首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A compact mouse MRI has been developed using a 1.0T yokeless permanent magnet and portable MRI console. The entire system was installed in a space measuring 2 m x 1 m. The imaging region was the cylindrical volume (35 mm diameter, 50 mm length) at the center of the magnet and was used for whole-brain or body imaging of mice. Whole-brain imaging took less than 90 min for T1- and T2-weighted 3D images with 2-mm slice thickness and 200-microm in-plane resolution. Body imaging took less than 30 min for T1-weighted spin-echo and FLASH 3D images with 0.5- to 1.0-mm slice thickness and 250- to 300-microm in-plane resolution. In addition to the compactness of the system, the mouse MRI has several advantages over high-field superconducting animal MRI systems in its accessibility to the specimen, similarity to clinical MRI in image contrast, capacity for biological isolation, and maintenance. The results obtained demonstrate the potential of this new system for routine imaging in biomedical laboratories.  相似文献   

2.
PURPOSE: To investigate practical methods for achieving routine simultaneous 2D MRI of multiple animals in large-bore experimental scanners. MATERIALS AND METHODS: Three four-element array geometries were compared against a standard single-coil configuration in terms of image quality, ease of use, and data efficiency using a four-channel, 4.7 T small animal imaging system. RESULTS: A linear arrangement of volume resonators permits unobstructed animal preparation and use of an imaging protocol that is almost identical to the single-coil configuration without requiring any image correction or other additional postprocessing. Resulting in vivo images were visually indistinguishable from those acquired through the single-coil configuration. CONCLUSION: The efficiency of animal studies employing 2D MRI techniques can be substantially improved by using a linear array of commercially available resonators.  相似文献   

3.
PURPOSE: The objective of this study was to compare conventional breast magnetic resonance imaging (MRI) with breast MRI acquired with the sensitivity-encoding (SENSE) technique on a 1.5-T MRI scanner in the same patient, on the basis of image quality and kinetics analysis. MATERIALS AND METHODS: Thirty-one patients with suspicious mammography and US findings were included in the study. Conventional breast MRI consisted of the following sequences: T1 (matrix, 288 x 512); T2 (matrix 225 x 512); short tau inversion recovery (STIR) (matrix 320 x 224) and dynamic T1 [2D fast-field echo (FFE)] (matrix 256 x 512; temporal resolution相似文献   

4.
PURPOSE: To quantify the minimum magnetic resonance imaging (MRI) spatial resolution of the visible deoxygenated microscopic vessels of the human brain at 8 T. MATERIALS AND METHODS: This study compared 8-T gradient echo (GE) images of a human cadaver brain having an in-plane resolution of 195 x 195 microm to corresponding digital photographs of 205 cryomicrotome sections of the same cadaver brain, along with summed images of 25 contiguous cryomicrotome sections. One-millimeter-thick GE images of a 1-cm-thick unfixed whole coronal brain section were acquired using techniques similar to those commonly utilized for 8-T human imaging in vivo. RESULTS: There was excellent MR visualization of the deoxygenated microscopic vessels within the brain down to a resolution of approximately 100 microm. CONCLUSION: By taking advantage of magnetic susceptibility-based blood oxygenation level-dependent (BOLD) contrast, deoxygenated microscopic blood vessels smaller than the pixel dimensions used for imaging can be visualized using a whole-body 8-T MRI system.  相似文献   

5.
PET combined with CT has proven to be a valuable multimodality imaging device revealing both functional and anatomic information. Although PET/CT has become completely integrated into routine clinical application and also has been used in small-animal imaging, CT provides only limited soft-tissue contrast and, in preclinical studies, exposes the animal to a relatively high radiation dose. Unlike CT, MRI provides good soft-tissue contrast even without application of contrast agents and, furthermore, does not require ionizing radiation. METHODS: This project focused on combining a high-resolution PET scanner with a 7-T MRI system for animal research. Because classic PET detectors based on photomultiplier tubes cannot be used in high magnetic fields, we used a detector technology based on 10 x 10 lutetium oxyorthosilicate crystal arrays and 3 x 3 avalanche photodiode arrays. A ring of such PET detectors will ultimately be used as an insert for the 119-mm-diameter MRI bore. RESULTS: Initial measurements with 1 PET detector module in the 7-T field during application of MRI sequences were encouraging. Position profiles from the PET detectors and a first MR image of a mouse could be acquired simultaneously. CONCLUSION: Further work will concentrate on the construction of a full PET detector ring with compact, integrated electronics.  相似文献   

6.
The aim of this paper is to examine signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and image quality of cardiac CINE imaging at 1.5 T and 3.0 T. Twenty volunteers underwent cardiac magnetic resonance imaging (MRI) examinations using a 1.5-T and a 3.0-T scanner. Three different sets of breath-held, electrocardiogram-gated (ECG) CINE imaging techniques were employed, including: (1) unaccelerated SSFP (steady state free precession), (2) accelerated SSFP imaging and (3) gradient-echo-based myocardial tagging. Two-dimensional CINE SSFP at 3.0 T revealed an SNR improvement of 103% and a CNR increase of 19% as compared to the results obtained at 1.5 T. The SNR reduction in accelerated 2D CINE SSFP imaging was larger at 1.5 T (37%) compared to 3.0 T (26%). The mean SNR and CNR increase at 3.0 T obtained for the tagging sequence was 88% and 187%, respectively. At 3.0 T, the duration of the saturation bands persisted throughout the entire cardiac cycle. For comparison, the saturation bands were significantly diminished at 1.5 T during end-diastole. For 2D CINE SSFP imaging, no significant difference in the left ventricular volumetry and in the overall image quality was obtained. For myocardial tagging, image quality was significantly improved at 3.0 T. The SNR reduction in accelerated SSFP imaging was overcompensated by the increase in the baseline SNR at 3.0 T and did not result in any image quality degradation. For cardiac tagging techniques, 3.0 T was highly beneficial, which holds the promise to improve its diagnostic value.  相似文献   

7.
PURPOSE: To prospectively use compact avalanche photodiodes instead of photomultiplier tubes to integrate a positron emission tomographic (PET) detector and a 7-T magnetic resonance (MR) imager. MATERIALS AND METHODS: All animal experiments were performed in accordance with the University of Tübingen guidelines and the German law for the protection of animals. A compact lutetium oxyorthosilicate-avalanche photodiode PET detector was built and optimized to operate within a 7-T MR imager. The detector performance was investigated both outside and inside the magnet, and MR image quality was evaluated with and without the PET detector. Two PET detectors were set up opposite each other and operated in coincidence to acquire PET images in the step-and-shoot mode in a mouse head specimen after injection of fluorine 18 fluorodeoxyglucose. RESULTS: The performance of the PET detector when operated inside the magnet during MR image acquisition showed little degradation in energy resolution (increase from 14.6% to 15.9%). The PET detector did not influence MR imaging. The fused PET and MR images showed an anatomic match and no degradation of image quality. CONCLUSION: Simultaneous PET and MR imaging with a 7-T system was deemed feasible.  相似文献   

8.
PURPOSE: To introduce a bilateral implementation of an adaptive imaging technique in which both dynamic and high resolution breast MR images are acquired simultaneously. MATERIALS AND METHODS: Adaptive three-dimensional bilateral breast imaging in the sagittal plane was achieved by combining two elements: a projection reconstruction time-resolved imaging of contrast kinetics (PR-TRICKS) k-space trajectory and a slab interleaved sequence that imaged alternate breasts every TR. A pilot study was performed to evaluate image quality and contrast uptake behavior, using eight patients with previously identified benign lesions. RESULTS: Adaptive reconstruction demonstrated breast lesions in all eight women with similar image quality and signal-to-noise ratio (SNR) to Cartesian images with comparable imaging parameters. Contrast enhancement curves covering the entire postinjection time period were obtained from the dynamic images and in one case compared to previous enhancement profiles from a conventional Cartesian trajectory. CONCLUSION: Bilateral dynamic and high spatial resolution images with high SNR can be achieved in a clinically feasible manner, providing both kinetic and morphologic analysis with a single data set. This may obviate the need for multiple MRI examinations for a thorough breast MRI workup.  相似文献   

9.
OBJECTIVE: To retrospectively evaluate local staging accuracy for prostate cancer at 3.0-T magnetic resonance imaging (MRI) by comparing with that at 1.5-T MRI. METHODS: Two groups, each consisting of 54 patients, were included by matching for age, prostate specific antigen, and Gleason score. Before radical prostatectomy, 1 group underwent 3.0-T MRI using a phased-array coil, and the other 1.5-T MRI using an endorectal coil. T2-weighted MR images at 3.0 and 1.5 T were analyzed in consensus by 2 radiologists, and their staging accuracy was compared with histology. Artifact and overall image quality were compared at both 3.0 and 1.5 T. RESULTS: Accuracy for T3 stage at 3.0 and 1.5 T were 72% (39/54) and 70% (38/54), respectively (P > 0.05). The 3.0-T MRI had a lower incidence of MR artifacts than the 1.5-T MRI (P < 0.05). However, overall imaging quality at both 3.0 and 1.5 T had no significant difference (P > 0.05). CONCLUSIONS: The 3.0-T phased-array MRI is equivalent to the 1.5-T endorectal MRI in evaluating local staging accuracy for prostate cancer without significant loss of imaging quality.  相似文献   

10.
PurposeSynthetic MRI reconstructs multiple sequences in a single acquisition. In the present study, we aimed to compare the image quality and utility of synthetic MRI with that of conventional MRI in the breast.MethodsWe retrospectively collected the imaging data of 37 women (mean age: 55.1 years; range: 20–78 years) who had undergone both synthetic and conventional MRI of T2-weighted, T1-weighted, and fat-suppressed (FS)-T2-weighted images. Two independent breast radiologists evaluated the overall image quality, anatomical sharpness, contrast between tissues, image homogeneity, and presence of artifacts of synthetic and conventional MRI on a 5-point scale (5 = very good to 1 = very poor). The interobserver agreement between the radiologists was evaluated using weighted kappa.ResultsFor synthetic MRI, the acquisition time was 3 min 28 s. On the 5-point scale evaluation of overall image quality, although the scores of synthetic FS-T2-weighted images (4.01 ± 0.56) were lower than that of conventional images (4.95 ± 0.23; P < 0.001), the scores of synthetic T1- and T2-weighted images (4.95 ± 0.23 and 4.97 ± 0.16) were comparable with those of conventional images (4.92 ± 0.27 and 4.97 ± 0.16; P = 0.484 and 1.000, respectively). The kappa coefficient of conventional MRI was fair (0.53; P < 0.001), and that of conventional MRI was fair (0.46; P < 0.001).ConclusionThe image quality of synthetic T1- and T2-weighted images was similar to that of conventional images and diagnostically acceptable, whereas the quality of synthetic T2-weighted FS images was inferior to conventional images. Although synthetic MRI images of the breast have the potential to provide efficient image diagnosis, further validation and improvement are required for clinical application.  相似文献   

11.
Magnetic resonance imaging (MRI) provided adequate depiction of carpal soft tissue structures in normal volunteers, as well as accurate anatomic correlation with cadaveric specimens. Using a high field strength system and surface coil techniques, the intricate anatomy of the wrist was best defined on long TR short TE images. However, from a practical view, T1 weighted images (TR 600 ms, TE 25 ms) were most useful because of short imaging times, satisfactory image quality, and the absence of motion artifacts. The coronal plane provided the clearest definition of important structures. Potential diagnostic limitations exist due to the inability of MRI ot clearly delineate articular cartilage, joint capsules, and small interosseous ligmaents. The presence of intra-articular fluid in both living subjects and cadaveric specimens, however, allowed for fine depiction of these structures on T2 weighted images.  相似文献   

12.
Genetically engineered mouse models provide enormous potential for investigation of the underlying mechanisms of atherosclerotic disease, but noninvasive imaging methods for analysis of atherosclerosis in mice are currently limited. This study aimed to demonstrate the feasibility of MRI to noninvasively visualize atherosclerotic plaques in the thoracic aorta in mice deficient in apolipoprotein-E, who develop atherosclerotic lesions similar to those observed in humans. To freeze motion, MR data acquisition was both ECG- and respiratory-gated. T(1)-weighted MR images were acquired with TR/TE approximately 1000/10 ms. Spatial image resolution was 49 x 98 x 300 micro m(3). MRI revealed a detailed view of the lumen and the vessel wall of the entire thoracic aorta. Comparison of MRI with corresponding cross-sectional histopathology showed excellent agreement of aortic vessel wall area (r = 0.97). Hence, noninvasive MRI should allow new insights into the mechanisms involved in progression and regression of atherosclerotic disease.  相似文献   

13.
PURPOSE: To evaluate time efficiency, image quality, and diagnostic value of a clinical routine homogeneous preparation encoding (HoPE) imaging protocol in different malign and inflammatory abdominal conditions. MATERIALS AND METHODS: A total of 14 healthy volunteers and 40 patients were examined after written informed consent and approval of the local ethics committee. A standard abdominal T1-weighted (T1W) fat-saturated gradient-echo protocol was compared to the HoPE sequence protocol ensuring for comparable imaging parameters. Examinations were performed on a 1.5-T Siemens Avanto equipped with a multichannel body-array coil. Image analysis was performed with respect to contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR), level of fat suppression (FS), generation of artifacts, and overall image quality by two blinded radiologists. RESULTS: In addition to comparable results in overall image quality and FS level, the HoPE sequence protocol provided a reduction in acquisition time of up to 40%. In addition, artifact generation was same or even reduced with respect to pulsation. Quantitative SNR analysis showed strong correlation between HoPE and the conventional method. CONCLUSION: The HoPE technique is a feasible and time-saving alternative for clinical abdominal MRI. Future studies will have to be conducted on larger patient collectives to strengthen the impact of this promising technique for FS imaging and to prove its accuracy.  相似文献   

14.
PURPOSE: To show that density-weighted (DW) k-space sampling improves the quality of human cardiac sodium imaging, a novel method was implemented that combines the high signal-to-noise efficiency of three-dimensional phase-encoding with the advantageous localization performance of nonuniform sampling. A simulation demonstrates substantially reduced blood contamination in the myocardium. MATERIALS AND METHODS: At 2.0 T, DW cardiac "fast" sodium images with a voxel size of 844 microL in seven minutes and "high-resolution" scans in 30 minutes with a voxel size of 570 microL were acquired. For comparison, conventional gradient-echo imaging was also performed. RESULTS: In the DW images, a myocardial signal-to-noise ratio (SNR) of 16.0 in the left ventricle and 8.5 in the septum (N = 4) was measured. With longer experimental duration (about 30 minutes; N = 3), the image quality and the SNR could be further improved (voxel size: 570 microL; SNR: blood 16.1, septum 10.6). Compared to the gradient-echo images, the image quality was substantially improved. CONCLUSION: This new method for human cardiac sodium imaging provides high image quality combined with optimal sensitivity and thus may improve the clinical applicability of 23Na cardiac MRI.  相似文献   

15.
PURPOSE: To investigate the feasibility of an originally developed compact MRI system for evaluating rheumatoid arthritis (RA), and determine its advantages and disadvantages as an imaging modality for evaluating RA. MATERIALS AND METHODS: We prospectively studied 13 healthy controls with no clinical symptoms of arthritis, and 13 patients with hand and wrist pains (including pain from RA) with a 0.2 T permanent-magnet compact MR imager. All MR images were obtained while the subjects were in a sitting position. Coronal three-dimensional spin-echo T1-weighted images and coronal two-dimensional short tau inversion recovery (STIR) images were obtained with image matrix = 256 x 128 and field of view (FOV) = 20.48 cm. Plain radiograph findings and MRI findings of patients were compared. RESULTS: In three of the patients with suspected early RA (N = 7), early RA was evaluated based on STIR images. All RA patients showed morphologic or signal intensity changes that allowed an evaluation of RA from MR findings. Four of five RA patients showed high signal intensity on STIR images in the wrist, proximal interphalangeal (PIP) joint, or metacarpophalangeal (MCP) joint that suggested synovitis. Multiple erosions in the hand and wrist were seen in four RA patients, with low signal intensity on T1-weighted images. CONCLUSION: RA was correctly evaluated, and early RA could be identified with the compact MRI system. However, the current system has limitations, such as the nonselective STIR sequence used and magnetic field inhomogeneity.  相似文献   

16.
OBJECTIVE: Phase-contrast X-ray computed tomography (PCCT) with an interferometer can reveal the inner soft tissue structures of biological objects without contrast agent, and the image quality is thought to resemble that of magnetic resonance imaging (MRI). Comparative study among PCCT, MRI, and optical microscopy was undertaken. METHODS: Three formalin-fixed colon cancer specimens from nude mice were imaged both by PCCT with a reconstructed volumetric resolution of (0.018)3 mm3 and 4.74-T MRI with that of (0.075)3 mm3. RESULTS: Phase-contrast X-ray computed tomography with an interferometer clearly demonstrated the inner structures of colon cancer masses, such as cancer, necrosis, surrounding tumor vessels, and skin, in a similar way to low-magnified optical microscopic images and had approximately 4.0-fold higher signal-to-noise ratio than MRI. CONCLUSIONS: With formalin-fixed biological samples, PCCT exhibited higher image quality than MRI and was thought to be suitable for detailed imaging of soft tissue with high volumetric resolution.  相似文献   

17.
AIMTo compare breath-hold cartesian volumetric interpolated breath-hold examination (cVIBE) and free-breathing radial VIBE (rVIBE) and determine whether rVIBE could replace cVIBE in routine liver magnetic resonance imaging (MRI).METHODSIn this prospective study, 15 consecutive patients scheduled for routine MRI of the abdomen underwent pre- and post-contrast breath-hold cVIBE imaging (19 s acquisition time) and free-breathing rVIBE imaging (111 s acquisition time) on a 1.5T Siemens scanner. Three radiologists with 2, 4, and 8 years post-fellowship experience in abdominal imaging evaluated all images. The radiologists were blinded to the sequence types, which were presented in a random order for each patient. For each sequence, the radiologists scored the cVIBE and rVIBE images for liver edge sharpness, hepatic vessel clarity, presence of artifacts, lesion conspicuity, fat saturation, and overall image quality using a five-point scale.RESULTSCompared to rVIBE, cVIBE yielded significantly (P < 0.001) higher scores for liver edge sharpness (mean score, 3.87 vs 3.37), hepatic-vessel clarity (3.71 vs 3.18), artifacts (3.74 vs 3.06), lesion conspicuity (3.81 vs 3.2), and overall image quality (3.91 vs 3.24). cVIBE and rVIBE did not significantly differ in quality of fat saturation (4.12 vs 4.03, P = 0.17). The inter-observer variability with respect to differences between rVIBE and cVIBE scores was close to zero compared to random error and inter-patient variation. Quality of rVIBE images was rated as acceptable for all parameters.CONCLUSIONrVIBE cannot replace cVIBE in routine liver MRI. At 1.5T, free-breathing rVIBE yields acceptable, although slightly inferior image quality compared to breath-hold cVIBE.  相似文献   

18.
High-resolution MR cisternography performed with 3D fast asymmetric spin-echo imaging (3D fast spin-echo with an ultra-long echo train length and asymmetric Fourier imaging) was optimized in a 0.35-T open MR imaging unit. The 0.35- and 1.5-T images of the two volunteers and three patients with acoustic schwannomas were then compared. The optimal parameters for images obtained by 3D fast asymmetric spin-echo imaging at 0.35 T were as follows: field of view, 15 cm; matrix, 256 x 256 x 40; section thickness, 1 mm; echo train length, 76; and imaging time, 10 minutes 44 seconds. Scans obtained from both normal volunteers showed the facial, cochlear, and superior and inferior vestibular nerves separately in the internal auditory canal on both 0.35- and 1.5-T images. All three acoustic schwannomas were depicted on both 0.35- and 1.5-T images. Screening for disease at the cerebellopontine angle and in the internal auditory canal, without the administration of contrast material on a low-field open MR imaging unit and within a clinically acceptable imaging time, may be possible. Further controlled prospective studies are required, however, before implementation on a wide basis. If proved effective, this may be of particular value for reducing healthcare costs and for imaging claustrophobic and pediatric patients in an open system.  相似文献   

19.
Routine clinical brain MRI sequences for use at 3.0 Tesla   总被引:1,自引:0,他引:1  
PURPOSE: To establish image parameters for some routine clinical brain MRI pulse sequences at 3.0 T with the goal of maintaining, as much as possible, the well-characterized 1.5-T image contrast characteristics for daily clinical diagnosis, while benefiting from the increased signal to noise at higher field. MATERIALS AND METHODS: A total of 10 healthy subjects were scanned on 1.5-T and 3.0-T systems for T(1) and T(2) relaxation time measurements of major gray and white matter structures. The relaxation times were subsequently used to determine 3.0-T acquisition parameters for spin-echo (SE), T(1)-weighted, fast spin echo (FSE) or turbo spin echo (TSE), T(2)-weighted, and fluid-attenuated inversion recovery (FLAIR) pulse sequences that give image characteristics comparable to 1.5 T, to facilitate routine clinical diagnostics. Application of the routine clinical sequences was performed in 10 subjects, five normal subjects and five patients with various pathologies. RESULTS: T(1) and T(2) relaxation times were, respectively, 14% to 30% longer and 12% to 19% shorter at 3.0 T when compared to the values at 1.5 T, depending on the region evaluated. When using appropriate parameters, routine clinical images acquired at 3.0 T showed similar image characteristics to those obtained at 1.5 T, but with higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), which can be used to reduce the number of averages and scan times. Recommended imaging parameters for these sequences are provided. CONCLUSION: When parameters are adjusted for changes in relaxation rates, routine clinical scans at 3.0 T can provide similar image appearance as 1.5 T, but with superior image quality and/or increased speed.  相似文献   

20.
PURPOSE: To prospectively evaluate the feasibility of ferumoxtran-10-enhanced magnetic resonance (MR) imaging at high magnetic field strength (3.0 T) and to compare image quality between 1.5- and 3.0-T MR imaging in terms of lymph node detection in patients with prostate cancer. MATERIALS AND METHODS: This study was institutional review board approved, and all patients gave written informed consent. Forty-eight consecutive patients aged 51-79 years (mean, 65.5 years) with prostate cancer were enrolled. T2*-weighted 1.5- and 3.0-T MR images of the pelvis were acquired in a sagittal plane parallel to the psoas muscle 24 hours after ferumoxtran-10 administration. A pelvic and body phased-array coil was used and yielded an in-plane resolution of 0.56 x 0.56 x 3.00 mm at 1.5 T and 0.50 x 0.50 x 2.50 mm at 3.0 T. All images were evaluated by three readers for total image quality, lymph node border delineation, muscle-fat contrast, and vessel-fat contrast. Statistical significance was calculated by using the Mann-Whitney U test. Subsequently, the general linear mixed model was used to estimate the contributions of three factors-patient, reader, and technique-to the variability of the imaging results. RESULTS: Significantly (P < .05) better muscle-fat contrast, vessel-fat contrast, lymph node border delineation, and total image quality were observed at 3.0-T MR imaging. The general linear mixed model revealed that the variability of all results could be attributed to the use of 3.0-T imaging. CONCLUSION: Ferumoxtran-10-enhanced MR imaging can be performed at high magnetic field strengths and result in improved image quality, which may lead to improved detection of small positive lymph nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号