首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Trypanothione reductase (TR) is both a valid and an attractive target for the design of new trypanocidal drugs. Starting from menadione, plumbagin, and juglone, three distinct series of 1,4-naphthoquinones (NQ) were synthesized as potential inhibitors of TR from Trypanosoma cruzi (TcTR). The three parent molecules were functionalized at carbons 2 and/or 3 by various polyamine chains. Optimization of TcTR inhibition and TcTR specificity versus human disulfide reductases was achieved with the 3,3'-[polyaminobis(carbonylalkyl)]bis(1,4-NQ) series 19-20, in which an optimum chain length was determined for inhibition of the trypanothione disulfide reduction. The most active derivatives against trypanosomes in cultures were also studied as subversive substrates of TcTR and lipoamide dehydrogenase (TcLipDH). The activities were measured by following NAD(P)H oxidation as well as coupling the reactions to the reduction of cytochrome c which permits the detection of one-electron transfer. For TcTR, 20(4-c) proved to be a potent subversive substrate and an effective uncompetitive inhibitor versus trypanothione disulfide and NADPH. Molecular modeling studies based on the known X-ray structures of TcTR and hGR were conducted in order to compare the structural features, dimensions, and accessibility of the cavity at the dimer interface of TcTR with that of hGR, as one of the putative NQ binding sites. TcLipDH reduced the plumbagin derivatives by an order of magnitude faster than the corresponding menadione derivatives. Such differences were not observed with the pig heart enzyme. The most efficient and specific subversive substrates of TcTR and TcLipDH exhibited potent antitrypanosomal activity in in vitro T. brucei and T. cruzi cultures. The results obtained here confirm that reduction of NQs by parasitic flavoenzymes is a promising strategy for the development of new trypanocidal drugs.  相似文献   

2.
With the aim of determining the actual target(s) of nitro-group bearing compounds considered as possible leads for the development of drugs against Chagas' disease, we studied in parallel nitrofurans and nitroimidazoles. We investigated nine representative compounds for the following properties: efficacy on different Trypanosoma cruzi strains, redox cyclers, inhibition of respiration, production of corresponding nitroso derivatives and intracellular thiol scavengers. Our results indicate that nifurtimox and related compounds act as redox cyclers, whereas the most active in the series, the 5-nitroimidazole megazol essentially acts as thiol scavenger particularly for trypanothione, the cofactor for trypanothione reductase, an essential enzyme in the detoxification process.  相似文献   

3.
Heart lipoamide dehydrogenase (LADH) catalyzed redox-cycling and O2-. production by (5-nitro-2-furfurylidene)amino derivatives using NADH as electron donor. NADH was a much more effective electron donor than NADPH for the nitroreductase activity. O2-. production was demonstrated by cytochrome c reduction, adrenochrome formation and the effect of superoxide dismutase. Under optimum conditions, nitroreductase activity was about 1% of LADH activity. One electron oxygen reduction and NADH oxidation correlated in 2:1 stoichiometry. The nitroreductase kinetics was in accordance with an ordered bi-bi mechanism. Nitrofuran derivatives bearing unsaturated five- or six-membered nitrogen heterocycles were more effective substrates than those bearing other groups, namely nifurtimox, nitrofurazone, nitrofurantoin and 5-nitro-2-furoic acid. Other nitro compounds (chloramphenicol, benznidazole, 2-nitroimidazole and 5-nitroindole) were ineffective. With the triazole, traizine and imidazole nitrofuran derivatives, the nitroreductase pH curve showed a maximum at pH 8.8, different from the pH optimum for the lipoamide reductase and diaphorase activities. Spectroscopic observations demonstrated pH-dependent structural changes in the triazole(I) and triazine derivatives which would affect their behavior as nitroreductase substrates. The nitroreductase activity was inhibited by p-chloromercuribenzoate and enhanced by cadmium and arsenite, whereas the NADH-induced LADH inactivation failed to affect the nitroreductase activity. In the absence of oxygen. LADH catalyzed nitrofuran reduction to products more reduced than the nitroanion, which were not reoxidized by oxygen. The anaerobic nitrofuran reduction was inhibited by cadmium and arsenite. The assayed nitrofuran compounds did not inhibit LADH lipoamide reductase activity, at variance with their action on glutathione reductase (Grinblat et al., Biochem Pharmacol 38: 767-772, 1989).  相似文献   

4.
Myeloperoxidase (MPO), myoglobin (Mb) and horseradish peroxidase (HRP), catalyzed the generation of radical-cations by one-electron oxidation of phenothiazines (PTZ). The transient formation of these radicals (PTZ+.) was confirmed by ESR and optical spectroscopy. These species are reactive towards Trypanosoma cruzi LADH (T. cruzi LADH), T. cruzi trypanothione reductase (T. cruzi TR) and possibly other macromolecule targets. Both T. cruzi enzymes were irreversibly inactivated. T. cruzi LADH inactivation depended on: a) PTZ structure, peroxidase nature and the rate production of PTZ+. radical cations; b) incubation time; c) the presence of an antioxidant that intercepts free radicals. The production of PTZ+. radical cations, which is essential for T. cruzi LADH inactivation, is correlated with the electron donor ability of the substrates, as qualified by the Hammett sigmapara constant for the subtituent in the 2-position of the PTZ. Promazine (PZ), trimeprazine (TMPZ) and thioridazine (TRDZ) were the most effective inactivating agents, whereas trifluophenothiazines with CF3 group at 2-position (Trifluoperazine (TFP), fluphenazine (FFZ) and trifluopromazine (TFPZ)), and propericyazine (PCYZ) with CN group at 2-position, were much less active or inactive, all in close agreement with their higher or lowest electron donor ability, respectively. Comparison of inactivation values for T. cruzi LADH and mammalian heart LADH demonstrated a greater sensitivity of T. cruzi LADH to various PTZ studied. Thiol compounds, tyrosine, dopa, tryptophan, NADH, ascorbate and trolox prevented T. cruzi LADH inactivation by the peroxidase/H2O2 systems in agreement with their ability to suppress PTZ+. radical cations. The role of these radicals as enzyme inhibitors, or as generators of secondary free radicals and metabolite depletors may contribute to explain the trypanocidal effect as well as other chemotherapeutic actions of PTZ.  相似文献   

5.
The parasites that give rise to human African trypanosomiasis (HAT) are auxotrophs for various nutrients from the human host, including purines. They have specialist nucleoside transporters to import these metabolites. In addition to uptake of purine nucleobases and purine nucleosides, one of these transporters, the P2 transporter, can carry melamine derivatives; these derivatives are not substrates for the corresponding mammalian transporters. In this paper, we report the coupling of the melamine moiety to selected nitro heterocycles with the aim of selectively delivering these compounds to the parasites. Some compounds prepared have similar in vitro trypanocidal activities as melarsoprol, the principal drug used against late-stage HAT, with 50% growth inhibitory concentrations in the submicromolar range. Selected compounds were also evaluated in vivo in rodent models infected with Trypanosoma brucei brucei and T. brucei rhodesiense and showed pronounced activity and in two cases were curative without overt signs of toxicity. Compounds were also tested against other trypanosomatid pathogens, Leishmania donovani and Trypanosoma cruzi, and significant activity in vitro was noted for T. cruzi against which various nitro heterocycles are already registered for use.  相似文献   

6.
Electron-affinic nitrofuran derivatives interfere with normal cellular metabolism by providing an electron shunt, apparently via free radical intermediates, between endogenous cellular reducing species and oxygen, in a manner analogous to that of vitamin K3. Pulse radiolysis was used to demonstrate the reactivity of nitrofuran radical anions with oxygen, as well as the NAD free radicals with nitrofurans. The reduction of nitrofurans under anaerobic conditions and the increased oxygen consumption (indicative of free radical formation) are enhanced by the addition of glucose and suppressed by the removal of endogenous reducing species, e.g. by the addition of diamide. Nitrofuran free radical production under aerobic conditions may result in the production of the Superoxide radical anion O2?. It is postulated that aerobic production of nitrofuran or oxygen free radicals or the resulting products may be responsible for the previously described cytotoxic effect of nitrofurans.  相似文献   

7.
Series of 9-amino and 9-thioacridines have been synthesized and studied as inhibitors of trypanothione reductase (TR) from Trypanosoma cruzi, the causative agent of Chagas' disease. The compounds are structural analogues of the acridine drug mepacrine (quinacrine), which is a competitive inhibitor of the parasite enzyme, but not of human glutathione reductase, the closest related host enzyme. The 9-aminoacridines yielded apparent K(i) values for competitive inhibition between 5 and 43 microM. The most effective inhibitors were those with the methoxy and chlorine substituents of mepacrine and NH(2) or NHCH(CH(3))(CH(2))(4)N(Et)(2) at C9. Detailed kinetic analyses revealed that in the case of 9-aminoacridines more than one inhibitor molecule can bind to the enzyme. In contrast, the 9-thioacridine derivatives inhibit TR with mixed-type kinetics. The kinetic data are discussed in light of the three-dimensional structure of the TR-mepacrine complex. The conclusion that structurally very similar acridine compounds can give rise to completely different inhibition patterns renders modelling studies and quantitative structure-activity relationships difficult.  相似文献   

8.
New benzofuroxans were developed and studied as antiproliferative Trypanosoma cruzi agents. Compounds displayed remarkable in vitro activities against different strains, Tulahuen 2, CL Brener and Y. Its unspecific cytotoxicity was evaluated using human macrophages being not toxic at a concentration at least 8 times, and until 250 times, that of its T. cruzi IC50. Some biochemical pathways were studied, namely parasite respiration, cysteinyl active site enzymes and reaction with glutathione, as target for the mechanism of action. Not only T. cruzi respiration but also Cruzipain or trypanothione reductase were not affected, however the most active derivatives, the vinylsulfinyl- and vinylsulfonyl-containing benzofuroxans, react with glutathione in a redox pathway. Furthermore, the compounds showed good in vivo activities when they were studied in an acute murine model of Chagas' disease. The compounds were able to reduce the parasite loads of animals with fully established T. cruzi infections.  相似文献   

9.
In this article we review the current status of chemotherapeutic approaches for the specific treatment of Chagas disease or American Trypanosomiasis, as well as new rational approaches being developed as a consequence on the increased understanding of the biochemistry and physiology of its causative agent, the protozoan parasite Trypanosoma cruzi. Currently available drugs (nitrofurans and nitroimidazoles), developed empirically over three decades ago, are unsatisfactory due to frequent toxic side effects and limited efficacy, particularly in the prevalent chronic form of the disease. Furthermore, studies of their mechanism of action have shown that their antiparasitic activity is inextricably linked to mammalian host toxicity. Recent advances in this field include the demonstration that new triazole derivatives, with selective inhibitory activity on the parasite's de novo sterol biosynthesis and special pharmacokinetic properties, can induce radical parasitological cure of both acute and chronic Chagas experimental disease. These compounds are active against nitrofuran- and nitroimidazole-resistant T.cruzi strains and maintain their activity even if the hosts are immunosuppressed and are thus logical candidates for clinical trials with Chagas disease patients. Inhibitors of cruzipain, a cathepsin L-like protease responsible for the major proteolytic activity in all stages of the life cycle of the parasite, can selectively block the proliferation of T.cruzi, both in vitro and in vivo and have curative activity in murine models of acute Chagas disease; a significant effort is being devoted to their development as antiparasitic drugs. Alkyl-lysophospholipids, which selectively block phosphatidyl-choline biosynthesis in T.cruzi, are promising antiparasitic agents with good oral activity and low toxicity. Other biochemical pathways have been identified as potential chemotherapeutic targets, including hypoxanthine-guanine phosphoribosyl transferase and the enzymes involved in the synthesis and metabolism of trypanothione and inorganic pyrophosphate.  相似文献   

10.
In an approach to discover new inhibitors of trypanothione reductase from Trypanosoma cruzi, the causative agent of Chagas' disease, a virtual high-throughput screening was performed. Two structurally new types of inhibitors emerged, the antimicrobial chlorhexidine {1,1'-hexamethylenebis[5-(4-chlorophenyl)biguanide]}, a linear competitive inhibitor (K(i) = 2 +/- 1 microM), and a piperidine derivative acting as mixed inhibitor (K(i) = 6.2 +/- 2 microM and K(i)' = 8.5 +/- 2 microM). Neither compound interferes with human glutathione reductase. Based on chlorhexidine, different series of compounds were synthesized and studied as inhibitors of T. cruzi trypanothione reductase. Most efficient derivatives were three bis(amidines) showing mixed type inhibition with K(i,slope) and K(i,int) values of 2-5 microM and 16-47 microM, respectively. Although these compounds did not exert an improved inhibitory potency compared to chlorhexidine, the change from competitive to mixed-type inhibition is advantageous, since substrate accumulation does not overcome inhibition. Remarkably, all three derivatives carried two copies of an identical 2-methoxy-4-methyl-1-(phenylmethoxy)benzene substituent.  相似文献   

11.
Nitrofuran derivatives bearing unsaturated five- or six-membered nitrogen heterocycles or related substituents were more effective inhibitors of yeast and rat tissue glutathione reductases than those bearing other groups, such as nifurtimox, nitrofurazone and 5-nitro-2-furoic acid. The inhibitory action proved independent of electron withdrawal from the reduced enzyme, as a consequence of redoxcycling of the nitro group. Uncompetitive kinetics was obtained with nitrofurantoin and nifurtimox. Most of the assayed nitrofurans inhibited the yeast enzyme Coenzyme A glutathione disulfide reductase activity, though less than oxidized glutathione reduction. The transhydrogenase activity was not inhibited to a significant degree. Benznidazole (a 2-nitroimidazole derivative), 2-nitroimidazole, 5-nitroindole and chloramphenicol did not inhibit glutathione reductase. Under the same experimental conditions, liver glutathione peroxidase was not affected by the nitro compounds.  相似文献   

12.
The use of natural products for the treatment of protozoal infections (Leishmania and Trypanosoma spp.) is well known and has been documented since ancient times. We have already established an in vitro culture system using mammalian host cells (Vero) infected with Trypanosoma cruzi in which the time course of parasite growth is determined quantitatively. This system was used to screen anti-T. cruzi agents using two experimental models: simultaneous cell infection and compound addition or preincubation of the parasite with the test compound prior to cell infection. Among 64 diterpenoid alkaloids tested, including C19 and C20 skeletons, five C20 compounds were active on T. cruzi epimastigotes: azitine, isoazitine and 15,22-O-diacetyl-19-oxodihydroatisine had moderate effects on the parasite, while atisinium chloride and 13-oxocardiopetamine were potent T. cruzi epimastigote growth inhibitors with activity levels similar to that of benznidazole, used as the reference drug. Additionally, these compounds decreased the ability of metacyclic forms to invade mammalian cells, their intracellular replications and their transformation into trypomastigotes, with no toxicity to the host cell. These results suggest that these alkaloids are structural leads of clinically active compounds against T. cruzi and probably other members of the Trypanosomatidae.  相似文献   

13.
(2,2':6',2"-terpyridine)platinum(II) complexes possess pronounced cytostatic activities against trypanosomes and leishmania. As shown here, the complexes are irreversible inhibitors of trypanothione reductase (TR) from Trypanosoma cruzi, the causative agent of Chagas' disease. The most effective derivatives are the (4'-chloro-2, 2':6',2"-terpyridine)platinum(II) ammine and the (4-picoline)(4'-p-bromophenyl-2,2':6',2" -terpyridine)platinum(II) complexes which in the presence of NADPH inhibit TR with second-order rate constants of about 1.3 x 10(4) M(-1) s(-1). The modified enzyme species possess increased oxidase activities. The inhibition is not reversed upon dialysis or treatment with low-molecular-mass thiols. Kinetic and spectroscopic data suggest that Cys52 in the active site has been specifically altered. Inhibition of this key enzyme of parasite thiol metabolism probably contributes to the antitrypanosomal activity of the compounds. In contrast to the parasite enzyme, most (terpyridine)platinum complexes interact only reversibly with human glutathione reductase and an initial inhibition is completely abolished during the course of the assay.  相似文献   

14.
Chagas' disease is an important parasitic illness caused by the flagellated protozoan Trypanosoma cruzi. The disease affects nearly 17 million individuals in endemic areas of Latin America and the current chemotherapy is quite unsatisfactory based on nitroheterocyclic agents (nifurtimox and benznidazol). The need for new compounds with different modes of action is clear. Due to the broad-spectrum antimicrobial activity of the aromatic dicationic compounds, this study focused on the activity of four such diamidines (DB811, DB889, DB786, DB702) and a closely related diguanidine (DB711) against bloodstream trypomastigotes as well as intracellular amastigotes of T. cruzi in vitro. Additional studies were also conducted to access the toxicity of the compounds against mammalian cells in vitro. Our data show that the four diamidines compounds presented early and high anti-parasitic activity (IC50 in low-micromolecular range) exhibiting trypanocidal dose-dependent effects against both trypomastigote and amastigote forms of T. cruzi 2h after drug treatment. Most of the diamidines compounds (except the DB702) exerted high anti-parasitic activity and low toxicity to the mammalian cells. Our results show the activity of reversed diamidines against T. cruzi and suggested that the compounds merit in vivo studies.  相似文献   

15.
Three derivatives of N-(3,4-dimethyl-5-isoxazolyl)-1,2-naphthoquinone-4-amino (1), a compound which exhibits significant activity against Trypanosoma cruzi and Plasmodium falciparum but with cytotoxicity toward murine L-6 cells, were synthesized with the aim of ameliorating its cytotoxicity. The in vitro antiprotozoal and cytotoxic activities of the synthesized compounds were evaluated against T. cruzi, Trypanosoma brucei rhodesiense, P. falciparum and murine L-6 cells. The hydroxymethyl (2) and the oxime (3) derivatives were active against T. cruzi, with IC50 values in a range comparable to those of 1 (IC50: 0.65 microg/ml) and benznidazole (IC50: 0.56 microg/ml) while the carboxymethyloxime (4) was inactive. Compounds 2 and 3 were cytotoxic toward L-6 cells, with IC50 values identical to that of 1 (IC50: 0.50 microg/ml). The results did not support the suggestion that 2 and 3 may be used as prodrugs of 1.  相似文献   

16.
The preparation of new derivatives of benzo[1,2-c]1,2,5-oxadiazole N-oxide is described. These derivatives were chosen in order to investigate and confirm previous structural features found necessary to display an adequate antitrypanosomal activity. The compounds synthesized were tested in vitro against epimastigote forms of Trypanosoma cruzi. The presence of a bromine atom in the benzo system produced compounds less active than the corresponding de-halo analogues. However, 5-(bromomethyl)-7-bromobenzo[1,2-c]oxadiazole N-oxide (23) was the most cytotoxic compound against T. cruzi. For this, the 50% inhibitory dose (ID50) was determined, it was of the same order as that of Nifurtimox. From statistical analysis we could establish a relationship between lipophilic-hydrophilic balance of the derivatives with their effectiveness as antichagasic compounds.  相似文献   

17.
The syntheses of a new series of derivatives of 1,2,5-oxadiazole N-oxide, benzo[1,2-c]1,2,5-oxadiazole N-oxide, and quinoxaline di-N-oxide are described. In vitro antitrypanosomal activity of these compounds was tested against epimastigote forms of Trypanosoma cruzi. For the most effective drugs, derivatives IIIe and IIIf, the 50% inhibitory dose (ID50) was determined as well as their cytotoxicity against mammalian fibroblasts. Electrochemical studies and ESR spectroscopy show that the highest activities observed are associated with the facile monoelectronation of the N-oxide moiety. Lipophilic-hydrophilic balance of the compounds could also play an important role in their effectiveness as antichagasic drugs.  相似文献   

18.
Three series of benzimidazole N-oxide derivatives were developed and were examined for their activity against trypanosomatid parasites (Trypanosoma cruzi and Leishmania spp.). 2H-benzimidazole 1,3-dioxides displayed remarkable in vitro activities against both parasites, with derivatives 28, 29, and 32 being the most potent (IC50 < 5 microM) against the epimastigote form of T. cruzi and 28, 33, and 35 the most potent against the promastigote form of Leishmania spp. Unspecific cytotoxicity was evaluated using murine macrophages, and derivative 33 was not toxic at a concentration 30 times that of its IC50 against T. cruzi that was completely toxic for Leishmania spp., implying that the series of 2H-benzimidazole 1,3-dioxides is selective toward both trypanosomatid parasites. Derivatives 33 and 35 were submitted to an in vivo assay using an acute model of Chagas' disease and a short-term treatment (30 mg/kg/day orally administrated as aqueous solution, during 10 days). While in the control (untreated) and Benznidazole (50 mg/kg/day) groups survival fraction was 60.0% and 87.5%, respectively, none of the animals treated with derivatives 33 and 35 died. From the preliminary structure-activity relationship studies reduction potential and electrophilicity were found relevant to anti-T. cruzi activity. Active compounds are better electrophiles and more easily reduced than inactive ones.  相似文献   

19.
Trypanothione reductase (TR) is the primary enzyme responsible for the reduction of trypanothione, the analog of glutathione found in trypanosomatidae. We have discovered a series of diphenylsulfides which are potent inhibitors of TR and have no activity on mammalian glutathione reductase. These compounds are also active in vitro on various stages of the parasite. Although structurally related to phenothiazines, which are known to be TR inhibitors, these compounds are devoided of any neuroleptic activity, making them attractive leads to develop specific and non toxic anti-chagasic drugs.  相似文献   

20.
In a search for antiprotozoan compounds, 34 new 3,5-disubstituted-tetrahydro-2H-1,3,5-thiadiazine-2-thione derivatives were synthesized and tested in vitro against Trypanosoma cruzi and Trichomonas vaginalis. Some of them showed important antiprotozoan activity. In vivo assays of compounds which showed remarkable in vitro activity against T. vaginalis were carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号