lesions (92% vs. 73%), but inferior in the detection of osteoblastic lesions (74% vs. 95%). CONCLUSIONS: This study shows that 18FDG-PET tends to be superior to bone scintigraphy in the detection of osteolytic lesions, but inferior in the detection of osteoblastic lesions. 18FDG-PET should play a complementary role in detecting bone metastasis with bone scintigraphy.  相似文献   

6.
AIM: High-grade Ewing sarcomas and Primitive neuroectodermal tumours (PNET) make up the tumours of the Ewing family. Our purpose was to evaluate the value of [18F]fluorodeoxyglucose positron emission tomography (FDG PET) in patients with Ewing tumours. PATIENTS AND METHODS: Twenty-four patients who had PET because of a suspected Ewing tumour during a 5-year period were included in this retrospective study. The images of 33 whole-body FDG PET investigations performed in primary or secondary diagnostics were analysed visually and semi-quantitatively by using standardized uptake values (SUVs). In 14 cases, PET was compared to bone scintigraphy regarding bone lesions. The final diagnosis was based on histology, imaging and follow-up. RESULTS: Histologically, the primary lesions were 10 Ewing sarcoma, 13 PNET and one osteomyelitis. The sensitivity and specificity of an examination-based analysis (presence of Ewing tumour and/or its metastases) were 96 and 78%, respectively. Altogether, 163 focal lesions were evaluated. Sensitivity and specificity regarding individual lesions were 73 and 78%. This lower sensitivity is mainly due to small lesions. In true-positive cases, the mean SUV was 4.54+/-2.79, and the SUVs in two false-positive cases were 4.66 and 1.60. True-positive and false-positive cases could not be differentiated definitively based on SUVs because of overlap and low values in true-positive lesions. In four cases, PET depicted 70 while bone scintigraphy depicted only eight bone metastases. CONCLUSION: An FDG PET investigation is a valuable method in the case of Ewing tumours. PET is superior to bone scintigraphy in the detection of bone metastases of Ewing tumours. For the depiction of small lesions, mainly represented by pulmonary metastases, PET is less sensitive than helical computed tomography. Determination of the role of whole-body FDG PET in diagnostic algorithm needs further investigation.  相似文献   

7.
BACKGROUND: Bone metastases are common in many types of cancer. As screening methods different imaging modalities are available. A new approach for the screening of osseous metastases represents the measurement of bone metabolic markers. Therefore aim of this study was to evaluate the usefulness of the determination of bone metabolic markers aminoterminal propeptide of type I procollagen (PINP, osteoblastic activity) and the carboxyterminal pyridinoline cross-linked telopeptide of type I collagen (ICTP, osteoclastic activity) for the detection of bone metastases associated with other malignancies. METHODS: 88 patients aged 21 - 82 years with malignant tumors were prospectively studied. The serum concentrations of PINP and ICTP were measured and compared to the results of bone scintigraphy, radiological bone series, CT, MRI and clinical follow-up. RESULTS: Osseous metastases were found in 21 patients. 19 of them were correctly identified by bone scintigraphy (sensitivity: 90%). For bone metabolic markers results were as follows: ICTP sensitivity: 71%, specificity: 42%; PINP sensitivity: 24%, specificity: 96%. CONCLUSIONS: As markers of bone metabolism PINP and ICTP showed low sensitivity and/or specificity for the detection of osseous metastases. The presented markers did not seem to be sufficient enough to identify patients with bone metastases or to replace established screening methods.  相似文献   

8.

Objective

We compared the diagnostic performance of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) and (99 m)Tc-methylene diphosphonate bone scintigraphy (BS) for the detection of bone metastasis in osteosarcoma.

Materials and methods

We retrospectively reviewed 206 patients with stage II–IV osteosarcoma treated with surgery and chemotherapy as well as at least one paired PET/CT and BS scan (defined as an examination). PET/CT and BS images were interpreted separately. When analyzing the diagnostic yield of a combination of PET/CT and BS (PET/CT+BS), an examination was considered positive if either PET/CT or BS scored positive. The final diagnosis was obtained from histological findings or clinical follow-up with imaging studies for at least 6 months. Diagnostic performances of PET/CT, BS, and their combinations were calculated.

Results

Out of 833 examinations in 206 patients, 55 with 101 lesions in 38 patients were confirmed as bone metastases. The sensitivity, specificity, and diagnostic accuracy were 95, 98, and 98 %, respectively, for PET/CT; 76, 97, and 96 %, respectively, for BS; and 100, 96, and 97 %, respectively, for PET/CT+BS in an examination-based analysis. Lesion-based analysis demonstrated that the sensitivity of PET/CT+BS (100 %) was significantly higher than that of PET/CT (92 %) or BS (74 %) alone. BS detected significantly less bone metastases in the growth plate region than outside the growth plate region (22 vs. 77 %).

Conclusions

PET/CT is more sensitive and accurate than BS for diagnosing bone metastases in osteosarcoma. The combined use of PET/CT and BS improves sensitivity.  相似文献   

9.
The present study compared the diagnostic accuracy of fluorine-18 2-deoxy-2-fluoro-D-glucose positron emission tomography (FDG-PET) with conventional staging techniques. The differentiation between malignant and benign lesions and the detection of multifocal disease, axillary and internal lymph node involvement, and distant metastases were evaluated. One hundred and seventeen female patients were prospectively examined using FDG-PET and conventional staging methods such as chest X-ray, ultrasonography of the breast and liver, mammography and bone scintigraphy. All patients were examined on a modern full-ring PET scanner. Histopathological analysis of resected specimens was employed as the reference method. The readers of FDG-PET were blinded to the results of the other imaging methods and to the site of the breast tumour. The sensitivity and specificity of FDG-PET in detecting malignant breast lesions were 93% and 75% respectively. FDG-PET was twofold more sensitive (sensitivity 63%, specificity 95%) in detecting multifocal lesions than the combination of mammography and ultrasonography (sensitivity 32%, specificity 93%). Sensitivity and specificity of FDG-PET in detecting axillary lymph node metastases were 79% and 92% (41% and 96% for clinical evaluation). FDG-PET correctly indicated distant metastases in seven patients. False-positive or false-negative findings were not encountered with FDG-PET. Chest X-ray was false-negative in three of five patients with lung metastases. Bone scintigraphy was false-positive in four patients. Three patients were upstaged since FDG-PET detected distant metastases missed with the standard staging procedure. It is concluded that, compared with the imaging methods currently employed for initial staging, FDG-PET is as accurate in interpreting the primary tumour and more accurate in screening for lymph node metastases and distant metastases. Due to a false-negative rate of 20% in detecting axillary lymph node metastases, FDG-PET cannot replace histological evaluation of axillary status.  相似文献   

10.
Purpose The purpose of this study was to investigate the pitfalls of using 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for the evaluation of osteoblastic bone metastases in patients with breast cancer by comparing it with 99mTc-hydroxymethylene diphosphonate bone scintigraphy.Methods Among the 89 breast cancer patients (mean age 59±15 years) who had undergone both FDG-PET and bone scintigraphy within 1 month between September 2003 and December 2004, 55 with bone metastases were studied. The bone metastases were visually classified by multi-slice CT into four types according to their degree of osteosclerosis and osteolysis—osteoblastic, osteolytic, mixed and invisible—and compared in terms of tracer uptake on FDG-PET or bone scintigraphy and SUVmean on FDG-PET. Differences in the rate of detection on bone scintigraphy and FDG-PET were analysed for significance by the McNemar test.Results The sensitivity, specificity and accuracy of bone scintigraphy were 78.2%, 82.4% and 79.8% respectively, and those of FDG-PET were 80.0%, 88.2% and 83.1%, respectively, revealing no significant differences. According to the CT image type, the visualisation rate of bone scintigraphy/FDG-PET was 100%/55.6% for the blastic type, 70.0%/100.0% for the lytic type, 84.2%/94.7% for the mixed type and 25.0%/87.5% for the invisible type. The visualisation rates of bone scintigraphy for the blastic type and FDG-PET for the invisible type were significantly higher. The SUVmean of the blastic, lytic, mixed and invisible types were 1.72±0.28, 4.14±2.20, 2.97±1.98 and 2.25±0.80, respectively, showing that the SUVmean tended to be higher for the lytic type than for the blastic type.Conclusion FDG-PET showed a low visualisation rate in respect of osteoblastic bone metastases. Although FDG-PET is useful for detection of bone metastases from breast cancer, it is apparent that it suffers from some limitations in depicting metastases of the osteoblastic type.An editorial commentary on this paper is available at  相似文献   

11.
We describe a case in which magnetic resonance (MR) imaging of a distal femoral osteosarcoma showed transarticular skip metastases in the proximal tibia. These lesions were not found by conventional radiography, bone scintigraphy, or CT. Since detection of transarticular skip metastases has an important influence on surgical management, MR imaging of metaphyseal osteosarcomas should always include the bone on the opposite side of the joint.  相似文献   

12.
The present study compared the diagnostic accuracy of fluorine-18 2-deoxy-2-fluoro-D-glucose positron emission tomography (FDG-PET) with conventional staging techniques. The differentiation between malignant and benign lesions and the detection of multifocal disease, axillary and internal lymph node involvement, and distant metastases were evaluated. One hundred and seventeen female patients were prospectively examined using FDG-PET and conventional staging methods such as chest X-ray, ultrasonography of the breast and liver, mammography and bone scintigraphy. All patients were examined on a modern full-ring PET scanner. Histopathological analysis of resected specimens was employed as the reference method. The readers of FDG-PET were blinded to the results of the other imaging methods and to the site of the breast tumour. The sensitivity and specificity of FDG-PET in detecting malignant breast lesions were 93% and 75% respectively. FDG-PET was twofold more sensitive (sensitivity 63%, specificity 95%) in detecting multifocal lesions than the combination of mammography and ultrasonography (sensitivity 32%, specificity 93%). Sensitivity and specificity of FDG-PET in detecting axillary lymph node metastases were 79% and 92% (41% and 96% for clinical evaluation). FDG-PET correctly indicated distant metastases in seven patients. False-positive or false-negative findings were not encountered with FDG-PET. Chest X-ray was false-negative in three of five patients with lung metastases. Bone scintigraphy was false-positive in four patients. Three patients were upstaged since FDG-PET detected distant metastases missed with the standard staging procedure. It is concluded that, compared with the imaging methods currently employed for initial staging, FDG-PET is as accurate in interpreting the primary tumour and more accurate in screening for lymph node metastases and distant metastases. Due to a false-negative rate of 20% in detecting axillary lymph node metastases, FDG-PET cannot replace histological evaluation of axillary status.  相似文献   

13.
PURPOSE: The purpose of this study was to evaluate the potential of positron emission tomography using F-18-fluoro-2-deoxy-D-glucose (FDG PET) to assess the chemotherapy response of primary osseous tumors compared with the degree of necrosis determined histologically. PATIENTS AND METHODS: Seventeen patients with primary bone tumors (11 osteosarcomas, 6 Ewing's sarcomas) were examined using FDG PET and planar bone scintigraphy before neoadjuvant chemotherapy and before surgery. Tumor response was classified histologically according to Salzer-Kuntschik (grades I-II: good response; grades IV-VI: poor response). In both imaging methods, quantification was performed using tumor to nontumor ratios (T:NT). RESULTS: Histologically, 15 patients were classified as having good responses (grade I, n = 1; grade II, n = 6; grade III, n = 8) and two as having poor responses (grades IV and V). FDG PET showed more than a 30% decrease in T:NT ratios in all patients who had good responses. However, three of these patients had increasing bone scintigraphy T:NT ratios, and another five had decreasing ratios of less than 30%. The patients with poor responses had increasing T:NT ratios and decreasing ratios of less than 30%, respectively, using both imaging methods. CONCLUSIONS: FDG PET seems to be a promising tool for evaluating the response of primary osseous tumors to chemotherapy. In this preliminary study, FDG PET was superior to planar bone scintigraphy.  相似文献   

14.
The purpose of this study was to determine the potential role of positron emission tomography (PET) using 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) for the evaluation of bony metastasis compared with 99Tcm-methylene diphosphonate (99Tcm-MDP) bone scintigraphy in patients with breast cancer. Fifty-one female patients with breast cancer who had PET together with a bone scan within 1 month between September 1994 and March 1997 were included in this study. The median age was 49 years (range 29-79 years). The sensitivity, specificity and accuracy of the bone scan were 77.7%, 80.9% and 80.3%, respectively. On the other hand, for the detection of bone metastases PET had a sensitivity, specificity and accuracy of 77.7%, 97.6% and 94.1%, respectively. In the diagnosis of bony metastasis derived from breast cancer, FDG-PET was statistically superior to bone scintigraphy in its specificity. In conclusion, FDG-PET appears to be a powerful tool not only in the diagnosis of the primary lesion and soft tissue metastasis, but also in the diagnosis of bony metastasis among patients with breast cancer.  相似文献   

15.
目的 评价大范围(从头顶到小腿)MR DWI在前列腺痈骨转移瘤检测中的应用.方法 搜集接受前列腺MR检查的166例连续患者,所有患者均行前列腺局部扫描及大范围DWI.其中49例在1个月内接受骨扫描检查和大范围DWI并行双盲法诊断.以常规T1WI和压脂T2WI为标准,确定骨转移瘤的存在及其位置.49例均为MRI和核素检查后获得前列腺的穿刺病理结果.大范围DWI与骨扫描对骨转移瘤诊断的敏感度、特异度、受试者操作特征曲线(ROC曲线)下面积应用McNemar检验进行比较.转移瘤患者中有5例有>10处/例的全身多发骨转移,在以病灶为单位研究时不纳入计算.结果 49例中10例有骨转移瘤,而DWI和核素骨扫描分别诊断15和17例有骨转移瘤,大范围DWI和核素骨扫描诊断骨转移瘤的敏感度均为100%(10/10),特异性分别为87.2%(34/39)和82.1%(32/39),ROC曲线下面积分别为0.936和0.910.44例患者中2种技术共显示68处异常信号和(或)放射浓聚灶,有20处被证实为骨转移瘤,而DWI显示其中23处为骨转移瘤,核素骨扫描显示其中34处为骨转移瘤.以病灶为单位(68处)计算大范围DWI和核素骨扫描诊断骨转移瘤灶的敏感度均为90.0%(18/20),特异度分别为89.6%(43/48)和66.7%(32/48),ROC曲线下面积分别为0.898和0.783,大范围DWI的特异度高于骨扫描(P<0.01),ROC曲线下面积也高于核素骨扫描(P<0.05).结论 大范围DWI可用于前列腺癌骨转移瘤的检查,特异度和准确度高于骨扫描.  相似文献   

16.
In 15 osteosarcomas and six Ewing sarcomas, response to preoperative chemotherapy was assessed with magnetic resonance (MR) imaging without and with gadolinium diethylenetriaminepentaacetic acid (DTPA) enhancement and with dynamic Gd-DTPA studies, and the results were compared with the scintigraphic findings. All studies were obtained prior to and following preoperative chemotherapy. Static MR imaging was of little value for assessment of response; reduction in signal intensity within soft-tissue masses on the T2-weighted spin-echo images indicated response with a sufficient degree of accuracy (71%) but low sensitivity, whereas an increase in signal intensity after Gd-DTPA administration indicated zones of viable tissue with low specificity. With three-phase skeletal scintigraphy, the findings in the perfusion and blood-pool phases were of no value, whereas the findings in the osseous phase allowed the prediction of response with an accuracy of 73.7%. Of all techniques employed, dynamic MR imaging had the highest degree of accuracy (85.7%) and was superior to scintigraphy, particularly in patients who were receiving intraarterial chemotherapy.  相似文献   

17.
Despite advances in morphological imaging, some patients with lung cancer are found to have non resectable disease at surgery or die of recurrence within a year of surgery. At present, metastatic bone involvement is usually assessed using bone scintigraphy, which has a high sensitivity but a poor specificity. We have attempted to evaluate the utility of the fluorine-18 deoxyglucose positron emission tomography (FDG PET) for the detection of bone metastasis. One hundred and ten consecutive patients with histological diagnosis of non-small cell lung cancer (NSCLC) who underwent both FDG PET and bone scintigraphy were selected for this review. In this group, there were 43 patients with metastatic disease (stage IV). Among these, 21 (19% of total group) had one or several bone metastases confirmed by biopsy (n = 8) or radiographic techniques (n = 13). Radionuclide bone scanning correctly identified 54 out of 89 cases without osseous involvement and 19 out of 21 osseous involvements. On the other hand, FDG PET correctly identified the absence of osseous involvement in 87 out of 89 patients and the presence of bone metastasis in 19 out of 21 patients. Thus using PET there were two false-negative and two false-positive cases. PET and bone scanning had, respectively, an accuracy of 96% and 66% in the evaluation of osseous involvement in patients with NSCLC. In conclusion, our data suggest that whole-body FDG PET may be useful in detecting bone metastases in patients with known NSCLC. Received 10 March and in revised form 7 May 1998  相似文献   

18.
Objective The objective was to describe the imaging and histopathologic characteristics of metastatic myxoid liposarcomas. Materials and methods This retrospective study was approved by the institutional review board and complied with HIPAA guidelines. The study group comprised 12 patients with metastatic myxoid liposarcoma who underwent MRI, CT, or FDG-PET. The location and imaging characteristics of the metastatic lesions were recorded, and the histopathology of all metastatic lesions was reviewed. Results There were 23 histologically proven metastases in 12 patients. Based on imaging criteria, there were 41 metastases. The mean time from the diagnosis of primary tumor to the first metastasis was 4.4 years. Sixty-seven percent of patients had bone and soft tissue metastases, 33% had pulmonary metastases, 33% had liver metastases, 25% had intra-abdominal, and 16% retroperitoneal metastases. CT demonstrated well-defined lobulated masses with soft tissue attenuation in all cases, without macroscopic fat component. In cases of osseous metastases, CT showed mixed lytic and sclerotic foci, with bone destruction in advanced cases. MRI demonstrated fluid-like signal intensity with mild heterogeneous enhancement in cases of soft tissue metastases. In osseous metastases, MRI showed avid heterogeneous enhancement. FDG-PET showed no significant FDG uptake for all metastases. MRI was the most useful imaging modality for osseous and soft tissue metastases. Conclusion Myxoid liposarcomas are soft tissue sarcomas, with a high prevalence of extrapulmonary metastases. The bones and soft tissues were the most common site of involvement, followed by the lungs and liver. MRI was the most sensitive modality in the detection of osseous and soft tissue metastases, and is the recommended modality for the diagnosis and follow-up of bone and soft tissue involvement.  相似文献   

19.
OBJECTIVE: (18)F-2-deoxy-2-fluoro-D-glucose positron emission tomography (FDG-PET) is a promising screening modality targeting whole body. However, the validity of PET cancer screening remains to be assessed. Even the screening accuracy for whole-body screening using FDG-PET has not been evaluated. In this study, we investigated the screening accuracy of PET cancer screening. METHODS: A total of 2911 asymptomatic participants (1629 men and 1282 women, mean age 59.79 years) underwent both FDG-PET and other thorough examinations for multiple organs (gastrofiberscopy, total colonofiberscopy or barium enema, low-dose thin section computed tomography and sputum cytology, abdominal ultrasonography, an assay of prostate-specific antigen, mammography, mammary ultrasonography, Pap smear for the uterine cervix, and magnetic resonance imaging for the endometrium and ovaries) between February 2004 and January 2005, and followed sufficiently. The detection rate, sensitivity, specificity, and positive predictive value of FDG-PET were calculated using cancer data obtained from all examinations along with a 1 year follow-up. RESULTS: From among 2911 participants FDG-PET found 28 cancers, 129 cancers were PET negative. PET-positive cancers comprised seven colorectal cancers, four lung cancers, four thyroid cancers, three breast cancers, two gastric cancers, two prostate cancers, two small intestinal sarcomas (gastrointestinal stromal tumors), one malignant lymphoma, one head and neck malignancy (nasopharyngeal carcinoid tumor), one thymoma, and one hepatocellular carcinoma. PET-negative cancers included 22 gastric cancers and 20 prostate cancers that were essentially difficult to detect using FDG-PET. The overall detection rate, sensitivity, specificity, and positive predictive value were estimated to be 0.96%, 17.83%, 95.15%, and 11.20%, respectively. CONCLUSIONS: FDG-PET can detect a variety of cancers at an early stage as part of a whole-body screening modality. The detection rate of PET cancer screening was higher than that of other screening modalities, which had already shown evidence of efficacy. However, the sensitivity of PET cancer screening was lower than that of other thorough examinations performed at our institute. FDG-PET has some limitations, and cancer screening using only FDG-PET is likely to miss some cancers.  相似文献   

20.
The leading European and American professional societies recommend that bone scans (BS) should be performed in the staging of lung cancer only in those patients with bone pain. This prospective study investigated the sensitivity of conventional skeletal scintigraphy in detecting osseous metastases in patients with lung cancer and addressed the potential consequences of failure to use this method in the work-up of asymptomatic patients. Subsequent to initial diagnosis of non-small cell lung cancer, 100 patients were examined and questioned regarding skeletal complaints. Two specialists in internal medicine decided whether they would recommend a bone scan on the basis of the clinical evaluation. Skeletal scintigraphy was then performed blinded to the findings of history and physical examination. The combined results of magnetic resonance imaging (MRI) of the vertebral column, positron emission tomography (PET) of skeletal bone and the subsequent clinical course served as the gold standard for the identification of osseous metastases. Bone scintigraphy showed an 87% sensitivity in the detection of bone metastases. Failure to perform skeletal scintigraphy in asymptomatic patients reduced the sensitivity of the method, depending on the interpretation of the symptoms, to 19–39%. Without the findings of skeletal scintigraphy and the gold standard methods, 14–22% of patients would have undergone unnecessary surgery or neoadjuvant therapy. On this basis it is concluded that bone scans should not be omitted in asymptomatic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号