首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Injury to the cerebral cortex results in functional deficits not only within the vicinity of the lesion but also in remote brain regions sharing neuronal connections with the injured site. To understand the electrophysiological basis of this phenomenon, we evaluated the effects of a focal intracerebral hemorrhage (ICH) on cortical excitability in a remote, functionally connected brain region. Cortical excitability was assessed by measuring the somatic evoked potential (SEP) elicited by electrical stimulation of the swine snout, which is somatotopically represented in the rostrum area of the primary somatosensory (SI) cortex. The SEP was measured on the SI cortex ipsilateral to the site of ICH and on the contralateral SI cortex during the acute period (< or =11 h) after collagenase-induced ICH. The ICH rapidly attenuated the SEP on the ipsilateral cortex as we reported earlier. Interestingly, the ICH also attenuated the SEP on the contralateral SI cortex. Evoked potentials in the contralateral SI cortex showed a gradual decrease in amplitude during this acute period of ICH. We then investigated whether the interhemispheric connections shared by the contralateral SI and the lesion cortex were responsible for the diminished evoked potentials in the uninjured hemisphere after ICH. A separate group of animals underwent corpus callosal transection prior to electrocorticography (ECoG) recordings and ICH injury. Within hours of hemorrhagic injury, a gradual but marked increase in evoked potential amplitude was observed in the homotopic SI cortex of callosotomized animals as compared to pre-injection recordings. The enhancement suggests that there are additional effects of ICH on remote areas functionally connected to the site of injury. Functional deficits were present in both SI cortices within the first several hours of a unilateral injury indicating that the cessation of brain activity in the lesioned SI is mirrored in the contralateral hemisphere. This electrophysiological depression in the uninjured SI cortex is mediated in part by the interhemispheric connections of the corpus callosum.  相似文献   

2.
After moderate intracerebral hemorrhage (ICH), both hypothermia (HYPO) and constraint-induced movement therapy (CIMT) improve recovery and reduce the volume of brain injury. We tested the hypothesis that more severe ICH requires both cytoprotection and rehabilitation to significantly improve recovery. Rats were subjected to a unilateral striatal ICH via collagenase infusion. Rats remained normothermic or were subjected to mild HYPO ( approximately 2 days) starting 12 h later. Fourteen days after ICH, half of the rats received CIMT (7 days of restraint of the less affected limb plus daily exercises); the remainder were untreated. Walking, limb use and skilled reaching were assessed up to 60 days, at which time animals were euthanized and the volume of tissue lost was determined. The HYPO treatment alone did not improve outcome, whereas CIMT alone provided significant benefit on the limb use asymmetry test. In the staircase test, the greatest benefit was achieved with the combination of HYPO and CIMT treatments. The volume of tissue lost after ICH was similar among groups arguing against cytoprotection as a mechanism of functional recovery. Finally, these findings suggest that, at least under the present circumstances (e.g., severe striatal ICH), CIMT provides superior benefit to HYPO and that combination therapy will sometimes further improve recovery.  相似文献   

3.
The absence of cortical responses to external stimuli is a dubious clinical sign during the first 1-2 days of brain injury. We previously showed that the amplitude of the somatic evoked potential (SEP) in the swine is diminished at the infarct site and perihematomal surround within the first 6 h of collagenase-induced intracerebral hemorrhage (ICH). We now report that this depressed SEP persists during the subchronic (48 h) period of ICH in the swine not only within the injured primary somatosensory (SI) cortex, but also in the contralateral homotopic SI cortex. This impairment of sensory responsiveness was accompanied by increases in various matrix metalloproteinases (MMPs) in different brain regions. By 24 h, a marked rise in MMP-9, an inflammatory marker, was detected in the white matter of the ipsilesional SI and secondary somatosensory cortex (SII), and in the contralesional SI gray matter, as compared to saline-injected controls. A subsequent increase in MMP-9 level was found in the ipsilesional SI and SII gray matter, and in the contralesional SI white matter by 48 h (P<0.05). By 7 days, significant levels of MMP-9 were detected only in the ipsilesional SI white and gray matter tissues. In contrast, the elevation of MMP-2, a marker of degeneration, was delayed until 7 days post-ICH in the ipsilesional SII gray matter. A significant rise in MMP-9 was also noted in CA1 of the ipsilesional and contralesional hemispheres during 1-2 days. Our MMP assay shows that the depressed cortical excitability seen in the contralateral SI cortex is a manifestation of the broad effect of a focal ICH that produces inflammatory and degenerative processes not only in the region adjacent to the focal ICH site, but also in remote regions that are functionally connected to the site of focal ICH.  相似文献   

4.
The Fluoro-Jade (FJ) stain reliably identifies degenerating neurons after multiple mechanisms of brain injury. We modified the FJ staining protocol to quickly stain frozen hippocampal rat brain sections and to permit systematic counts of stained, injured neurons at 4 and 24 h after mild, moderate or severe fluid percussion traumatic brain injury (TBI). In adjacent sections, laser capture microdissection was used to collect uninjured (FJ negative) CA3 hippocampal neurons to assess the effect of injury severity on mRNA levels of selected genes. Rats were anesthetized, intubated, mechanically ventilated and randomized to sham, mild (1.2 atm), moderate (2.0 atm) or severe (2.3 atm) TBI. Four or 24 h post-TBI, ten frozen sections (10 microm thick, every 15th section) were collected from the hippocampus of each rat, stained with FJ and counterstained with cresyl violet. Fluoro-Jade-positive neurons were counted in hippocampal subfields CA1, CA3 and the dentate gyrus/dentate hilus. At both 4 and 24 h post-TBI, numbers of FJ-positive neurons in all hippocampal regions increased dose-dependently in mildly and moderately injured rats but were not significantly more numerous after severe injury. Although analysis of variance demonstrated no overall difference in expression of mRNA levels for heat shock protein 70, bcl-2, caspase 3, caspase 9 and interleukin-1beta in uninjured CA3 neurons at all injury levels, post hoc analysis suggested that TBI induces increases in neuroprotective gene expression that offset concomitant increases in deleterious gene expression.  相似文献   

5.
Intracranial pressure (ICP) was monitored to evaluate the therapeutic effect of hyperbaric oxygen (HBO(2)) treatment following traumatic brain injury (TBI). This subject is controversial. The aim of our study was to determine whether HBO(2) treatment has a therapeutic effect on ICP dynamics and survival following severe fluid percussion brain injury (FPBI) in rats. Changes in ICP level were analyzed every 30 min during an 8-h monitoring period following trauma and at the end of experiment (20 h). The control (A) and experimental (B) groups consisted of 7 and 4 rats, respectively. Group B was subjected to 1.5 atmospheres absolute (ATA) 100% oxygen for 60 min beginning 2 h after FPBI. No significant differences in ICP were noted between groups A and B before and after HBO(2) treatment until 3.5 h after trauma. At 4 h, for the first time, the difference became significant (P = 0.025; n = 11) and remained significant (P < 0.05) for all measurement points until end of monitoring, when mean ICP values reached 37.17 +/- 14.25 and 20.25 +/- 2.63 mm Hg in groups A and B, respectively. Linear approximation models showed different trends (b1 = 3.80 +/- 0.23; r(2) = 0.65, P < 0.001 and b1 = 1.56 +/- 0.25; r(2) = 0.77, P < 0.001) for groups A and B, respectively. Covariance analysis confirmed significant differences between slopes for groups A and B (F = 148.04, P < 0.001; df = 2,177), i.e., a significant difference in mean rate of ICP elevation. By the end of the experiment, 3 out of 7 rats from group A had died, but none from group B. We conclude that the application of HBO(2) during the early phase of severe FPBI significantly diminished ICP elevation rate and decreased mortality level.  相似文献   

6.
Ross J  Armstead WM 《Brain research》2005,1054(1):95-102
Fluid percussion brain injury (FPI) elevates the CSF concentration of the opioid nociceptin/orphanin FQ (NOC/oFQ), which contributes to impairment of pial artery dilation to the prostaglandins (PG) PGE2 and PGI2. This study investigated the role of the ERK, p38, and JNK isoforms of mitogen-activated protein kinase (MAPK) in impaired PG cerebrovasodilation after FPI, and the relationship of brain injury induced release of NOC/oFQ to MAPK in such vascular impairment in newborn pigs equipped with a closed cranial window. FPI blunted PGE2 pial artery dilation, but U 0126 and SP 600125 (10(-6) M) (ERK and JNK MAPK inhibitors, respectively) partially prevented such impairment (7 +/- 1, 12 +/- 1, and 17 +/- 1 vs. 2 +/- 1, 3 +/- 1, and 5 +/- 1 vs. 4 +/- 1, 7 +/- 1, and 12 +/- 1% for 1, 10, and 100 ng/ml PGE2 in control, FPI, and FPI + U 0126 pretreated animals, respectively). In contrast, administration of SB 203580 (10(-5) M) (p38 MAPK inhibitor) did not prevent FPI impairment of PGE2 dilation. Co-administration of NOC/oFQ at the dose of 10(-10) M, the cerebrospinal fluid concentration observed after FPI, with PGE2 under non-brain injury conditions blunted PG dilation, but U 0126 or SP 600125 partially prevented such impairment (7 +/- 1, 11 +/- 1, and 16 +/- 2 vs. 0 +/- 1, 1 +/- 1, and 2 +/- 1, vs. 5 +/- 1, 9 +/- 1, and 13 +/- 2 for responses to PGE2 in control, NOC/oFQ, and NOC/oFQ + U 0126 treated animals, respectively). Administration of SB 203580 did not prevent impairment of PG pial artery dilation by NOC/oFQ. These data show that activation of ERK and JNK but not p38 MAPK contributes to impairment of PG cerebrovasodilation after FPI. These data suggest that NOC/oFQ induced ERK and JNK but not p38 MAPK activation contributes to impaired cerebrovasodilation to PG after FPI.  相似文献   

7.
Reserpine- and haloperidol-induced orofacial dyskinesia are putative animal models of tardive dyskinesia (TD) whose pathophysiology has been related to free radical generation and oxidative stress. In the present study, the authors induced orofacial dyskinesia by acute reserpine and subchronic haloperidol administration to rats. Reserpine injection (one dose of 1 mg/kg s.c.) every other day for 3 days caused a significant increase in vacuous chewing, tongue protrusion and duration of facial twitching, compared to the control. Haloperidol administration (one dose of 12 mg/kg once a week s.c.) for 4 weeks caused an increase in vacuous chewing, tongue protrusion and duration of facial twitching observed in four weekly evaluations. After the treatments and behavioral observation, glutamate uptake by segments of the brain was analyzed. A decreased glutamate uptake was observed in the subcortical parts of animals treated with reserpine and haloperidol, compared to the control. Importantly, a decrease in glutamate uptake correlates negatively with an increase in the incidence of orofacial diskinesia. These results indicate that early changes in glutamate transport may be related to the development of vacuous chewing movements in rats.  相似文献   

8.
Park HK  Chu K  Lee ST  Jung KH  Kim EH  Lee KB  Song YM  Jeong SW  Kim M  Roh JK 《Brain research》2005,1041(2):125-131
Granulocyte colony-stimulating factor (G-CSF) has been used in the treatment of neutropenia in hematologic disorders. The neuroprotective and anti-inflammatory effects of G-CSF were reported in various neurological disease models. In this study, we examined whether G-CSF induces functional recovery after intracerebral hemorrhage (ICH). ICH was induced using collagenase injection in adult rats. Either G-CSF (50 microg/kg, i.p.) or saline was given from 2 h after ICH and every 24 h for 3 days. 72 h after ICH induction, the rats were sacrificed for histological analysis and measurement of brain edema. Behavioral tests were performed before and 1, 7, 14, 21, 28, and 35 days after ICH. We also measured the blood-brain barrier (BBB) permeability using Evans blue dye injection method. G-CSF-treated rats recovered better on rotarod and limb placing tests, starting from 14 days throughout 5 weeks after ICH. The brain water content and BBB permeability of G-CSF-treated group decreased in the lesioned hemispheres compared with those of ICH-only group. In G-CSF-treated group, the number of TUNEL+, myeloperoxidase+, and OX42+ cells was smaller than that of ICH-only group in the periphery of hematoma. These findings suggest that G-CSF induces long-term sensorimotor recovery after ICH with reduction of brain edema, inflammation, and perihematomal cell death.  相似文献   

9.
Spinal cord blood flow and the induction of heme oxygenase-1 (HO-1), an indicator of oxidative stress, were studied in the spinal cords of adult wild-type and transgenic mice overexpressing the antioxidant copper, zinc superoxide dismutase (CuZn SOD) after intrathecal administration of the potent vasoactive peptide endothelin-1 (ET-1). Gelfoam, saturated with ET-1 (40, 80, or 400 micromol/L), was positioned in the intrathecal space at the midthoracic level in anesthetized animals. Blood flow was continuously monitored by laser Doppler for 10 min after the intrathecal application of ET-1. There was a significant reduction in spinal cord blood flow to approximately 40% of control values by 10 min after the intrathecal application of the peptide in both wild-type and transgenic mice. Moreover, SB209670, a nonselective endothelin receptor antagonist, blocked this reduction in flow. Each animal was euthanized 24 h after the intrathecal administration of ET-1, and the spinal cord was prepared for quantitative immunocytochemistry. HO-1 was primarily induced in astrocytes near the dorsal surface of the spinal cord in wild-type mice. This induction was attenuated in both wild-type, treated with SB209670, and untreated transgenic mice. Together, these findings suggest that ET-1 mediates oxidative stress in the spinal cord through the modulation of spinal cord blood flow.  相似文献   

10.
Shin T  Ahn M  Kim H  Moon C  Kang TY  Lee JM  Sim KB  Hyun JW 《Brain research》2005,1041(1):95-101
Expression of osteopontin and CD44 in the brain was studied after cryolesioning to understand how osteopontin and its receptor, CD44, are involved in processes in the brains of rats with cryolesions. Western blot analysis showed that osteopontin increased significantly at days 4 and 7 post-injury and declined slightly thereafter in cryolesioned brains in comparison with levels in sham-operated controls. An immunohistochemical study localized osteopontin in activated microglia/macrophages in the core lesions, where the majority of macrophages proliferate. Osteopontin was also detected temporarily in some neurons and a few astrocytes in the lesion periphery on days 4 and 7 post-injury, but the immunoreactivity in macrophages, neurons, and astrocytes disappeared by day 14 post-injury. There was some CD44, a receptor for osteopontin, in the brain cells of sham-operated rats. After injury, intense CD44 immunostaining was seen in the majority of macrophages and in reactive astrocytes, but not in neurons, in the ipsilateral lesions after day 4 post-injury, and this immunoreactivity remained on day 14 post-injury. These findings suggest that activated microglia/macrophages and some neurons are major sources of osteopontin during the early stage of brain damage induced by a cryolesion and that osteopontin interacts with CD44 expressed on astrocytes and activated microglia/macrophages in the damaged cerebral cortex, possibly mediating cell migration after cryolesioning in the rat brain.  相似文献   

11.
Traumatic brain injury produces peroxynitrite, a powerful oxidant which triggers DNA strand breaks, leading to the activation of poly(ADP-ribose)polymerase-1 (PARP-1). We previously demonstrated that 3-aminobenzamide, a PARP inhibitor, is neuroprotective in a model of traumatic brain injury induced by fluid percussion in rat, suggesting that PARP-1 could be a therapeutic target. In order to confirm this hypothesis, we investigated the effects of PJ34 and INO-1001, two PARP inhibitors from structural classes other than benzamide, on the post-traumatic consequences. Pre- and post-treatments with PJ34 (30 mg/kg/day) and INO-1001 (10 mg/kg/day) decrease the neurological deficit at 3 days post-injury and this deficit is still reduced at 7 days. These neurological recovery-promoting effects are associated with the inhibition of PARP-1 activation caused by trauma, as demonstrated by abolishment of immunostaining of poly(ADP-ribose). Thus, the present work strengthens strongly the concept that PARP-1 inhibition may be a suitable approach for the treatment of brain trauma.  相似文献   

12.
The combination of low-dose ethanol and caffeine (caffeinol) protects cortical areas of the brain from damage produced by distal focal ischemia in rats. There are no data, however, as to whether caffeinol influences injury in subcortical brain regions. Rats were anesthetized with halothane and subjected to 2 h of MCAo by poly-l-lysine-coated intraluminal suture. Caffeinol [a combination of ethanol, 0.33 g/kg, and caffeine, 10 mg/kg (n=5)] or vehicle (0.9% NaCl; n=7) was administered by i.v. infusion over a 2.5-h period beginning 15 min after reperfusion. Neurological status was evaluated daily, and histopathology was quantified at 3 days. Caffeinol therapy significantly improved the neurological score, reduced the total infarct volume (by 52%) and cortical infarct areas at multiple coronal levels, but subcortical infarction and brain swelling were not affected.  相似文献   

13.
Following traumatic brain injury (TBI), the brain undergoes a period of metabolic and neurochemical alterations that may compromise the reactivity of neuroplasticity-related molecular systems to physiological stimulation. In order to address the molecular mechanisms underlying plasticity following TBI and the effects of physical stimulation in the acute phase of TBI, levels of intracellular signaling molecules were assessed following voluntary exercise. Lateral fluid percussion injury (FPI) and sham-operated (Sham) rats were housed with or without access to a running wheel (RW) from postsurgery day 0 to 6. Parietal and occipital cortical tissues were analyzed for brain-derived neurotrophic factor (BDNF) using an enzyme-linked immunoabsorbant assay (ELISA). In addition, synapsin I, phospho-synapsin I, cyclic-AMP response-element-binding protein (CREB), phospho-CREB, calcium-calmodulin-dependent protein kinase II (CAMKII), mitogen-activated protein (MAP) kinase I and II (MAPKI and MAPKII), and protein kinase C (PKC) were analyzed by western blot. Results from this study indicated that FPI alone lead to significant increases in synapsin I, CAMKII, and phosphorylated (P) MAPKI (p44) and MAPKII (p42). Exercise in the sham operates led to significant cortical increases of CREB and synapsin I. However, in the FPI rats, the response to exercise was opposite to that seen in the shams in that exercise resulted in significant decreases of CREB, synapsin I, PKC, CAMKII, MAPKI, and MAPKII. Indeed, all the observed proteins in the acutely exercised FPI rats tended to be lower compared to the FPI sedentary (Sed) rats. These results indicate that intracellular signaling proteins are increased during the first week following FPI and that premature voluntary exercise may compromise plasticity.  相似文献   

14.
Progesterone given after traumatic brain injury (TBI) has been shown to reduce the initial cytotoxic surge of inflammatory factors. We used Western blot techniques to analyze how progesterone might affect three inflammation-related factors common to TBI: complement factor C3 (C3), glial fibrillary acidic protein (GFAP), and nuclear factor kappa beta (NFkappaB). One hour after bilateral injury to the medial frontal cortex, adult male rats were given injections of progesterone (16 mg/kg) for 2 days. Brains were harvested 48 h post-TBI, proteins were extracted from samples, each of which contained tissue from both the contused and peri-contused areas, then measured by Western blot densitometry. Complete C3, GFAP, and NFkappaB p65 were increased in all injured animals. However, in animals given progesterone post-TBI, NFkappaB p65 and the inflammatory metabolites of C3 (9 kDa and 75 kDa) were decreased in comparison to vehicle-treated animals. Measures of NFkappaB p50 showed no change after injury or progesterone treatment, and progesterone did not alter the expression of GFAP. The therapeutic benefit of post-TBI progesterone administration may be due to its salutary effect on inflammatory proteins known to increase immune cell invasion and cerebral edema.  相似文献   

15.
Yi JH  Hazell AS 《Brain research》2005,1033(1):13-19
Traumatic brain injury (TBI) results in a cascade of events that includes the production of reactive oxygen species. Heme oxygenase-1 (HO-1) is induced in glial cells following head trauma, suggestive of oxidative stress. We have studied the temporal and spatial effects of the antioxidant N-acetylcysteine (NAC) on HO-1 levels following lateral fluid-percussion injury by immunoblotting and immunohistochemistry. In the injured cerebral cortex, maximal HO-1 induction was seen 6 h post-TBI and was maintained for up to 24 h following the insult, while the ipsilateral hippocampus and thalamus showed marked induction at 24 h postinjury. In all three brain regions, little or no HO-1 immunoreactivity was observed on the contralateral side. Astrocytes exhibited positive immunoreactivity for HO-1 in the injured cerebral cortex, hippocampus, and thalamus, while some neurons and microglia were also immunoreactive in the injured cortex. The administration of NAC 5 min following TBI resulted in a marked reduction in this widespread induction of HO-1, concomitant with a decrease in the volume of injury in all three brain regions. Together, these findings indicate that HO-1 induction is related to both oxidative and injury characteristics of the affected tissue, suggesting that protein expression of this gene is a credible marker of oxidative damage in this model of TBI.  相似文献   

16.
Hwang IK  Yoo KY  Kim DS  Do SG  Oh YS  Kang TC  Han BH  Kim JS  Won MH 《Brain research》2004,1023(2):193-199
In the present study, we investigated chronological changes of galanin (GAL), well known as the potassium channel opener, immunoreactivity and GAL protein level in the hippocampus of the gerbil at the various times after 5 min transient forebrain ischemia. In the sham-operated group, weak GAL immunoreactivity was found in non-pyramidal cells. At 12 h after ischemia-reperfusion, the number of GAL-immunoreactive neurons and GAL immunoreactivity were significantly increased in the hippocampus compared to 3 h after ischemic insult, especially in the hippocampal CA1 region. Thereafter the number of GAL-immunoreactive neurons and GAL immunoreactivity decrease time-dependently in the hippocampus. Four days after transient ischemia, GAL immunoreactivity was low as compared with the sham-operated group. At this time point after ischemic insult, GAL immunoreactivity was shown in microglia in the CA1 region because delayed neuronal death happened in the CA1 pyramidal cells. The result of Western blot showed the pattern of GAL expression similar to that of immunohistochemical data. These results suggest that the early increase of GAL in the CA1 pyramidal cells may be associated with the reduction of the excitotoxic damage, that long-lasting enhanced expression of endogenous GAL at 12 h-2 days after ischemia may be associated with efflux of potassium ion into the extracellular space, and that GAL expression in microglia 4 days after ischemia may be associated with reduction of ischemic damage.  相似文献   

17.
Ca2+-ATPase is one of the most powerful modulators of intracellular calcium levels. In this study, we focused on chronological changes in the immunoreactivity and protein levels of Ca2+-ATPase in the hippocampus after 5 min of transient forebrain ischemia. Ca2+-ATPase immunoreactivity was significantly altered in the hippocampal CA1 region and in the dentate gyrus, but not in the CA2/3 region after ischemic insult. In the sham-operated group, Ca2+-ATPase immunoreactivity was detected in the hippocampus. Ca2+-ATPase immunoreactivity in the CA1 region and in the dentate gyrus, and its protein levels peaked 3 h after ischemic insult. At this time, CA1 pyramidal cells and dentate polymorphic cells showed strong Ca2+-ATPase immunoreactivity. Thereafter, Ca2+-ATPase immunoreactivity reduced in the CA1 region and in the dentate gyrus. One day after ischemic insult, Ca2+-ATPase immunoreactivity was observed in some CA1 non-pyramidal cells, and 4 days after ischemic insult, Ca2+-ATPase immunoreactivity was detected in astrocytes throughout the CA1 region, but Ca2+-ATPase immunoreactivity in the dentate gyrus had nearly disappeared. Our results suggest that Ca2+-ATPase changes may be associated with a response to ischemic damage in hippocampal CA1 pyramidal cells, and that increased Ca2+-ATPase immunoreactivity in the reactive astrocytes may be associated with the maintenance of intracellular calcium levels.  相似文献   

18.
We examined in Sprague-Dawley rats whether intranigral administration of complex-I inhibitor, rotenone, produces biochemical lesions in the striatum similar to those observed in Parkinson's disease (PD). Unilateral stereotaxic infusion of rotenone (2-12 mug in 1 mul) into substantia nigra (SN) pars compacta caused significant inhibition of complex-I activity and increased production of hydroxyl radicals in vivo as measured employing spectrophotometric and HPLC-electrochemical procedures, respectively. It also caused a significant time- and dose-dependent reduction of dopamine level, but not serotonin, in the ipsilateral striatum when assayed using an HPLC electrochemical method. This effect was found to be progressive for 90 days. A dose-dependent decrease in nigral glutathione level, as measured fluorimetrically, was also observed to be progressive till 90th day. A significant decrease in tyrosine hydroxylase immunoreactivity in the striatum (73 +/- 8.4% as assessed by densitometric studies) or in SN ipsilateral to the side of infusion suggested nigrostriatal neuronal degeneration. A dose of rotenone (6 microg in 1 microl) that caused 55% striatal dopamine depletion when infused into the SN failed to affect serotonin levels in the terminal regions when infused into the nucleus raphe dorsalis, indicating rotenone's specificity of action towards dopaminergic neurons. Our findings suggest that unilateral infusion of rotenone reproduces neurochemical and neuropathological features of hemiparkinsonism in rats and indicate an active involvement of oxidative stress in rotenone-induced nigrostriatal neurodegeneration. The present study also demonstrates more sensitivity of dopaminergic neurons towards rotenone and establishes mitochondrial complex-I damage as one of the major contributory components of neurodegeneration in PD. The progressive nature of pathology in this model closely mimics idiopathic PD, and absence of mortality warrants the use of this model in drug discovery programs.  相似文献   

19.
Yong Y  Xie HJ  Zhang YF  Yang QD  Liao DF  Yang HL  Yan PK  Liu ZJ 《Brain research》2005,1054(2):192-199
To investigate the effect of 17beta-estradiol (E2) on ischemia-reperfusion (I/R) injury in diabetic ovariectomized female rats. Streptozotocin(STZ)-induced diabetic female rats received E2 treatment for 2 weeks after ovariectomy (OVX). A period of 90 min of temporary middle cerebral artery occlusion (tMCAO) was used for the study. Rats were evaluated for physiological data including plasma glucose, E2, MAP, PaCO2 and PaO2 before and after tMCAO. P-selectin expression, myeloperoxidase (MPO) enzyme activity and the cerebral infarct volume were analyzed. RESULTS: The infarct volume in the E2-treated OVX rats is bigger than that in intact and OVX groups. However, there is not a significant different area of cerebral infarct between diabetic OVX and intact rats. Significant upregulation of P-selectin expression and MPO activity of the ischemia-reperfusion hemisphere were observed in E2 + OVX, intact and OVX groups at 8, 24, 72 h in time manner after tMCAO compared with that of the contralateral hemisphere of cerebral ischemia-reperfusion. Both P-selectin expression and MPO activity in the E2 + OVX and intact rats are significantly higher than that in the untreated OVX rats. Chronic estrogen replacement therapy (ERT) potentiates the I/R injury in diabetes female rats. This may be related to the increased expression of P-selectin and MPO activity.  相似文献   

20.
The main goals of the current study were to assess: (a) whether a sublethal ischemic insult could protect the CA1 subregion of the hippocampus in organotypic slices against a lethal ischemic insult; and (b) whether this protection is long lasting as determined with an accurate immunohistochemical neuronal marker, NeuN. Hippocampal slice cultures were grown for 12-14 days in vitro. Slices were exposed either to oxygen/glucose deprivation (OGD) for 45 min (ischemia), or OGD for 15 min (ischemic preconditioning), 48 h prior to 45 min OGD, or were untreated (sham). Cell death was estimated by propidium iodide fluorescence 1 day after OGD and by NeuN immunohistochemistry 7 days after OGD. Image analysis was employed to measure the relative optical density of the NeuN-signal in all groups. After ischemia, damaged neurons were shrunken or lost and NeuN immunoreactivity was reduced. Relative optical density of NeuN (ROD [NeuN]) was 0.193+/-0.015 in control (sham) (n=9). In slices that underwent ischemia, ROD [NeuN] declined to 0.108+/-0.018 (n=5) in CA1 (*P<0.05 ROD [NeuN] in preconditioned slice cultures was 0.190+/-0.037 (76% higher than the ischemia group). Similar results were found after measuring PI fluorescence. In the CA1 sub-region, PI fluorescence was about 13, 47 and 17% in the sham, ischemic and IPC groups, respectively. We suggest that the immunohistochemical approach validates the dye uptake method used in slice cultures and yields quantitative data specific for neurons. We also conclude that the organotypic hippocampal slice model is useful for studying delayed ischemic preconditioning that is maintained for hours or days after the preconditioning event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号