首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemokine receptor CXCR4 functions as a fusion coreceptor for T cell tropic and dual-tropic HIV-1 strains. To identify regions of CXCR4 that are important for coreceptor function, CXCR4–CXCR2 receptor chimeras were tested for the ability to support HIV-1 envelope (env) protein-mediated membrane fusion. Receptor chimeras containing the first and second extracellular loops of CXCR4 supported fusion by T tropic and dual-tropic HIV-1 and HIV-2 strains and binding of a monoclonal antibody to CXCR4, 12G5, that blocks CXCR4-dependent infection by some virus strains. The second extracellular loop of CXCR4 was sufficient to confer coreceptor function to CXCR2 for most virus strains tested but did not support binding of 12G5. Truncation of the CXCR4 cytoplasmic tail or mutation of a conserved DRY motif in the second intracellular loop did not affect coreceptor function, indicating that phosphorylation of the cytoplasmic tail and the DRY motif are not required for coreceptor function. The results implicate the involvement of multiple CXCR4 domains in HIV-1 coreceptor function, especially the second extracellular loop, though the structural requirements for coreceptor function were somewhat variable for different env proteins. Finally, a hybrid receptor in which the amino terminus of CXCR4 was replaced by that of CCR5 was active as a coreceptor for M tropic, T tropic, and dual-tropic env proteins. We propose that dual tropism may evolve in CCR5-restricted HIV-1 strains through acquisition of the ability to utilize the first and second extracellular loops of CXCR4 while retaining the ability to interact with the CCR5 amino-terminal domain.  相似文献   

2.
CD26 is a leukocyte-activation antigen that is expressed on T lymphocytes and macrophages and possesses dipeptidyl peptidase IV (DPPIV) activity, whose natural substrates have not been identified yet. CXC chemokines, stromal cell-derived factor 1α (SDF-1α) and 1β (SDF-1β), sharing the receptor CXCR-4, are highly efficacious chemoattractants for resting lymphocytes and CD34+ progenitor cells, and they efficiently block the CXCR-4-mediated entry into cells of T cell line tropic strains of HIV type 1 (HIV-1). Here we show that both the chemotactic and antiviral activities of these chemokines are abrogated by DPPIV-mediated specific removal of the N-terminal dipeptide, not only when the chemokines are produced in transformed mouse L cell line to express human CD26 but also when they were exposed to a human T cell line (H9) physiologically expressing CD26. Mutagenesis of SDF-1α confirmed the critical requirement of the N-terminal dipeptide for its chemotactic and antiviral activities. These data suggest that CD26-mediated cleavage of SDF-1α and SDF-1β likely occurs in human bodies and promotes HIV-1 replication and disease progression. They may also explain why memory function of CD4+ cells is preferentially lost in HIV-1 infection. Furthermore, CD26 would modulate various other biological processes in which SDF-1α and SDF-1β are involved.  相似文献   

3.
In 1992, Xie et al. identified a cDNA sequence in the expression cloning search for the κ opioid receptor. When the cDNA was expressed in Cos-7 cells, binding of opioid compounds was observed to be of low affinity and without κ, μ, or δ selectivity [Xie, G.-X., Miyajima, A. and Goldstein, A. (1992) Proc. Natl. Acad. Sci. USA 89, 4124–4128]. This cDNA was highly homologous to the human neurokinin-3 (NK-3) receptor sequence, and displayed lower homology to NK-1 and NK-2 sequences. This sequence was stably expressed in Chinese hamster ovary cells, which do not express neurokinin receptors naturally, and ligand binding and second messenger characteristics were compared with a human NK-3 receptor. The NK-3 receptor homolog bound [3H]senktide with a Kd of 39 nM, similar to that of the NK-3 receptor. The rank order of tachykinin peptides competing for [3H]senktide binding at the NK-3 receptor homolog was [MePhe7]neurokinin B > senktide > substance P = neurokinin A > neurokinin B. This cell line also bound [125I-MePhe7]neurokinin B; however, neurokinin B was an effective competitor. Tachykinin peptides stimulated both inositol phospholipid hydrolysis and arachidonic acid release at NK-3 and NK-3 receptor homolog cell lines, with similar rank orders of potency of [MePhe7]neurokinin B = neurokinin B = senktide > NKA = substance P. These results indicate that expression of the NK-3 receptor homolog cDNA in the Chinese hamster ovary cell system induces the expression of a receptor site with many similarities but certain key differences from that of the human NK-3 receptor. The results are discussed with reference to the existence of a novel human tachykinin receptor.  相似文献   

4.
The role of the high potential [3Fe-4S]1+,0 cluster of [NiFe] hydrogenase from Desulfovibrio species located halfway between the proximal and distal low potential [4Fe-4S]2+,1+ clusters has been investigated by using site-directed mutagenesis. Proline 238 of Desulfovibrio fructosovorans [NiFe] hydrogenase, which occupies the position of a potential ligand of the lacking fourth Fe-site of the [3Fe-4S] cluster, was replaced by a cysteine residue. The properties of the mutant enzyme were investigated in terms of enzymatic activity, EPR, and redox properties of the iron-sulfur centers and crystallographic structure. We have shown on the basis of both spectroscopic and x-ray crystallographic studies that the [3Fe-4S] cluster of D. fructosovorans hydrogenase was converted into a [4Fe-4S] center in the P238 mutant. The [3Fe-4S] to [4Fe-4S] cluster conversion resulted in a lowering of approximately 300 mV of the midpoint potential of the modified cluster, whereas no significant alteration of the spectroscopic and redox properties of the two native [4Fe-4S] clusters and the NiFe center occurred. The significant decrease of the midpoint potential of the intermediate Fe-S cluster had only a slight effect on the catalytic activity of the P238C mutant as compared with the wild-type enzyme. The implications of the results for the role of the high-potential [3Fe-4S] cluster in the intramolecular electron transfer pathway are discussed.  相似文献   

5.
Suramin acts as a G protein inhibitor because it inhibits the rate-limiting step in activation of the Gα subunit, i.e., the exchange of GDP for GTP. Here, we have searched for analogues that are selective for G. Two compounds have been identified: NF449 (4,4′,4",4′"-[carbonyl-bis[imino-5,1,3-benzenetriyl bis-(carbonylimino)]]tetrakis-(benzene-1,3-disulfonate) and NF503 (4,4′-[carbonylbis[imino-3,1-phenylene-(2,5-benzimidazolylene)carbonylimino]]bis-benzenesulfonate). These compounds (i) suppress the association rate of guanosine 5′-[γ-thio]triphosphate ([35S]GTP[γS]) binding to Gsα-s but not to Giα-1, (ii) inhibit stimulation of adenylyl cyclase activity in S49 cyc membranes (deficient in endogenous G) by exogenously added Gsα-s, and (iii) block the coupling of β-adrenergic receptors to Gs with half-maximum effects in the low micromolar range. In contrast to suramin, which is not selective, NF503 and NF449 disrupt the interaction of the A1-adenosine receptor with its cognate G proteins (Gi/Go) at concentrations that are >30-fold higher than those required for uncoupling of β-adrenergic receptor/Gs tandems; similarly, the angiotensin II type-1 receptor (a prototypical Gq-coupled receptor) is barely affected by the compounds. Thus, NF503 and NF449 fulfill essential criteria for G-selective antagonists. The observations demonstrate the feasibility of subtype-selective G protein inhibition.  相似文献   

6.
The genetic properties of the non-Mendelian element, [URE3], suggest that it is a prion (infectious protein) form of Ure2p, a mediator of nitrogen regulation in Saccharomyces cerevisiae. Into a ure2Δ strain (necessarily lacking [URE3]), we introduced a plasmid overproducing Ure2p. This induced the frequent “spontaneous generation” of [URE3], with properties identical to the original [URE3]. Altering the translational frame only in the prion-inducing domain of URE2 shows that it is Ure2 protein (and not URE2 RNA) that induces appearance of [URE3]. The proteinase K-resistance of Ure2p is unique to [URE3] strains and is not seen in nitrogen regulation of normal strains. The prion-inducing domain of Ure2p (residues 1–65) can propagate [URE3] in the absence of the C-terminal part of the molecule. In contrast, the C-terminal part of Ure2p cannot be converted to the prion (inactive) form without the prion-inducing domain covalently attached. These experiments support the prion model for [URE3] and extend our understanding of its propagation.  相似文献   

7.
5-HT-moduline is an endogenous tetrapeptide [Leu-Ser-Ala-Leu (LSAL)] that was first isolated from bovine brain tissue. To understand the physiological role of this tetrapeptide, we studied the localization of 5-HT-moduline binding sites in rat and mouse brains. Quantitative data obtained with a gaseous detector of β-particles (β-imager) indicated that [3H]-5-HT-moduline bound specifically to rat brain sections with high affinity (Kd = 0.77 nM and Bmax = 0.26 dpm/mm2). Using film autoradiography in parallel, we found that 5-HT-moduline binding sites were expressed in a variety of rat and mouse brain structures. In 5-HT1B receptor knock-out mice, the specific binding of [3H]-5-HT-moduline was not different from background labeling, indicating that 5-HT-moduline targets are exclusively located on the 5-HT1B receptors. Although the distribution of 5-HT-moduline binding sites was similar to that of 5-HT1B receptors, they did not overlap totally. Differences in distribution patterns were found in regions containing either high levels of 5-HT1B receptors such as globus pallidus and subiculum that were poorly labeled or in other regions such as dentate gyrus of hippocampus and cortex where the relative density of 5-HT-moduline binding sites was higher than that of 5-HT1B receptors. In conclusion, our data, based on autoradiographic localization, indicate that 5-HT-moduline targets are located on 5-HT1B receptors present both on 5-HT afferents and postsynaptic neurons. By interacting specifically with 5-HT1B receptors, this tetrapeptide may play a pivotal role in pathological states such as stress that involves the dysfunction of 5-HT neurotransmission.  相似文献   

8.
The accumulation of β-amyloid peptides (Aβ) into senile plaques is one of the hallmarks of Alzheimer disease. Aggregated Aβ is toxic to cells in culture and this has been considered to be the cause of neurodegeneration that occurs in the Alzheimer disease brain. The discovery of compounds that prevent Aβ toxicity may lead to a better understanding of the processes involved and ultimately to possible therapeutic drugs. Low nanomolar concentrations of Aβ1-42 and the toxic fragment Aβ25-35 have been demonstrated to render cells more sensitive to subsequent insults as manifested by an increased sensitivity to formazan crystals following MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) reduction. Formation of the toxic β-sheet conformation by Aβ peptides is increased by negatively charged membranes. Here we demonstrate that phloretin and exifone, dipolar compounds that decrease the effective negative charge of membranes, prevent association of Aβ1-40 and Aβ25-35 to negatively charged lipid vesicles and Aβ induced cell toxicity. These results suggest that Aβ toxicity is mediated through a nonspecific physicochemical interaction with cell membranes.  相似文献   

9.
No explanation has been available concerning the γ globulin defect in a unique family with one member whose serum was devoid of all the usual Gm genetic antigens. In the present study, it was found that this serum lacks ordinary γG1 and γG3 proteins and contains instead hybrid molecules of the type γG3-γG1. These were demonstrated most clearly by the precipitation of γG1 proteins with antisera specific for γG3 antigens. The analogy to the delta-beta chain hybrids, established for Lepore-type hemoglobins, was striking. An unequal homologous crossover involving mispairing of heavy chain cistrons would readily explain the deletion of genetic markers.  相似文献   

10.
The human chemokine receptors CCR5 and CXCR4 have emerged as the predominant cofactors, along with CD4, for cellular entry of HIV-1 in vivo whereas the contribution of other chemokine receptors to HIV disease has not been yet determined. CCR5-specific (R5) viruses predominate during primary HIV-1 infection whereas viruses with specificity for CXCR4 (R5/X4 or X4 viruses) often emerge in late stages of HIV disease. The evolution of X4 viruses is associated with a rapid decline in CD4+ T cells, although a causative relationship between viral tropism and CD4+ T cell depletion has not yet been proven. To rigorously test this relationship, we assessed CD4+ T cell depletion in suspensions of human peripheral blood mononuclear cells and in explants of human lymphoid tissue on exposure to paired viruses that are genetically identical (isogenic) except for select envelope determinants specifying reciprocal tropism for CXCR4 or CCR5. In both systems, X4 HIV-1 massively depleted CD4+ lymphocytes whereas matched R5 viruses depleted such cells only mildly despite comparable viral replication kinetics. These findings demonstrate that the coreceptor specificities of HIV-1 are a causal factor in CD4+ T cell depletion ex vivo and strongly support the hypothesis that the evolution of viral envelope leading to usage of CXCR4 in vivo accelerates loss of CD4+ T cells, causing immunodeficiency.  相似文献   

11.
The skeletal muscle L-type Ca2+ channel is a complex of five subunits that is specifically localized in the triad. Its primary function is the rapid activation of Ca2+ release from cytoplasmic stores in a process called excitation-contraction coupling. To study the role of α1S–β1a interactions in the incorporation of the functional channel complex into the triad, α1S and β1a [or a β1a-green fluorescent protein (GFP) fusion protein] were expressed alone and in combination in myotubes of the dysgenic cell line GLT. βGFP expressed in dysgenic myotubes that lack the skeletal muscle α1S subunit was diffusely distributed in the cytoplasm. On coexpression with the α1S subunit βGFP distribution became clustered and colocalized with α1S immunofluorescence. Based on the colocalization of βGFP and α1S with the ryanodine receptor the clusters were identified as T-tubule/sarcoplasmic reticulum junctions. Expression of α1S with and without β1a restored Ca2+ currents and depolarization-induced Ca2+ release. The translocation of βGFP from the cytoplasm into the junctions failed when βGFP was coexpressed with α1S mutants in which the β interaction domain had been altered (α1S-Y366S) or deleted (α1S-Δ351–380). Although α1S-Y366S did not associate with βGFP it was incorporated into the junctions, and it restored Ca2+ currents and depolarization-induced Ca2+ release. Thus, β1a requires the association with the β interaction domain in the I–II cytoplasmic loop of α1S for its own incorporation into triad junctions, but stable α1S–β1a association is not necessary for the targeting of α1S into the triads or for its normal function in Ca2+ conductance and excitation-contraction coupling.  相似文献   

12.
Streaming potentials across cloned epithelial Na+ channels (ENaC) incorporated into planar lipid bilayers were measured. We found that the establishment of an osmotic pressure gradient (Δπ) across a channel-containing membrane mimicked the activation effects of a hydrostatic pressure differential (ΔP) on αβγ-rENaC, although with a quantitative difference in the magnitude of the driving forces. Moreover, the imposition of a Δπ negates channel activation by ΔP when the Δπ was directed against ΔP. A streaming potential of 2.0 ± 0.7 mV was measured across αβγ-rat ENaC (rENaC)-containing bilayers at 100 mM symmetrical [Na+] in the presence of a 2 Osmol/kg sucrose gradient. Assuming single file movement of ions and water within the conduction pathway, we conclude that between two and three water molecules are translocated together with a single Na+ ion. A minimal effective pore diameter of 3 Å that could accommodate two water molecules even in single file is in contrast with the 2-Å diameter predicted from the selectivity properties of αβγ-rENaC. The fact that activation of αβγ-rENaC by ΔP can be reproduced by the imposition of Δπ suggests that water movement through the channel is also an important determinant of channel activity.  相似文献   

13.
AIDS is characterized by a progressive decrease of CD4+ helper T lymphocytes. Destruction of these cells may involve programmed cell death, apoptosis. It has previously been reported that apoptosis can be induced even in noninfected cells by HIV-1 gp120 and anti-gp120 antibodies. HIV-1 gp120 binds to T cells via CD4 and the chemokine coreceptor CXCR4 (fusin/LESTR). Therefore, we investigated whether CD4 and CXCR4 mediate gp120-induced apoptosis. We used human peripheral blood lymphocytes, malignant T cells, and CD4/CXCR4 transfectants, and found cell death induced by both cell surface receptors, CD4 and CXCR4. The induced cell death was rapid, independent of known caspases, and lacking oligonucleosomal DNA fragmentation. In addition, the death signals were not propagated via p56lck and Giα. However, the cells showed chromatin condensation, morphological shrinkage, membrane inversion, and reduced mitochondrial transmembrane potential indicative of apoptosis. Significantly, apoptosis was exclusively observed in CD4+ but not in CD8+ T cells, and apoptosis triggered via CXCR4 was inhibited by stromal cell-derived factor-1, the natural CXCR4 ligand. Thus, this mechanism of apoptosis might contribute to T cell depletion in AIDS and might have major implications for therapeutic intervention.  相似文献   

14.
[PSI+], a non-Mendelian element found in some strains of Saccharomyces cerevisiae, is presumed to be the manifestation of a self-propagating prion conformation of eRF3 (Sup35p). Translation termination factor eRF3 enhances the activity of release factor eRF1 (Sup45p). As predicted by the prion model, overproduction of Sup35p induces the de novo appearance of [PSI+]. However, another non-Mendelian determinant, [PIN+], is required for this induction. We now show that SUP45 overexpression inhibits the induction of [PSI+] by Sup35p overproduction in [PIN+] strains, but has no effect on the propagation of [PSI+] or on the [PIN] status of the cells. We also show that SUP45 overexpression counteracts the growth inhibition usually associated with overexpression of SUP35 in [PSI+] strains. We argue that excess Sup45p inhibits [PSI+] seed formation. Because Sup45p complexes with Sup35p, we hypothesize that excess Sup45p may sequester Sup35p, thereby reducing the opportunity for Sup35p conformational flips and/or self-interactions leading to prion formation. This in vivo yeast result is reminiscent of the in vitro finding by investigators of Alzheimer disease that apolipoprotein E inhibits amyloid nucleation, but does not reduce seeded growth of amyloid.  相似文献   

15.
The [URE3] nonchromosomal genetic element is a prion of Ure2p, a regulator of nitrogen catabolism in Saccharomyces cerevisiae. Ure2p1–65 is the prion domain of Ure2p, sufficient to propagate [URE3] in vivo. We show that full length Ure2p–green fluorescent protein (GFP) or a Ure2p1–65-GFP fusion protein is aggregated in cells carrying [URE3] but is evenly distributed in cells lacking the [URE3] prion. This indicates that [URE3] involves a self-propagating aggregation of Ure2p. Overexpression of Ure2p1–65 induces the de novo appearance of [URE3] by 1,000-fold in a strain initially [ure-o], but cures [URE3] from a strain initially carrying the [URE3] prion. Overexpression of several other fragments of Ure2p or Ure2-GFP fusion proteins also efficiently cures the prion. We suggest that incorporation of fragments or fusion proteins into a putative [URE3] “crystal” of Ure2p poisons its propagation.  相似文献   

16.
A non-I-domain integrin, α4β1, recognizes vascular cell adhesion molecule 1 (VCAM-1) and the IIICS portion of fibronectin. To localize regions of α4 critical for ligand binding, we swapped several predicted loops within or near the putative ligand-binding site of α4 (which spans repeats 2–5 of the seven N-terminal repeats) with the corresponding regions of α5. Swapping residues 112–131 in repeat 2, or residues 237–247 in repeat 4, completely blocked adhesion to immobilized VCAM-1 and connecting segment 1 (CS-1) peptide. However, swapping residues 40–52 in repeat 1, residues 151–164 in repeat 3, or residues 282–288 (which contain a putative cation binding motif) in repeat 5 did not affect or only slightly reduced adhesion to these ligands. The binding of several function-blocking antibodies is blocked by swapping residues 112–131, 151–164, and 186–191 (which contain previously identified residues critical for ligand binding, Tyr-187 and Gly-190). These results are consistent with the recently published β-propeller folding model of the integrin α4 subunit [Springer, T. A. (1997) Proc. Natl. Acad. Sci. USA 94, 65–72], in which seven four-stranded β-sheets are arranged in a torus around a pseudosymmetric axis. The regions of α4 critical for ligand binding are adjacent to each other and are located in the upper face, the predicted ligand-binding site, of the β-propeller model, although they are not adjacent in the primary structure.  相似文献   

17.
The human pathogenic bacterium group A Streptococcus produces an extracellular cysteine protease [streptococcal pyrogenic exotoxin B (SpeB)] that is a critical virulence factor for invasive disease episodes. Sequence analysis of the speB gene from 200 group A Streptococcus isolates collected worldwide identified three main mature SpeB (mSpeB) variants. One of these variants (mSpeB2) contains an Arg-Gly-Asp (RGD) sequence, a tripeptide motif that is commonly recognized by integrin receptors. mSpeB2 is made by all isolates of the unusually virulent serotype M1 and several other geographically widespread clones that frequently cause invasive infections. Only the mSpeB2 variant bound to transfected cells expressing integrin αvβ3 (also known as the vitronectin receptor) or αIIbβ3 (platelet glycoprotein IIb-IIIa), and binding was blocked by a mAb that recognizes the streptococcal protease RGD motif region. In addition, mSpeB2 bound purified platelet integrin αIIbβ3. Defined β3 mutants that are altered for fibrinogen binding were defective for SpeB binding. Synthetic peptides with the mSpeB2 RGD motif, but not the RSD sequence present in other mSpeB variants, blocked binding of mSpeB2 to transfected cells expressing αvβ3 and caused detachment of cultured human umbilical vein endothelial cells. The results (i) identify a Gram-positive virulence factor that directly binds integrins, (ii) identify naturally occurring variants of a documented Gram-positive virulence factor with biomedically relevant differences in their interactions with host cells, and (iii) add to the theme that subtle natural variation in microbial virulence factor structure alters the character of host-pathogen interactions.  相似文献   

18.
Hormonal activation of Gs, the stimulatory regulator of adenylyl cyclase, promotes dissociation of αs from Gβγ, accelerates removal of covalently attached palmitate from the Gα subunit, and triggers release of a fraction of αs from the plasma membrane into the cytosol. To elucidate relations among these three events, we assessed biochemical effects in vitro of attached palmitate on recombinant αs prepared from Sf9 cells. In comparison to the unpalmitoylated protein (obtained from cytosol of Sf9 cells, treated with a palmitoyl esterase, or expressed as a mutant protein lacking the site for palmitoylation), palmitoylated αs (from Sf9 membranes, 50% palmitoylated) was more hydrophobic, as indicated by partitioning into TX-114, and bound βγ with 5-fold higher affinity. βγ protected GDP-bound αs, but not αs· GTP[γS], from depalmitoylation by a recombinant esterase. We conclude that βγ binding and palmitoylation reciprocally potentiate each other in promoting membrane attachment of αs and that dissociation of αs·GTP from βγ is likely to mediate receptor-induced αs depalmitoylation and translocation of the protein to cytosol in intact cells.  相似文献   

19.
Signal transductions by the dual-function CXCR4 and CCR5 chemokine receptors/HIV type 1 (HIV-1) coreceptors were electrophysiologically monitored in Xenopus laevis oocytes that also coexpressed the viral receptor CD4 and a G protein-coupled inward-rectifying K+ channel (Kir 3.1). Large Kir 3.1-dependent currents generated in response to the corresponding chemokines (SDF-1α for CXCR4 and MIP-1α; MIP-1β and RANTES for CCR5) were blocked by pertussis toxin, suggesting involvement of inhibitory guanine nucleotide-binding proteins. Prolonged exposures to chemokines caused substantial but incomplete desensitization of responses with time constants of 5–7 min and recovery time constants of 12–19 min. CXCR4 and CCR5 exhibited heterologous desensitization in this oocyte system, suggesting possible inhibition of a common downstream step in their signaling pathways. In contrast to chemokines, perfusion with monomeric or oligomeric preparations of the glycoprotein of Mr 120,000 (gp120) derived from several isolates of HIV-1 did not activate signaling by CXCR4 or CCR5 regardless of CD4 coexpression. However, adsorption of the gp120 from a T-cell-tropic virus resulted in CD4-dependent antagonism of CXCR4 response to SDF-1α, whereas gp120 from macrophage-tropic viruses caused CD4-dependent antagonism of CCR5 response to MIP-1α. These antagonisms could be partially overcome by high concentrations of chemokines and were specific for coreceptors of the corresponding HIV-1 isolates, suggesting that they resulted from direct interactions of gp120–CD4 complexes with coreceptors and that they did not involve the desensitization pathway. These results indicate that monomeric or oligomeric gp120s specifically antagonize CXCR4 and CCR5 signaling in response to chemokines, but they do not exclude the possibility that gp120s might also function as weak agonists in some cells. The gp120-mediated disruption of CXCR4 and CCR5 signaling may contribute to AIDS pathogenesis.  相似文献   

20.
CXCR4 engagement is required for HIV-1-induced L-selectin shedding   总被引:1,自引:0,他引:1       下载免费PDF全文
Wang J  Marschner S  Finkel TH 《Blood》2004,103(4):1218-1221
The chemokine receptor, CXCR4, serves as the primary coreceptor for entry of T-cell tropic human immunodeficiency virus (HIV). Binding of either the CXC-chemokine, stromal-derived factor 1 alpha (SDF-1 alpha), or a CXCR4 antagonist, AMD3100, to CXCR4 inhibits infection of CD4(+) T cells by T-tropic HIV-1, although only SDF-1 alpha triggers T-cell signaling cascades. We have previously demonstrated that ligation of CD4 by T-cell tropic HIV-1 NL4-3 induces metalloproteinase-dependent L-selectin (CD62L) shedding on resting CD4(+) T cells. However, the role of CXCR4 in HIV-induced L-selectin shedding is unclear. Here, we show that L-selectin shedding induced by HIV-1 NL4-3 is completely reversed by AMD3100, but not SDF-1 alpha, although SDF-1 alpha alone does not induce L-selectin shedding. These results indicate that engagement of both CD4 and CXCR4 is required for HIV-induced shedding of L-selectin on primary resting CD4(+) T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号