首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypertension is a common complication in hemodialysis patients during erythropoietin (EPO) treatment. The underlying mechanisms of EPO-induced hypertension still remain to be determined. Increased transient receptor potential canonical (TRPC) channels have been associated with hypertension. Now, TRPC gene expression was investigated using quantitative real-time RT-PCR and immunoblotting in cultured human endothelial cells and in monocytes from hemodialysis patients. EPO dose-dependently increased TRPC5 mRNA in endothelial cells. EPO increased TRPC5 mRNA stability, that is, EPO prolonged the half-life period for TRPC5 mRNA from 16 hours (control) to 24 hours (P<0.05). The poly(A) tail length was measured by rapid amplification of cDNA ends-poly(A) test. Increased TRPC5 mRNA stability was attributed to longer 3' poly(A) tail lengths after EPO administration. EPO also significantly increased TRPC5 channel protein abundance by 70% (P<0.05). Whole-cell patch clamp showed that angiotensin II-induced, TRPC5-mediated currents were dramatically increased in endothelial cells treated with EPO. Fluorescent dye techniques confirmed that increased calcium influx after EPO treatment was abolished after TRPC5 knockdown (P<0.05). EPO also significantly increased intracellular reactive oxygen species production. Knockdown of TRPC5 alleviated EPO-induced reactive oxygen species generation in endothelial cells (P<0.05). In vivo, EPO-treated hemodialysis patients showed significantly increased amounts of TRPC5 mRNA in monocytes compared with EPO-free hemodialysis patients (6.0±2.4 [n=12] versus 1.0±0.5 [n=9]; P<0.01). Patients undergoing EPO treatment also showed significantly elevated systolic blood pressure (160±7 versus 139±6 mm Hg; P<0.05). Our findings suggest that upregulated functional TRPC5 gene may be one cause of EPO-induced hypertension in patients with chronic kidney disease.  相似文献   

2.
3.
This study investigated gestational regulation of transient receptor potential canonical (TrpC) proteins, putative calcium entry channels in human myometrium, and the potential modulation of TrpC expression by IL-1 beta, a cytokine implicated in labor. Total RNA and proteins were isolated from myometrial biopsies obtained from NP women, pregnant women at term not in labor (TNL), or term active labor (TAL) and from primary cultured human myometrial smooth muscle cells incubated with IL-1 beta or IL-1 beta with or without nimesulide. Semiquantitative RT-PCR demonstrated significant up-regulation of TrpC1 in TAL and TNL (P < or = 0.01) and TrpC6 (P < or = 0.01) and TrpC7 (P < or = 0.05) in TAL samples. TrpC3 and TrpC4 mRNA expression was unaffected. Western blot demonstrated significant up-regulation of TrpC1 in TAL and TNL (P < or = 0.05) and TrpC3 (P < or = 0.01), TrpC4 (P < or = 0.05), and TrpC6 (P < or = 0.01) in TAL samples. IL-1 beta did not alter TrpC1, 3, 4, 6, or 7 mRNA expression; but IL-1 beta exclusively up-regulated TrpC3 protein expression (P < or = 0.05). TrpC3 up-regulation was unaffected by cyclooxygenase blockade. These data demonstrate physiological regulation of TrpC mRNA and protein and suggest an important role for TrpC proteins in human myometrium during labor.  相似文献   

4.
李新桃  李树壮 《心脏杂志》2016,28(6):719-722
瞬时受体电位C(transient receptor potential canonical,TRPC)通道作为一类重要的非选择性阳离子通道,在心脏具有广泛的分布和表达。TRPC通道通过改变细胞膜电位和介导钙离子(Ca2+)内流对心脏的生理和病理反应产生重要影响。细胞内Ca2+不仅在心肌细胞的兴奋-收缩偶联中发挥重要作用,而且与各类心脏疾病发生密切相关。最近研究发现,TRPC通道可以通过调节细胞内Ca2+变化,与钙调磷酸酶(calcineurin,CaN)和活化的T细胞核因子(nuclear factor of activated T cells,NFAT)等效应因子参与心肌肥厚的发生发展过程,同时可诱导其他心脏疾病(如心肌纤维化、心率失常、心力衰竭)的发生。本文根据相关研究,围绕TRPC通道在心肌肥厚及相关心脏疾病的发生发展中的作用进行总结回顾。  相似文献   

5.
OBJECTIVE: Activation of nonselective cation channels of the transient receptor potential canonical (TRPC) family has been associated with hypertension. Whether store-operated channels, which are activated after depletion of intracellular stores, or second-messenger-operated channels, which are activated by 1-oleoyl-2-acetyl-sn-glycerol, are affected in essential hypertension is presently unknown. METHODS: Using a polymerase chain reaction, an in-cell western assay and the fluorescent dye technique we studied TRPC3, TRPC5, and TRPC6 expression and store-operated and 1-oleoyl-2-acetyl-sn-glycerol-induced calcium influx into human monocytes in 19 patients with essential hypertension and in 17 age-matched and sex-matched normotensive control individuals. RESULTS: We observed a significantly increased expression of TRPC3 and TRPC5, but not TRPC6, in essential hypertension. Store-operated calcium influx was significantly elevated in essential hypertension. Store-operated calcium influx was reduced by the inhibitor 2-aminoethoxydiphenylborane, specific TRPC3 and TRPC5 knockdown, but not TRPC6 knockdown using gene silencing by RNA interference. 1-Oleoyl-2-acetyl-sn-glycerol-induced calcium influx and barium influx were also significantly elevated in essential hypertension. The 1-oleoyl-2-acetyl-sn-glycerol-induced cation influx was reduced by TRPC3 and TRPC5 knockdown. CONCLUSION: We demonstrated an increased TRPC3 and TRPC5 expression and a subsequently increased store-operated calcium influx and increased 1-oleoyl-2-acetyl-sn-glycerol-induced cation influx in monocytes of patients with essential hypertension. This increased activation of monocytes through TRPC channels in patients with essential hypertension may promote vascular disease in these patients.  相似文献   

6.
The canonical transient receptor potential-6 (TRPC6) is a receptor-activated non-selective Ca2 + channel regulated by a variety of modulators such as diacylglycerol, Ca2 +/calmodulin or phosphorylation. The present study is aimed to investigate whether different situations, such as acidic pH, exposure to reactive oxygen species (ROS) or hypoxic-like conditions modulate TRPC6 channel function. Here we show normal aggregation and Ca2 + mobilization stimulated by thrombin in TRPC6 KO platelets; however, OAG (1-oleoyl-2-acetyl-sn-glycerol)-evoked Ca2 + entry was attenuated in the absence of TRPC6. Exposure of mouse platelets to acidic pH resulted in abolishment of thrombin-evoked aggregation and attenuated platelet aggregation induced by thapsigargin (TG) or OAG. Both OAG-induced Ca2 + entry and platelet aggregation were greatly attenuated in cells expressing TRPC6 channels. Exposure of platelets to H2O2 or deferoxamine did not clearly alter thrombin, TG or OAG-induced platelet aggregation. Our results indicate that TRPC6 is sensitive to acidic pH but not to exposure to ROS or hypoxic-like conditions, which might be involved in the pathogenesis of the altered platelet responsiveness to DAG-generating agonists in disorders associated to acidic pH.  相似文献   

7.
西地那非是一种磷酸二酯酶-5型抑制剂,近期经评估被定义为一种能有效治疗肺动脉高压的媒介物.在肺动脉平滑肌细胞(PASMCs)中,一般认为钙池操纵性钙离子通道(SOCC)由经典瞬时受体电势(TRPC)组成,而钙离子通过SOCC通道流入细胞的过程是影响细胞内自由钙离子浓度([Ca2+]i)和肺血管紧张性的重要决定因素.  相似文献   

8.
瞬时受体电位C通道(transient receptor potential canonical channel,TRPC通道)和大电导钙离子激活钾通道(1arge conductance Ca2+ -activated K+channel,BK通道)是血管平滑肌细胞上两类重要的离子通道,在血管收缩和舒张的过程中具有重要的调节作用[1-2].目前,人们对TRPC通道和BK通道各自的分子结构和功能已有一定的认识,但两者之间是否存在紧密联系,尚未完全清楚.  相似文献   

9.
10.
11.
Gende OA 《Platelets》2003,14(1):9-14
This study focuses on the potential interrelationships between changes in pH and capacitative calcium entry in stimulated platelets and on the participation of SOCs in the control of intracellular pH (pH(i)). Extracellular acidification reduces the Mn(2+) entry, measured by the slope of the quenching of FURA 2 fluorescence at the isoemissive wavelength of 360 nm. In thrombin-stimulated platelets Mn(2+) entry is reduced by acidosis (pH(o) = 6.89) to 17 +/- 4% of control (pH(o) = 7.32). In platelets treated with thapsigargin (TG) to induce the opening of store-operated channels (SOCs) the rate of quenching was reduced by acidosis to 31 +/- 5 % of control. Calcium entry was measured as the peak of [Ca(2+)](i) response to extracellular calcium readmission after mobilization of calcium from intracellular stores. Changes in pH(o) of platelet suspension media markedly alters the calcium entry evoked by thrombin that reach a 16 +/- 6 % of control in acidosis (pH(o) = 6.89) and 150 +/- 15% of control in alkalosis (pH(o) = 7.62). The SERCA inhibitor TG was used to study the effect of pH(o) on Ca(2+) influx. Acidosis decreases and alkalosis increases the capacitative calcium entry to 22 +/- 4 % and 129 +/- 1% of control respectively. These changes in pH(o) also produced changes in pH(i). Treatment of platelets with titrated solutions of trimethylamine causes intracellular alkalinization without changes in pH(o) increasing the capacitative calcium entry to 120 +/- 5%. TG itself produces an intracellular alkalinization that is further increased by calcium entry. Blockage of the Na(+)/H(+) exchanger reverted TG effect on pH(i) without changes in capacitative calcium entry.  相似文献   

12.
Lung fibroblasts are involved in interstitial lung disease, chronic asthma, and chronic obstructive pulmonary disease (COPD). The expanded fibroblast population in airway disease leads to airway remodeling and contributes to the inflammatory process seen in these diseases. The cation channel transient receptor potential vanilloid-1 (TRPV1) is activated by noxious stimuli, including capsaicin, protons, and high temperatures and is thought to have a role in inflammation. Although TRPV1 expression is primarily reported to be neuronal, some extraneuronal expression has been reported. The authors therefore sought to determine whether human primary bronchial fibroblasts (HPBFs) express TRPV1 and whether inflammatory mediators can induce TRPV1 expression. The authors show that fibroblasts are predominantly TRPV1 negative; however, following stimulation with 3 common inflammatory mediators, tumor necrosis factor α (TNF-α), lipopolysaccharide (LPS), and interleukin-1α (IL-1α), TRPV1 mRNA was observed at 24 and 48 hours post treatment with all 3 mediators. Using Western blotting an increase in TRPV1 expression with all 3 inflammatory mediators was detected with significant increases seen at 72 hours post LPS and IL-1α treatment. In stark contrast to the untreated fibroblasts, significant calcium signaling in response to capsaicin and resiniferatoxin in HPBFs treated for 24 and 48 hours with TNF-α, LPS, or IL-1α was also observed. These results indicate that TRPV1 can be expressed on bronchial fibroblasts in situations where an underlying inflammatory stimulus exists, as is the case in airway diseases such as asthma and COPD.  相似文献   

13.
BACKGROUND: We recently showed that increased expression of the transient receptor potential canonical Type 3 (TRPC3) channel is associated with genetic hypertension. It is unknown whether store-operated TRPC3 channels, which are activated after depletion of intracellular stores, or second messenger-operated TRPC3 channels, which are activated by 1-oleoyl-2-acetyl-sn-glycerol, show augmented responses in monocytes in genetic hypertension and support the development of vascular disease. METHODS: Using the fluorescent-dye technique, we studied store-depleted and thapsigargin-induced, store-operated calcium influx and 1-oleoyl-2-acetyl-sn-glycerol-induced second messenger-operated calcium influx into monocytes from spontaneously hypertensive rats (SHRs) and from normotensive Wistar-Kyoto rats (WKYs). The RNA interference for the downregulation of TRPC3 in monocytes by small, interfering RNA (siRNA) was performed and evaluated using in-cell Western assay. RESULTS: Thapsigargin-induced, store-operated calcium influx was significantly elevated in SHRs and was approximately double that observed in WKYs. In the presence of nimodipine, the thapsigargin-induced, store-operated calcium influx was also significantly higher in SHRs compared with WKYs. After stimulation of monocytes by angiotensin II, calcium influx was significantly elevated in SHRs, and was approximately double that observed in WKYs. The 1-oleoyl-2-acetyl-sn-glycerol-induced, second messenger-operated calcium influx was also significantly elevated in SHRs compared with WKYs. Thapsigargin-induced, store-operated calcium influx was reduced by the inhibitor 2-aminoethoxydiphenyl borane. After TRPC3 knockdown, the thapsigargin-induced, store-operated calcium influx, as well as 1-oleoyl-2-acetyl-sn-glycerol-induced calcium influx, was significantly more reduced in cells from SHRs compared with WKYs. CONCLUSIONS: The increased store-operated and second messenger-operated calcium influx through TRPC3 channels in monocytes from SHRs may be responsible for a more aggressive effect in promoting vascular disease in genetic hypertension.  相似文献   

14.
This study focuses on the potential interrelationships between changes in pH and capacitative calcium entry in stimulated platelets and on the participation of SOCs in the control of intracellular pH (pH i ). Extracellular acidification reduces the Mn 2+ entry, measured by the slope of the quenching of FURA 2 fluorescence at the isoemissive wavelength of 360 nm. In thrombin-stimulated platelets Mn 2+ entry is reduced by acidosis (pH o = 6.89) to 17 - 4% of control (pH o = 7.32). In platelets treated with thapsigargin (TG) to induce the opening of store-operated channels (SOCs) the rate of quenching was reduced by acidosis to 31 - 5 % of control. Calcium entry was measured as the peak of [Ca 2+ ] i response to extracellular calcium readmission after mobilization of calcium from intracellular stores. Changes in pH o of platelet suspension media markedly alters the calcium entry evoked by thrombin that reach a 16 - 6 % of control in acidosis (pH o = 6.89) and 150 - 15% of control in alkalosis (pH o = 7.62). The SERCA inhibitor TG was used to study the effect of pH o on Ca 2+ influx. Acidosis decreases and alkalosis increases the capacitative calcium entry to 22 - 4 % and 129 - 1% of control respectively. These changes in pH o also produced changes in pH i . Treatment of platelets with titrated solutions of trimethylamine causes intracellular alkalinization without changes in pH o increasing the capacitative calcium entry to 120 - 5%. TG itself produces an intracellular alkalinization that is further increased by calcium entry. Blockage of the Na + /H + exchanger reverted TG effect on pH i without changes in capacitative calcium entry.  相似文献   

15.
Angiotensin II (Ang II) induces vascular smooth muscle cell (VSMC) hypertrophy as one of the major events leading to atherosclerosis. Increased Ca(2+) entry is an important stimulus for VSMC hypertrophy, but the association with Ang II remains to be determined. Transient receptor potential canonical 1 (TRPC1) forms store-operated Ca(2+) (SOC) channels that are involved in Ca(2+) homeostasis. Our aim was to ascertain the potential involvement of TRPC1 in Ang II-induced VSMC hypertrophy. For this purpose, we used cultured human coronary artery smooth muscle cells (hCASMCs). Store-operated Ca(2+) entry (SOCE) increased in the Ang II-induced hypertrophied cells, and SOC channel blocker inhibited the Ang II-induced hypertrophic response. Although hCASMCs constitutively expressed TRPC1, C3, C4, C5, and C6, only TRPC1 increased in response to Ang II stimulation. TRPC1 siRNA decreased SOCE and prevented Ang II-induced hypertrophy. We found NF-kappaB binding sites in the 5'-regulatory region of the human TRPC1 gene. An electrophoretic mobility shift assay showed that Ang II increased the TRPC1 promoter's NF-kappaB binding activity. Co-treatment with NF-kappaB decoy oligonucleotides not only reduced TRPC1 expression, but also inhibited the hypertrophic responses. In conclusion, our data suggest that Ang II and subsequent NF-kappaB activation induces hCASMC hypertrophy through an enhancement of TRPC1 expression.  相似文献   

16.
To study the role of the epithelial calcium channel transient receptor potential vanilloid type 6 (TRPV6) and the calcium-binding protein calbindin-D9k in intestinal calcium absorption, TRPV6 knockout (KO), calbindin-D9k KO, and TRPV6/calbindin-D(9k) double-KO (DKO) mice were generated. TRPV6 KO, calbindin-D9k KO, and TRPV6/calbindin-D9k DKO mice have serum calcium levels similar to those of wild-type (WT) mice ( approximately 10 mg Ca2+/dl). In the TRPV6 KO and the DKO mice, however, there is a 1.8-fold increase in serum PTH levels (P < 0.05 compared with WT). Active intestinal calcium transport was measured using the everted gut sac method. Under low dietary calcium conditions there was a 4.1-, 2.9-, and 3.9-fold increase in calcium transport in the duodenum of WT, TRPV6 KO, and calbindin-D9k KO mice, respectively (n = 8-22 per group; P > 0.1, WT vs. calbindin-D9k KO, and P < 0.05, WT vs. TRPV6 KO on the low-calcium diet). Duodenal calcium transport was increased 2.1-fold in the TRPV6/calbindin-D9k DKO mice fed the low-calcium diet (P < 0.05, WT vs. DKO). Active calcium transport was not stimulated by low dietary calcium in the ileum of the WT or KO mice. 1,25-Dihydroxyvitamin D3 administration to vitamin D-deficient null mutant and WT mice also resulted in a significant increase in duodenal calcium transport (1.4- to 2.0-fold, P < 0.05 compared with vitamin D-deficient mice). This study provides evidence for the first time using null mutant mice that significant active intestinal calcium transport occurs in the absence of TRPV6 and calbindin-D9k, thus challenging the dogma that TRPV6 and calbindin-D9k are essential for vitamin D-induced active intestinal calcium transport.  相似文献   

17.
18.
19.
20.
Cell entry of hepatitis C virus, pseudoparticles (HCVpp) and cell culture grown virus (HCVcc), requires the interaction of viral glycoproteins with CD81 and other as yet unknown cellular factors. One of these is likely to be the scavenger receptor class B type I (SR-BI). To further understand the role of SR-BI, we examined the effect of SR-BI ligands on HCVpp and HCVcc infectivity. Oxidized low-density lipoprotein (oxLDL), but not native LDL, potently inhibited HCVpp and HCVcc cell entry. Pseudoparticles bearing unrelated viral glycoproteins or bovine viral diarrhea virus were not affected. A dose-dependent inhibition was observed for HCVpp bearing diverse viral glycoproteins with an approximate IC50 of 1.5 microg/mL apolipoprotein content, which is within the range of oxLDL reported to be present in human plasma. The ability of lipoprotein components to bind to target cells associated with their antiviral activity, suggesting a mechanism of action which targets a cell surface receptor critical for HCV infection of the host cell. However, binding of soluble E2 to SR-BI or CD81 was not affected by oxLDL, suggesting that oxLDL does not act as a simple receptor blocker. At the same time, oxLDL incubation altered the biophysical properties of HCVpp, suggesting a ternary interaction of oxLDL with both virus and target cells. In conclusion, the SR-BI ligand oxLDL is a potent cell entry inhibitor for a broad range of HCV strains in vitro. These findings suggest that SR-BI is an essential component of the cellular HCV receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号