首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background and purpose:

F15599, a novel 5-hydroxytryptamine (5-HT)1A receptor agonist with 1000-fold selectivity for 5-HT compared with other monoamine receptors, shows antidepressant and procognitive activity at very low doses in animal models. We examined the in vivo activity of F15599 at somatodendritic autoreceptors and postsynaptic 5-HT1A heteroreceptors.

Experimental approach:

In vivo single unit and local field potential recordings and microdialysis in the rat.

Key results:

F15599 increased the discharge rate of pyramidal neurones in medial prefrontal cortex (mPFC) from 0.2 µg·kg−1 i.v and reduced that of dorsal raphe 5-hydroxytryptaminergic neurones at doses >10-fold higher (minimal effective dose 8.2 µg·kg−1 i.v.). Both effects were reversed by the 5-HT1A antagonist (±)WAY100635. F15599 did not alter low frequency oscillations (∼1 Hz) in mPFC. In microdialysis studies, F15599 increased dopamine output in mPFC (an effect dependent on the activation of postsynaptic 5-HT1A receptors) with an ED50 of 30 µg·kg−1 i.p., whereas it reduced hippocampal 5-HT release (an effect dependent exclusively on 5-HT1A autoreceptor activation) with an ED50 of 240 µg·kg−1 i.p. Likewise, application of F15599 by reverse dialysis in mPFC increased dopamine output in a concentration-dependent manner. All neurochemical responses to F15599 were prevented by administration of (±)WAY100635.

Conclusions and implications:

These results indicate that systemic administration of F15599 preferentially activates postsynaptic 5-HT1A receptors in PFC rather than somatodendritic 5-HT1A autoreceptors. This regional selectivity distinguishes F15599 from previously developed 5-HT1A receptor agonists, which preferentially activate somatodendritic 5-HT1A autoreceptors, suggesting that F15599 may be particularly useful in the treatment of depression and of cognitive deficits in schizophrenia.  相似文献   

2.
BIMT 17 (1-[2-[4-(3-trifluoromethyl phenyl) piperazin-1-yl] ethyl] benzimidazol- [1H]-2-one), a 5-HT1A receptor agonist/5-HT2A receptor antagonist (see Borsini et al., accompanying paper), in a dose range of 1–10 mg/kg i.v., dose-dependently inhibited the electrical activity of rat medial prefronto-cortical neurons, whereas buspirone, in a dose range of 0.1–1000 g/kg, increased it. 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and 1-[2-(2-thenoylamino)ethyl]-4[1-(7-methoxynaphthyl)] piperazine (S 14671) presented biphasic patterns of response; they increased electrical activity at doses in the range of 0.1–10 g/kg and 0.1–3 g/kg i.v. respectively, and reduced it at higher doses, 30–300 g/kg and 10–30 g/kg i.v., respectively.The inhibitory effect of BIMT 17 on the firing rate of neurons in the frontal cortex was antagonized by the 5-HT1A antagonists tertatolol and WAY 100135, and was still present after destruction of serotonin (5-HT) containing neuronal endings by the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT; 150 g/rat, given intraventricularly), which reduced the cortical 5-HT content by 85%. This destruction of 5-HT neurons, while suppressing the ability of 8-OH-DPAT to inhibit the firing rate at high doses, did not change the excitatory action of this compound at low doses. The addition of ritanserin, a 5-HT2A receptor antagonist, potentiated both the excitatory and inhibitory effects of 8-OHDPAT on neuronal electrical activity. Direct microiontophoretic application (100 nA/20 s) of 5-HT and BIMT 17, but not that of 8-OH-DPAT, onto medial prefronto-cortical neurons, decreased the firing rate of these neurons.These findings suggest that BIMT 17 directly inhibits the electrical activity of medial prefronto-cortical neurons through its dual mode of receptor interaction.  相似文献   

3.

Background and purpose

As a combination of 5-HT selective reuptake inhibitor (SSRI) with 5-HT1A receptor antagonism may yield a rapidly acting antidepressant, WAY-211612, a compound with both SSRI and 5-HT1A receptor antagonist activities, was evaluated in preclinical models.

Experimental approach

Occupancy studies confirmed the mechanism of action of WAY-211612, while its in vivo profile was characterized in microdialysis and behavioural models.

Key results

WAY-211612 inhibited 5-HT reuptake (Ki = 1.5 nmol·L−1; KB = 17.7 nmol·L−1) and exhibited full 5-HT1A receptor antagonist activity (Ki = 1.2 nmol·L−1; KB = 6.3 nmol·L−1; Imax 100% in adenyl cyclase assays; KB = 19.8 nmol·L−1; Imax 100% in GTPγS). WAY-211612 (3 and 30 mg·kg−1, po) occupied 5-HT reuptake sites in rat prefrontal cortex (56.6% and 73.6% respectively) and hippocampus (52.2% and 78.5%), and 5-HT1A receptors in the prefrontal cortex (6.7% and 44.7%), hippocampus (8.3% and 48.6%) and dorsal raphe (15% and 83%). Acute or chronic treatment with WAY-211612 (3–30 mg·kg−1, po) raised levels of cortical 5-HT approximately twofold, as also observed with a combination of an SSRI (fluoxetine; 30 mg·kg−1, s.c.) and a 5-HT1A antagonist (WAY-100635; 0.3 mg·kg−1, s.c). WAY-211612 (3.3–30 mg·kg−1, s.c.) decreased aggressive behaviour in the resident-intruder model, while increasing the number of punished crossings (3–30 mg·kg−1, i.p. and 10–56 mg·kg−1, po) in the mouse four-plate model and decreased adjunctive drinking behaviour (56 mg·kg−1, i.p.) in the rat scheduled-induced polydipsia model.

Conclusions and implications

These findings suggest that WAY-211612 may represent a novel antidepressant.  相似文献   

4.

Background and purpose:

Despite decreased presynaptic 5-HT1A and altered 5-HT2A receptor function in genetically-deficient serotonin (5-HT) transporter (SERT) mice, the 5-HT1A receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate salt (WAY 100635) still induced head twitches in these mice, a well-established 5-HT2A receptor-mediated response.

Experimental approach:

Interactions between 5-HT1A and 5-HT2A receptors were assessed using the head-twitch response following 5-HT1A and 5-HT2A receptor agonists and antagonists in SERT wild-type (+/+), heterozygous (+/−), and knockout (−/−) mice. The role of brain 5-HT availability in WAY 100635 induced head twitches was also examined.

Key results:

WAY 100635 induced head twitches in a SERT gene-dose dependent manner, inducing 5-fold more head twitches in SERT −/− versus SERT +/+ mice. In SERT −/− mice, inhibition of 5-HT synthesis with p-chlorophenylalanine (PCPA) markedly depleted tissue 5-HT in all five brain areas examined and abolished WAY 100635 induced head twitches. Further, the selective 5-HT reuptake inhibitor fluvoxamine increased WAY 100635 induced head twitches in SERT +/+ and +/− mice. Head twitches following the 5-HT2A receptor agonist (+/−)-2,5-dimethoxy-4-iodophenyl-2-aminopropane (DOI) were robust in SERT +/+ and +/− mice but much reduced in SERT −/− mice. DOI-induced head twitches were decreased by the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in SERT +/+ and +/− mice. All drug-induced head twitches were blocked by the 5-HT2A receptor antagonist a-Phenyl-1-(2-phenylethyl)-4-piperidinemethanol (MDL 11,939).

Conclusions and implications:

These data show that indirect activation of 5-HT2A receptors via blockade of presynaptic 5-HT1A receptors potentiated head-twitch responses, suggesting functional interactions between these receptors, interactions affected by altered 5-HT availability. Our findings strongly support the correlation of WAY 100635 induced head twitches with increased 5-HT availability, induced genetically or pharmacologically.  相似文献   

5.
The non-competitive NMDA receptor (NMDA-R) antagonist phencyclidine (PCP)—used as a pharmacological model of schizophrenia—disrupts prefrontal cortex (PFC) activity. PCP markedly increased the discharge rate of pyramidal neurons and reduced slow cortical oscillations (SCO; 0.15–4 Hz) in rat PFC. Both effects were reversed by classical (haloperidol) and atypical (clozapine) antipsychotic drugs. Here we extended these observations to mice brain and examined the potential involvement of 5-HT2A and 5-HT1A receptors (5-HT2AR and 5-HT1AR, respectively) in the reversal by clozapine of PCP actions. Clozapine shows high in vitro affinity for 5-HT2AR and behaves as partial agonist in vivo at 5-HT1AR. We used wild-type (WT) mice and 5-HT1AR and 5-HT2AR knockout mice of the same background (C57BL/6) (KO-1A and KO-2A, respectively). Local field potentials (LFPs) were recorded in the PFC of WT, KO-1A, and KO-2A mice. PCP (10 mg/kg, intraperitoneally) reduced SCO equally in WT, KO-2A, and KO-1A mice (58±4%, 42±7%, and 63±7% of pre-drug values, n=23, 13, 11, respectively; p<0.0003). Clozapine (0.5 mg/kg, intraperitoneally) significantly reversed PCP effect in WT and KO-2A mice, but not in KO-1A mice nor in WT mice pretreated with the selective 5-HT1AR antagonist WAY-100635.The PCP-induced disorganization of PFC activity does not appear to depend on serotonergic function. However, the lack of effect of clozapine in KO-1A mice and the prevention by WAY-100635 indicates that its therapeutic action involves 5-HT1AR activation without the need to block 5-HT2AR, as observed with clozapine-induced cortical dopamine release.  相似文献   

6.
Transient expression in COS-7 cells of the recombinant human 5-hydroxytryptamine (5-HT) h5-HT4(c) receptor isoform led to constitutive activity of the receptor. The 5-HT4 receptor antagonist 2-(cis-3,5-dimethylpiperidino)ethyl 4-amino-5-chloro-2-methoxybenzoate (ML10375) at 1 μM completely abolished the 5-HT (1 μM)-mediated increase in adenylyl cyclase activity in COS-7 cells expressing the h5-HT4(c) receptor. Moreover, ML10375 also reduced basal cAMP levels in cells over-expressing the receptor, even in the absence of agonist. The inhibitory effect of ML10375 on basal adenylyl cyclase activity was not modified by pre-treatment of the cells with pertussis toxin, indicating that ML10375 acts through inactivation of spontaneously active h5-HT4(c) receptors rather than through a Gi/Go regulatory pathway. We conclude that ML10375 acts as an inverse agonist on the h5-HT4(c) receptor.  相似文献   

7.
  1. Ejaculatory problems and anorgasmia are well-known side-effects of the SSRI antidepressants, and a pharmacologically induced increase in serotonergic neurotransmission inhibits ejaculatory behaviour in the rat. In the present study the role of 5-HT1A and 5-HT1B receptors in the mediation of male rat ejaculatory behaviour was examined by use of selective agonists and antagonists acting at these 5-HT receptor subtypes.
  2. The 5-HT1A receptor agonist 8-OH-DPAT (0.25–4.00 μmol kg−1 s.c.) produced an expected facilitation of the male rat ejaculatory behaviour, and this effect was fully antagonized by pretreatment with the new selective 5-HT1A receptor antagonist (R)-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzopyran-5-carboxamide hydrogen (2R,3R) tartrate monohydrate (NAD-299) (1.0 μmol kg−1 s.c.). NAD-299 by itself (0.75–3.00 μmol kg−1 s.c.) did not affect the male rat ejaculatory behaviour.
  3. The 5-HT1B receptor agonist anpirtoline (0.25–4.00 μmol kg−1 s.c.) produced a dose-dependent inhibition of the male rat ejaculatory behaviour, and this effect was fully antagonized by pretreatment with the 5-HT1B receptor antagonist isamoltane (16 μmol kg−1 s.c.) as well as by the new and selective antagonist (R)-(+)-2-(3-morpholinomethyl-2H-chromene-8-yl)oxymethylmorpholino methansulphonate (NAS-181) (16 μmol kg−1 s.c.). Isamoltane (1.0–16.0 μmol kg−1 s.c.) and NAD-181 (1.0–16.0 μmol kg−1 s.c.) had no, or weakly facilitatory effects on the male rat ejaculatory behaviour. The non-selective 5-HT1 receptor antagonist (−)-pindolol (8 μmol kg−1 s.c.), did not antagonize the inhibition produced by anpirtoline.
  4. The present results demonstrate opposite effects, facilitation and inhibition, of male rat ejaculatory behaviour by stimulation of 5-HT1A and 5-HT1B receptors, respectively, suggesting that the SSRI-induced inhibition of male ejaculatory dysfunction is due to 5-HT1B receptor stimulation.
  相似文献   

8.
BACKGROUND AND PURPOSE: The identification of potent and selective radioligands for the mapping of 5-HT receptors is interesting both for clinical and experimental research. The aim of this study was to compare the potency of a new putative 5-HT(1A) receptor antagonist, p-DMPPF, (4-(2-hydroxyphenyl)-1-[2'-[N-(2'-pyridinyl)-p-fluorobenzamido]ethyl]piperazine) with that of the well-known 5-HT(1A) antagonists, WAY-100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide) and its fluorobenzoyl analogue, p-MPPF (4-(2-methoxyphenyl)-1-[2'-[N-(2'-pyridinyl)-p-fluorobenzamido]ethyl]piperazine). EXPERIMENTAL APPROACH: Single cell extracellular recordings of dorsal raphe (DR) neurones were performed in rat brain slices. The potency of each compound at antagonizing the effect of the 5-HT(1A) agonist, 8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)-tetraline], was quantified using the Schild equation. The pharmacological profile of p-DMPPF was defined using competition binding assays. KEY RESULTS: Consistently with a 5-HT(1A) receptor antagonist profile, incubation of slices with an equimolar (10 nM) concentration of each compound markedly reduced the inhibitory effect of 8-OH-DPAT on the firing rate of DR neurones, causing a significant rightward shift in its concentration-response curve. The rank order of potency of the antagonists was WAY-100635>p-DMPPF>or=p-MPPF. The sensitivity of DR neurones to the inhibitory effect of 8-OH-DPAT was found to be heterogeneous. The binding experiments demonstrated that p-DMPPF is highly selective for 5-HT(1A) receptors, with a K(i) value of 7 nM on these receptors. CONCLUSIONS AND IMPLICATIONS: The potency of the new compound, p-DMPPF, as a 5-HT(1A) antagonist is similar to that of p-MPPF in our electrophysiological assay. Its selectivity towards 5-HT(1A) receptors makes it a good candidate for clinical development.  相似文献   

9.
Agomelatine (S 20098) is a novel antidepressant drug with melatonin receptor agonist and 5-HT(2C) receptor antagonist properties, but actual mechanisms underlying its antidepressant action are unknown. Because functional desensitization of 5-HT(1A) autoreceptors in the dorsal raphe nucleus (DRN) occurs after chronic administration of several classes of antidepressants, we investigated whether this adaptive change could also be induced by agomelatine. Neither acute nor chronic treatment with agomelatine (10 mg/kg i.p. for 14 days or 50 mg/kg i.p. for 21 days) changed the density of 5-HT(1A) receptors and their coupling with G proteins in the DRN and the hippocampus in rats. Moreover, these treatments did not affect the basal electrophysiological characteristics and the responses to 5-HT(1A) receptor stimulation of DRN and hippocampal neurons in brain slices. Parallel experiments with melatonin (10 mg/kg i.p. for 14 days) and fluoxetine (5 mg/kg i.p. for 14 days) as reference compounds showed that the former was unable to affect 5-HT(1A) receptors whereas the latter decreased both the 5-HT(1A) receptor-mediated [(35)S]GTP-gamma-S binding and the potency of ipsapirone, a 5-HT(1A) receptor agonist, to inhibit neuronal firing in the DRN. These data indicate that the antidepressant action of agomelatine is not mediated through the same mechanisms as SSRIs or tricyclics.  相似文献   

10.
Summary The effects of several putative 5-HT1 receptorsubtype selective ligands were investigated in biochemical models for 5-HT1A, 5-HT1B, and 5-HT1D receptors (inhibition of forskolin-stimulated adenylate cyclase activity in calf hippocampus, rat and calf substantia nigra, respectively) and 5-HT1C receptors (stimulation of inositol phosphates production in pig choroid plexus). Following compounds were studied: 5-HT (5-hydroxytryptamine), TFMPP (1-(mtrifluoromethylphenyl)piperazine), mCPP (1-m-chlorophe-nyl)piperazine, 1 CGS 12066 (7-trifluoromethyl-4-(4-methyl1-piperazinyl)-pyrrolo[1,2-a]quinoxaline 1), isamoltane (CGP 361A, 1-(2-(1-pyrrolyl)-phenoxy)-3-isopropylamino-2-propranol), quipazine, 1-NP (1-(1-naphthyl)piperazine), and PAPP (LY165163, 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)-piperazine). Among reported 5-HT1B receptor selective drugs, TFMPP had similar potency at 5HT1A, 5-HT1B and 5-HT1C receptors, mCPP did not separate between 5-HT1B and 5-HT1C receptors, CGS 12066 was equipotent at 5-HT1B and 5-HT1D receptors, and isamoltane was only slightly 5-HTIB versus 5-HT1A selective. Quipazine showed equal potency at 5-HTIB and 5-HT1C receptors and 1-NP did not discriminate between the four receptor subtypes. PAPP described as 5-HT1A receptor selective, was equally potent at 5-HT1A and 5-HT1D receptors. The potencies determined in second messenger studies were in good agreement with the affinity values determined in radioligand binding studies. Thus 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors have different pharmacological profiles as predicted from radioligand binding studies. Despite claims to the contrary, none of the tested compounds had actual selectivity for a given 5-HT1 receptor subtype. Of interest were the properties of several of these drugs, which behaved as agonists at some receptors and as antagonists at others (e. g. quipazine, 1-NP, PAPP and isamoltane). Send offprint requests to D. Hoyer at the above address  相似文献   

11.
BACKGROUND AND THE PURPOSE OF THE STUDY: The available literatures show that 5-HT(1A) receptors are widely distributed throughout the basal ganglia, and their activation facilitate dopamine release. Neuroleptic drugs such as haloperidol induce Parkinson-like syndrome through blocking brain D(2) receptors. This study aimed to investigate effect of buspirone, a partial agonist of 5HT(1A) receptor, on motor dysfunctions induced by haloperidol and involvement of 5HT(1A) receptors in this regard. METHODS: Study was performed on the male mice weighing 25-30 g. Animals were divided randomly to groups of 10 animals. Motor dysfunction was induced by intraperitoneal (i.p.) injection of haloperidol (1 mg/kg). Catalepsy was assayed by bar-test method 5, 60, 120 and 180 minutes after drug administration and motor imbalance was studied by rotarod test. RESULTS AND MAJOR CONCLUSION: Results showed that buspirone (20 mg/kg, i.p.) decreased significantly haloperidol-induced catalepsy and balance disorder in a dose dependent manner. Furthermore, 8-OH-DPAT (10 mg/kg, i.p.), as an agonist of 5-HT(1A) receptor, decreased haloperidol-induced catalepsy and balance disorder. The effect of buspirone (20 mg/kg, i.p.) on haloperidol-induced motor disorders was abolished by NAN-190 (10 mg/kg, i.p.), as a 5-HT(1A) receptor antagonist. From the results it may be concluded that buspirone improves haloperidol-induced catalepsy and balance disorder through activation of 5-HT(1A) receptors.  相似文献   

12.
  1. In the human temporal artery both 5-HT1-like and 5-HT2A receptors mediate the contractile effects of 5-hydroxytryptamine (5-HT) and we have suggested that the 5-HT1-like receptors resemble more closely recombinant 5-HT1B than 5-HT1D receptors. To investigate further which subtype is involved, we investigated the blockade of 5-HT-induced contractions by the 5-HT1B-selective antagonist SB-224289 (2,3,6,7-tetrahydro-1′-methyl-5-{2-methyl-4′[(5-methyl-1,2,4-oxadiazole-3-yl) biphenyl-4-yl] carbonyl} furo[2,3-f]indole-3-spiro-4′-piperidine oxalate) and the 5-HT1D-selective antagonist BRL-15572 (1-phenyl-3[4-3-chlorophenyl piperazin-1-yl] phenylpropan-2-ol). We also used RT-PCR to search for the mRNA of 5-HT1B, 5-HT1D and other 5-HT receptors.
  2. The contractile effects of 5-HT in temporal artery rings were partially antagonized by SB-224289 (20, 200 nM) (apparent KB=1 nM) and ketanserin (1 μM) but not by BRL-15572 (500 nM).
  3. Sumatriptan evoked contractions (EC50, 170 nM) that were resistant to blockade by BRL-15572 (500 nM) but antagonized by SB-224289 (20, 200 nM).
  4. The potency of 5-HT (EC50) was estimated to be 94 nM for the ketanserin-sensitive receptor and 34 nM for the SB-224289-sensitive receptor. The fraction of maximal 5-HT response mediated through SB-224289-sensitive receptors was 0.20–0.67, the remainder being mediated through ketanserin-sensitive receptors.
  5. We detected arterial receptor mRNA for the following receptors (incidence): 5-HT1B (8/8), 5-HT1D (2/8), 5-HT1F (0/4), 5-HT2A (0/8), 5-HT2B (0/8), 5-HT2C (0/8), 5-HT4 (4/8) and 5-HT7 (4/8).
  6. We conclude that the ketanserin-resistant fraction of the 5-HT effects and the effects of sumatriptan are mediated by 5-HT1B receptors. The lack of antagonism by BRL-15572 rules out 5-HT1D receptors as mediators of the contractile effects of 5-HT and sumatriptan.
  相似文献   

13.
In the search for antidepressant agents with a rapid onset of action, we have found that compound BIMT 17 (1-[2-[4-(3-trifluoromethylphenyl)piperazin1-yl]ethyl]benzimidazol-[1H]-2-one) shows a good affinity for cerebral cortical 5-HT1A (pK i = 7.72) and 5-HT2A (pK i = 6.90) receptors, with no appreciable affinity for the other 5-HT receptor subtypes, including 5-HT2C. BIMT 17 reduced forskolin-stimulated cAMP accumulation in the cerebral cortex (pEC50 = 6.09) and in the hippocampus (pEC50 = 6.50), and antagonized 5-HT-induced phosphatidylinositol turnover (pK i = 6.96) in the cerebral cortex. The effect on cAMP accumulation was blocked by the 5-HT1A receptor antagonist tertatolol. Buspirone, 8-OH-DPAT and S 14671 {1-[2-(2-thenoylamino)ethyl]-4[1-(7-methoxynaphtyl)]piperazine, claimed to be 5-HT1A receptor agonists, did not reduce forskolin-stimulated cAMP formation in the cerebral cortex.On the basis of these data, it was concluded that BIMT 17 was the only compound that behaved as a full agonist with respect to the CAMP response in the cortex, while exerting concurrent agonism at 5-HT1A receptors and antagonism at 5-HT2A receptors. These characteristics might explain the peculiar behaviour of BIMT 17 in mimicking the inhibitory action of 5-HT on the basal firing rate of the cortical neurons (see accompanying paper).  相似文献   

14.
Clinical studies have shown that triiodothyronine (T3) both augments and accelerates the therapeutic response to antidepressant drugs, particularly tricyclics. There is evidence that this effect is mediated by the serotonergic system. We show here that T3 administered daily for 7 days over the range 0.02-0.5 mg/kg increases basal serotonin (5-hydroxytryptamine, 5-HT) levels, as measured by in vivo microdialysis in rat cortex, in a dose-dependent fashion. All the doses of T3 examined reduced 5-HT(1A) autoreceptor activity, as measured by the effect of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.05 mg/kg s.c.) to decrease 5-HT levels in frontal cortex. T3 administered daily for 14 days at 0.02 mg/kg also reduced 5-HT(1B) autoreceptor activity, as measured by the effect of locally administered 3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrolo[3,2-b]pyrid-5-one (CP 93129, 10 microM) to decrease 5-HT levels. In animals administered imipramine (10 mg/kg/day by osmotic minipump) concurrently with T3 injections, no further changes in either 5-HT(1A) or 5-HT(1B) autoreceptor activity were seen. We suggest that the effect of T3 to accelerate the therapeutic actions of antidepressant drugs may be due to a combination of the actions of T3 at autoreceptors and the actions of the drugs at postsynaptic 5-HT(1A) receptors.  相似文献   

15.
In the present paper, we describe affinities to 5-HT1A and 5-HT2A receptors of several new 1,2,4-trisubstituted piperazine derivatives. The affinities were compared with those described earlier for 1,4-disubstituted piperazines and the influence of the third (methyl) substituent on the affinity to both receptors is discussed. The difference between two- and three-substituted derivatives was rationalised in terms of molecular modelling of the respective ligand-receptor complexes. Additionally, the functional activity of some 1,2,4-trisubstituted piperazines for 5-HT1A receptor was examined in behavioural and biochemical models. The obtained results have shown that some trisubstituted compounds exhibited a higher affinity to 5-HT2A receptors than their respective disubstituted analogues (with the affinity to 5-HT1A receptors remaining the same or somewhat improving). The molecular dynamics simulations suggested that the presence of the third substituent in the piperazine ring of those compounds may induce stabilising effect on the ligand-receptor complexes. The results of the in vivo studies have shown that some of the examined trisubstituted piperazines (10-13, 16, 17) exhibited properties of postsynaptic 5-HT1A partial agonists. Moreover, compounds 13 and 16 exhibited features of 5-HT1A presynaptic agonists in in vitro test, and compound 16 also in in vivo tests.  相似文献   

16.
  1. We have examined the effects of the systemic administration of the selective 5-HT1A agonist alnespirone (S-20499) on in vivo 5-hydroxytryptamine (5-HT) release in the dorsal raphe nucleus, the median raphe nucleus and four forebrain areas innervated differentially by both (dorsal striatum, frontal cortex, ventral hippocampus and dorsal hippocampus).
  2. Alnespirone (0.1–3 mg kg−1, s.c.) dose-dependently reduced extracellular 5-HT in the six areas examined. In forebrain, the maximal reductions occurred in striatum and frontal cortex (maximal reduction to 23 and 29% of baseline, respectively). Those in dorsal and ventral hippocampus were more moderate (to ca 65% of baseline). In contrast, the decrease in 5-HT elicited in the median raphe nucleus was more marked than that in the dorsal raphe nucleus (to ca 30 and 60% of baseline, respectively). The selective 5-HT1A antagonist WAY-100635 (0.5 mg kg−1, s.c.) prevented the decrease in 5-HT induced by alnespirone (0.3 mg kg−1, s.c.) in frontal cortex.
  3. 8-OH-DPAT (0.025, 0.1 and 0.3 mg kg−1, s.c.) also reduced extracellular 5-HT in a regionally-selective manner (e.g., to 32% of baseline in striatum and to 69% in dorsal hippocampus at 0.1 mg kg−1, s.c.). In midbrain, 8-OH-DPAT reduced the dialysate 5-HT slightly more in the median than in the dorsal raphe nucleus at all doses examined.
  4. Doses of both compounds close to their respective ED50 values (0.3 mg kg−1 alnespirone, 0.025 mg kg−1 8-OH-DPAT) reduced 5-HT to a comparable extent in all regions examined. However, the reductions attained at higher doses were more pronounced for 8-OH-DPAT.
  5. These data show that the reduction of 5-HT release elicited by alnespirone and 8-OH-DPAT is more important in forebrain areas innervated by 5-hydroxytryptaminergic neurones of the dorsal raphe nucleus. This regional selectivity seems unlikely to be accounted for by differences in the sensitivity of 5-HT1A autoreceptors controlling 5-HT release, given the dissimilar effects of these two 5-HT1A agonists in regions rich in cell bodies and nerve terminals. This suggests the presence of complex mechanisms of control of 5-HT release by 5-HT1A receptors.
  相似文献   

17.
18.

Background and purpose:

Activation of post-synaptic 5-HT1A receptors may provide enhanced therapy against depression. We describe the signal transduction profile of F15599, a novel 5-HT1A receptor agonist.

Experimental approach:

F15599 was compared with a chemical congener, F13714, and with (+)8-OH-DPAT in models of signal transduction in vitro and ex vivo.

Key results:

F15599 was highly selective for 5-HT1A receptors in binding experiments and in [35S]-GTPγS autoradiography of rat brain, where F15599 increased labelling in regions expressing 5-HT1A receptors. In cell lines expressing h5-HT1A receptors, F15599 more potently stimulated extracellular signal-regulated kinase (ERK1/2) phosphorylation, compared with G-protein activation, internalization of h5-HT1A receptors or inhibition of cAMP accumulation. F13714, (+)8-OH-DPAT and 5-HT displayed a different rank order of potency for these responses. F15599 stimulated [35S]-GTPγS binding more potently in frontal cortex than raphe. F15599, unlike 5-HT, more potently and efficaciously stimulated Gαi than Gαo activation. In rat prefrontal cortex (a region expressing post-synaptic 5-HT1A receptors), F15599 potently activated ERK1/2 phosphorylation and strongly induced c-fos mRNA expression. In contrast, in raphe regions (expressing pre-synaptic 5-HT1A receptors) F15599 only weakly or did not induce c-fos mRNA expression. Finally, despite its more modest affinity in vitro, F15599 bound to 5-HT1A receptors in vivo almost as potently as F13714.

Conclusions and implications:

F15599 showed a distinctive activation profiles for 5-HT1A receptor-mediated signalling pathways, unlike those of reference agonists and consistent with functional selectivity at 5-HT1A receptors. In rat, F15599 potently activated signalling in prefrontal cortex, a feature likely to underlie its beneficial effects in models of depression and cognition.  相似文献   

19.
20.
  1. The actions of N-(2-(-4(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl) cyclohexane carboxamide (WAY 100635), a novel and selective 5-hydroxytryptamine1A (5-HT1A) antagonist, on excitatory postsynaptic potentials (e.p.s.ps) were investigated by use of intracellular recordings in pyramidal cells of the CA1 region of rat hippocampal slices.
  2. WAY 100635 (10 nM) did not affect any of the investigated parameters of cell excitability such as membrane potential, total input resistance (Rin), firing threshold, action potential amplitude, action potential frequency adaptation, and slow afterhyperpolarization (sAHP) which follows repetitive firing of action potentials. WAY 100635 did not have any effect on either the slope or the amplitude of e.p.s.ps evoked by stimulation of the CA1 stratum radiatum.
  3. Bath application of either 5-hydroxytryptamine (5-HT, 10–30 μM) or 5-carboxamidotryptamine (5-CT, 300 nM) hyperpolarized the membrane potential (ΔVm=−4.1±0.9 and −6.0±0.9 mV, respectively), and reduced Rin (−25±8% and −18±1%, respectively). 5-HT blocked the action potential frequency adaptation and significantly reduced the amplitude of the sAHP that follows repetitive firing of action potentials.
  4. 5-HT significantly decreased the amplitude of evoked e.p.s.ps (−14±6%). This effect was greater in the presence of the GABAA receptor antagonist bicuculline (10 μM, −45±12%) and was mimicked by 5-CT (−49±5%). Both AMPA and NMDA components of e.p.s.ps were significantly reduced in amplitude by 5–HT (−38±8%, n=6, and −29±12%, n=3, respectively; P<0.05).
  5. WAY 100635 fully antagonized the hyperpolarization, the reduction of Rin, and the decrease in amplitude of e.p.s.ps elicited by 5-HT, while it did not affect the action of 5-HT on the action potential frequency adaptation. In the presence of WAY 100635, 5-HT elicited a depolarization which was blocked by 10–30 μM RS 23597-190, a selective 5-HT4 receptor antagonist.
  6. Our data demonstrate that WAY 100635 is devoid of direct effects on CA1 pyramidal cell excitability and on evoked e.p.s.ps, while it fully antagonizes the effects of 5-HT on excitatory synaptic transmission and on hyperpolarization, without affecting the 5-HT4 receptor-mediated response. Since WAY 100635 selectively antagonizes 5-HT1A receptor-mediated actions of 5-HT, our data also demonstrate that the inhibitory action of 5-HT on excitatory synaptic transmission in CA1 is mediated by 5-HT1A receptors.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号