首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
OBJECTIVE: To establish whether chondrocytes from normal and osteoarthritic human articular cartilage recognize and respond to pressure induced mechanical strain in a similar manner.DESIGN: Chondrocytes, extracted from macroscopically normal and osteoarthritic human articular cartilage obtained from knee joints at autopsy, were grown in monolayer culture and subjected to cyclical pressure-induced strain (PIS) in the absence or presence of anti-integrin antibodies, agents known to block ion channels and inhibitors of key molecules involved in the integrin-associated signalling pathways. The response of the cells to mechanical stimulation was assessed by measuring changes in membrane potential. RESULTS: Unlike chondrocytes from normal articular cartilage, which showed a membrane hyperpolarization response to PIS, chondrocytes from osteoarthritic cartilage responded by membrane depolarization. The mechanotransduction pathway involves alpha5beta1 integrins, stretch-activated ion channels, tyrosine kinases and phospholipase C but the actin cytoskeleton and protein kinase C, which are important in the membrane hyperpolarization response in normal chondrocytes, are not necessary for membrane depolarization in osteoarthritic chondrocytes in response to PIS. CONCLUSION: Chondrocytes derived from osteoarthritic cartilage show a different signalling pathway via alpha5beta1 integrin in response to mechanical stimulation which may be of importance in the production of phenotypic changes recognized to be present in diseased cartilage.  相似文献   

3.
OBJECTIVE: In normal articular cartilage cells, the IGFRI/insulin-like growth factor 1 (IGF-1) autocrine pathway was shown to overrule the catabolic effects of the IL-1/IL-1RI pathway by up-regulation of the IL-1RII decoy receptor. The activity of the IGF-1/IGFR1 and IL-1/IL-1R pathways, and of the IL-1RII control mechanism in the synthesis and turnover of the extracellular matrix (ECM) by chondrocytes from normal and osteoarthritic (OA) articular cartilage was compared in order to identify possible therapeutic targets of this disease. METHODS: Phenotypically stable human articular cartilage cells were obtained from normal and OA cartilage of the same knee showing focal OA. The cells were cultured in alginate beads over 1 week to re-establish the intracellular cytokine and growth factors, to reexpress the respective plasma membrane receptors and to reach equilibrium in accumulated cell-associated matrix (CAM) compounds. Following liberation of the cells from the alginate beads, the levels of cell-associated matrix (CAM) aggrecan, type II collagen and fibronectin, of intracellular IGF-1, IL-1alpha and beta and of their respective plasma membrane-bound receptors, IGFR1, IL-1RI and the decoy receptor IL-1RII, were assayed using flow cytometry. RESULTS: Coordinated production and accumulation of CAM aggrecan and type II collagen under the effect of the IGFR1/IGF-1 autocrine pathway-as documented for chondrocytes from healthy controls-was absent when the chondrocytes had been obtained from OA joints. When compared with cells obtained from normal tissues, chondrocytes from fibrillated OA cartilage expressed significantly higher intracellular IGF-1 levels and plasma membrane-bound IGFR1. At the same time, significantly higher intracellular IL-1alpha and beta levels and upregulated plasma membrane-bound IL-1RI were observed. Plasma membrane-bound IL-1RII decoy receptor was downregulated in OA chondrocytes. The levels of CAM aggrecan, type II collagen and fibronectin were significantly reduced in the chondrocytes obtained from pathological tissue. CONCLUSION: Paired analysis of normal and OA chondrocytes from the same knee joint has shown an enhanced capacity of chondrocytes from OA cartilage to produce ECM macromolecules. However, the same cells have increased catabolic signalling pathways. As a consequence of this increased IL-1 activity and the reduced amounts of IL-1RII decoy receptor, less of the produced ECM macromolecules may persist in the CAM of the OA chondrocytes.  相似文献   

4.
5.
6.
7.
8.
OBJECTIVE: Pro-inflammatory cytokines play an important role in osteoarthritis (OA). In osteoarthritic cartilage, chondrocytes exhibit an alteration in mitochondrial activity. This study analyzes the effect of tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta) on the mitochondrial activity of normal human chondrocytes. MATERIALS AND METHODS: Mitochondrial function was evaluated by analyzing the activities of respiratory chain enzyme complexes and citrate synthase, as well as by mitochondrial membrane potential (Deltapsim) and adenosine triphosphate (ATP) synthesis. Bcl-2 family mRNA expression and protein synthesis were analyzed by RNase protection assay (RPA) and Western-blot, respectively. Cell viability was analyzed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and apoptosis by 4', 6-diamidino-2-phenylindole dihydrochloride (DAPI) stain. Glycosaminoglycans were quantified in supernatant by a dimethyl-methylene blue binding assay. RESULTS: Compared to basal cells, stimulation with TNFalpha (10 ng/ml) and IL-1beta (5 ng/ml) for 48 h significantly decreased the activity of complex I (TNFalpha=35% and IL-1beta=35%) and the production of ATP (TNFalpha=18% and IL-1beta=19%). Both TNFalpha and IL-1beta caused a definitive time-dependent decrease in the red/green fluorescence ratio in chondrocytes, indicating depolarization of the mitochondria. Both cytokines induced mRNA expression and protein synthesis of the Bcl-2 family. Rotenone, an inhibitor of complex I, caused a significant reduction of the red/green ratio, but it did not reduce the viability of the chondrocytes. Rotenone also increased Bcl-2 mRNA expression and protein synthesis. Finally, rotenone as well as TNFalpha and IL-1beta, reduced the content of proteoglycans in the extracellular matrix of normal cartilage. CONCLUSION: These results show that both TNFalpha and IL-1beta regulate mitochondrial function in human articular chondrocytes. Furthermore, the inhibition of complex I by both cytokines could play a key role in cartilage degradation induced by TNFalpha and IL-1beta. These data could be important for understanding of the OA pathogenesis.  相似文献   

9.

Background

Tenascin-C (TN-C) is an extracellular matrix glycoprotein that is involved in tissue injury and repair processes. We analyzed TN-C expression in normal and osteoarthritic (OA) human cartilage, and evaluated its capacity to induce inflammatory and catabolic mediators in chondrocytes in vitro. The effect of TN-C on proteoglycan loss from articular cartilage in culture was also assessed.

Methods

TN-C in culture media, cartilage extracts, and synovial fluid of human and animal joints was quantified using a sandwich ELISA and/or analyzed by Western immunoblotting. mRNA expression of TN-C and aggrecanases were analyzed by Taqman assays. Human and bovine primary chondrocytes and/or explant culture systems were utilized to study TN-C induced inflammatory or catabolic mediators and proteoglycan loss. Total proteoglycan and aggrecanase -generated ARG-aggrecan fragments were quantified in human and rat synovial fluids by ELISA.

Results

TN-C protein and mRNA expression were significantly upregulated in OA cartilage with a concomitant elevation of TN-C levels in the synovial fluid of OA patients. IL-1 enhanced TN-C expression in articular cartilage. Addition of TN-C induced IL-6, PGE2, and nitrate release and upregulated ADAMTS4 mRNA in cultured primary human and bovine chondrocytes. TN-C treatment resulted in an increased loss of proteoglycan from cartilage explants in culture. A correlation was observed between TN-C and aggrecanase generated ARG-aggrecan fragment levels in the synovial fluid of human OA joints and in the lavage of rat joints that underwent surgical induction of OA.

Conclusions

TN-C expression in the knee cartilage and TN-C levels measured in the synovial fluid are significantly enhanced in OA patients. Our findings suggest that the elevated levels of TN-C could induce inflammatory mediators and promote matrix degradation in OA joints.  相似文献   

10.
OBJECTIVE: To investigate the mRNA expression profiles of three mammalian hyaluronan synthases (HAS1, HAS2 and HAS3) in chondrocytes from normal (undiseased) animal cartilage and osteoarthritic human cartilage maintained in experimental culture systems and exposed to catabolic or anabolic stimuli provided by cytokines, growth factors and retinoic acid. DESIGN: Chondrocytes isolated from normal bovine, porcine or from osteoarthritic human cartilage were cultured as monolayers or embedded in agarose. Cultures were maintained for 3-5 days in the presence or absence of catabolic stimuli (IL-1, TNF-alpha or retinoic acid) or anabolic stimuli (TGF-beta or IGF-1) followed by extraction of RNA and analysis of HAS mRNA expression by RT-PCR. RESULTS: Whereas mRNA for HAS1 was not detected in any sample, the mRNAs for HAS2 and HAS3 were expressed in human, bovine and porcine chondrocytes. HAS2 mRNA was present in chondrocytes from all cartilages and under all culture conditions, whereas HAS3 did not show such constitutive expression. In agarose cultures of bovine and porcine chondrocytes HAS2 mRNA was present in control, IL-1 and retinoic acid treated cultures, whereas HAS3 mRNA was only detected in IL-1 stimulated cultures. Mature bovine chondrocytes cultured in monolayers expressed mRNAs for both HAS2 and HAS3 in the presence of IL-1, TNF-alpha, TGF-beta and IGF-1, however immature bovine chondrocytes in monolayer cultures displayed virtually no HAS3 mRNA expression in the presence of these cytokines and growth factors. HAS2 and HAS3 mRNAs were also expressed by bovine chondrocytes isolated from either the superficial or deep zone of articular cartilage, and by human chondrocytes cultured either in the absence or presence of IL-1 and retinoic acid. CONCLUSIONS: Our data indicate that HAS2 and HAS3 (but not HAS1) mRNAs are expressed in several mammalian cartilages. Chondrocyte HAS2 mRNA appears to be constitutively expressed while chondrocyte HAS3 mRNA expression can be differentially regulated in an age-dependent fashion, and may be affected by local and/or systemic catabolic or anabolic stimuli provided by cytokines or growth factors.  相似文献   

11.
OBJECTIVE: We investigated whether chondrocytes derived from osteoarthritic cartilage may lose their responsiveness to cartilage-derived morphogenetic protein-1, -2 (CDMP-1, -2) and osteogenic protein-1 (OP-1) compared with healthy cells, thus leading to an impaired maintenance of matrix integrity. DESIGN: Chondrocytes were isolated from articular cartilage from patients with and without osteoarthritic lesions. Cells were grown as monolayer cultures for 7 days in a chemically defined serum-free basal medium (BM) in the presence of recombinant CDMP-1, -2, and OP-1. Glycosaminoglycan synthesis was measured by [35S]Sulfate incorporation into newly synthesized macromolecules. Cell proliferation was investigated by [3H]Thymidine incorporation. The endogenous gene expression of CDMPs/OP-1 and their respective type I and type II receptors was examined using RT-PCR. The presence of CDMP proteins in tissue and cultured cells was detected by Western immunoblots. RESULTS: mRNAs coding for CDMPs and their respective receptors are endogenously expressed not only in healthy, but also in osteoarthritic cartilage. CDMP proteins are present in both normal and osteoarthritic articular cartilage and cultured chondrocytes. CDMP-1, CDMP-2 and OP-1 markedly increased glycosaminoglycan synthesis in both healthy (P< 0.01) and osteoarthritic (P< 0.05) human articular chondrocytes. A comparison of the glycosaminoglycan biosynthetic activity between healthy and osteoarthritic samples revealed no detectable difference, neither in stimulated nor in unstimulated cultures. [(3)H]Thymidine incorporation showed that CDMPs/OP-1 did not affect cell proliferation in vitro. CONCLUSION: CDMPs and OP-1 exert their anabolic effects on both healthy and osteoarthritic chondrocytes indicating no loss in responsiveness to these growth factors in OA. The endogenous expression of CDMPs/OP-1 and their receptors suggest an important role in cartilage homeostasis.  相似文献   

12.
OBJECTIVE: NG2 is a transmembrane chondroitin sulfate (CS) rich proteoglycan originally identified in rats. It has recently been shown to be identical to human melanoma proteoglycan (HMPG). In rats NG2 has a limited distribution in adult tissues, being expressed predominantly by neuronal and glial cells whereas during development it is also expressed in developing mesenchyme including cartilage. NG2/HMPG has putative roles in interactions between glial and melanoma cells with extracellular matrix (ECM) molecules. This study was undertaken to assess whether NG2/HMPG was expressed by normal and osteoarthritic human articular chondrocytes. DESIGN: Cryostat sections of human fetal knee joints and normal and osteoarthritic articular cartilage were immunostained with antibodies against rat NG2 (N143.8) and HMPG (M28B5, 9.2.27). Immunoprecipitation and Western blotting was carried out on protein extracts of chondrocytes from normal and osteoarthritic cartilage. Immunofluorescence of NG2 and potential ligands was carried out in vitro on cells from normal and osteoarthritic cartilage. RESULTS: Fetal and both normal and osteoarthritic adult cartilage showed strong immunoreactivity for NG2/HMPG. Western blotting showed a smeared component of molecular weight greater than 400 kDa and a faint band at 250 kDa which became predominant upon digestion with chondroitinase ABC. Immunofluorescence of chondrocytes in vitro showed NG2 to be distributed in a punctate pattern without co-localization of actin or several ECM proteins including fibronectin and type VI collagen. CONCLUSION: NG2/HMPG is expressed by human fetal and adult chondrocytes and in adult articular chondrocytes the core protein is chondroitin sulfated. The function of this molecular in human articular cartilage remains to be defined.  相似文献   

13.
14.
OBJECTIVE: To test the hypothesis that terminal differentiation of chondrocytes in human osteoarthritic cartilage might lead to the failure of repair mechanisms and might cause progressive loss of structure and function of articular cartilage. DESIGN: Markers for terminally differentiated chondrocytes, such as alkaline phosphatase, annexin II, annexin V and type X collagen, were detected by immunohistochemical analysis of human normal and osteoarthritic knee cartilage from medial and lateral femoral condyles. Apoptosis in these specimens was detected using the TUNEL labeling. Mineralization and matrix vesicles were detected by alizarin red S staining and electron microscopic analysis. RESULTS: Alkaline phosphatase, annexin II, annexin V and type X collagen were expressed by chondrocytes in the upper zone of early stage and late stage human osteoarthritic cartilage. However, these proteins, which are typically expressed in hypertrophic and calcifying growth plate cartilage, were not detectable in the upper, middle and deep zones of healthy human articular cartilage. TUNEL labeling of normal and osteoarthritic human cartilage sections provided evidence that chondrocytes in the upper zone of late stage osteoarthritic cartilage undergo apoptotic changes. In addition, mineral deposits were detected in the upper zone of late stage osteoarthritic cartilage. Needle-like mineral crystals were often associated with matrix vesicles in these areas, as seen in calcifying growth plate cartilage. CONCLUSION: Human osteoarthritic chondrocytes adjacent to the joint space undergo terminal differentiation, release alkaline phosphatase-, annexin II- and annexin V-containing matrix vesicles, which initiate mineral formation, and eventually die by apoptosis. Thus, these cells resume phenotypic changes similar to terminal differentiation of chondrocytes in growth plate cartilage culminating in the destruction of articular cartilage in osteoarthritis.  相似文献   

15.
EP2 was identified as the major PGE2 receptor expressed in articular cartilage. An EP2 agonist increased intracellular cAMP in articular chondrocytes, stimulating DNA synthesis in both monolayer and 3D cultures. Hence, the EP2 agonist may be a potent therapeutic agent for degenerative cartilage diseases. INTRODUCTION: Prostaglandin E2 (PGE2) exhibits pleiotropic effects in various types of tissue through four types of receptors, EP1-4. We examined the expression of EPs and effects of agonists for each EP on articular chondrocytes. MATERIALS AND METHODS: The expression of each EP in articular chondrocytes was examined by immunohistochemistry and RT-PCR. A chondrocyte cell line, MMA2, was established from articular cartilage of p53(-/-) mice and used to analyze the effects of agonists for each EP. A search for molecules downstream of the PGE2 signal through the EP2 agonist was made by cDNA microarray analysis. The growth-promoting effect of the EP2 agonist on chondrocytes surrounded by cartilage matrix was examined in an organ culture of rat femora. RESULTS AND CONCLUSION: EP2 was identified as the major EP expressed in articular cartilage. Treatment of MMA2 cells with specific agonists for each EP showed that only the EP2 agonist significantly increased intracellular cAMP levels in a dose-dependent manner. Gene expression profiling of MMA2 revealed a set of genes upregulated by the EP2 agonist, including several growth-promoting and apoptosis-protecting genes such as the cyclin D1, fibronectin, integrin alpha5, AP2alpha, and 14-3-3gamma genes. The upregulation of these genes by the EP2 agonist was confirmed in human articular chondrocytes by quantitative mRNA analysis. On treatment with the EP2 agonist, human articular chondrocytes showed an increase in the incorporation of 5-bromo-2-deoxyuracil (BrdU), and the organ culture of rat femora showed an increase of proliferating cell nuclear antigen (PCNA) staining in articular chondrocytes surrounded by cartilage matrix, suggesting growth-promoting effects of the PGE2 signal through EP2 in articular cartilage. These results suggested that the PGE2 signal through EP2 enhances the growth of articular chondrocytes, and the EP2 agonist is a candidate for a new therapeutic compound for the treatment of degenerative cartilage diseases.  相似文献   

16.
17.
OBJECTIVE: To compare the effect of interleukin (IL)-17, IL-1beta and TNF-alpha on chemokine production by human chondrocytes and synovial fibroblasts isolated from patients with osteoarthritis (OA). The expression of IL-1beta mRNA by OA chondrocytes was also assessed, as well as the presence and expression of IL-17 receptor (IL-17R) in OA chondrocytes and synovial fibroblasts after stimulation with IL-17, IL-1beta and TNF-alpha. DESIGN: Synovial fibroblasts and chondrocytes isolated from patients with OA were stimulated in vitro with IL-17, IL-1beta or TNF-alpha. Supernatants were collected and immunoassayed for the presence of IL-8, GRO-alpha (CXC chemokines) and MCP-1, RANTES (CC chemokines). The cells were used to detect the presence of IL-17R and the expression of IL-17R mRNA. Stimulated chondrocytes were also used to detect IL-1beta production and mRNA expression. RESULTS: IL-17 upregulated the release of IL-8 and GRO-alpha both by synovial fibroblasts and chondrocytes, and the release of MCP-1 only by chondrocytes. IL-17 was a weaker stimulator than IL-1beta and TNF-alpha, except for GRO-alpha release which was maximally upregulated by IL-1beta, less by IL-17 and minimally by TNF-alpha. When compared to IL-1beta, IL-17 was more active on chondrocytes than on fibroblasts. In chondrocytes the expression of IL-1beta mRNA was enhanced by IL-17 and TNF-alpha, with a maximum level reached by IL-1beta. IL-17 and TNF-alpha stimulated IL-1beta release in few subjects. Neither IL-17, IL-1beta nor TNF-alpha modulated the presence of IL-17R and the expression of IL-17R mRNA. CONCLUSIONS: These data suggest that IL-17 could contribute to cartilage breakdown and synovial infiltration in OA by inducing both the release of chemokines by chondrocytes and synovial fibroblasts and, in a less extent, the synthesis of IL-1beta by chondrocytes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号