首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supercritical assisted atomization (SAA) was used to micronize griseofulvin (GF), selected as a model compound, to verify the performance of this innovative process. SAA is based on the solubilization of supercritical carbon dioxide in a liquid solution containing the drug. The ternary mixture is then sprayed through a nozzle and microparticles are formed as a consequence of the enhanced atomization. Precipitation temperature and drug concentration in the liquid solution were studied to evaluate their influence on morphology and size of precipitated particles. A good particle size control was obtained and GF spherical particles with mean diameters ranging from 0.5 to 2.5 microm were produced with a narrow particle size distribution. Processed GF was characterized by high-performance liquid chromatography-UV/vis, headspace-gas chromatography-flame ionization detection, differential scanning calorimetry, BET and X-ray analyses. No drug degradation was observed and a solvent residue (acetone) less than 800 ppm was measured. GF microparticles showed good stability and surface areas ranging from about 4 to 6 m(2) g(-1); moreover, the micronized drug retained the crystalline habit. GF capsules were formulated with starch and used to compare the dissolution rate of SAA-processed and conventional jet-milled drug. A faster dissolution and a better reproducibility of the dissolution profile were observed for SAA-processed GF.  相似文献   

2.
Surface modification and solid dispersion formulations using hydrophilic excipients can significantly alter the dissolution behaviour of hydrophobic drug materials. The effect of these techniques used individually and in combination on the dissolution properties of the hydrophobic drug, phenylbutazone (PB), are compared. PB was treated with a poloxamer, Synperonic((R)) F127 by an adsorption method. Solid dispersions (10 and 20% w/w) were prepared with untreated PB or PB previously modified with Synperonic((R)) F127 (PBT) in molten F127. Dissolution tests of capsule formulations of PB, PBT and solid dispersion formulations, in pH 6.4 buffer at 37+/-0.5 degrees C demonstrated that after 140 min, release of PB was 16.7%, but 71.4% from the solid dispersion, whereas from the PBT formulation 85.6% was released. The Synperonic((R)) F127 content of PBT was only 0.05% of that in the solid dispersion formulation which suggests that it is the nature of the drug polymer contact rather than the amount of polymer which is more critical in influencing dissolution behaviour. Comparison of PBT and the 10% w/w solid dispersion of PBT in F127 showed similar amounts of drug in solution after 140 min. However there was a significantly higher release rate for PBT. Both formulation techniques offer significant improvements in drug release over untreated PB, and a combination of techniques changes the rate but not the extent of release in comparison with the surface modification technique alone.  相似文献   

3.
Drug powders containing micron-size drug particles are used in several pharmaceutical dosage forms. Many drugs, especially newly developed substances, are poorly water soluble, which limits their oral bioavailability. The dissolution rate can be enhanced by using micronized drugs. Small drug particles are also required in administration forms, which require the drug in micron-size size due to geometric reasons in the organ to be targeted (e.g., drugs for pulmonary use). The common technique for the preparation of micron-size drugs is the mechanical comminution (e.g., by crushing, grinding, and milling) of previously formed larger particles. In spite of the widespread use of this technique, the milling process does not represent the ideal way for the production of small particles because drug substance properties and surface properties are altered in a mainly uncontrolled manner. Thus, techniques that prepare the drug directly in the required particle size are of interest. Because physicochemical drug powder properties are decisive for the manufacturing of a dosage form and for therapeutic success, the characterization of the particle surface and powder properties plays an important role. This article summarizes common and novel techniques for the production of a drug in small particle size. The properties of the resulting products that are obtained by different techniques are characterized and compared.  相似文献   

4.
5.
The purpose of the present study was to construct the theoretical dissolution model of poly-disperse drug particles in biorelevant media containing bile salt/ lecithin aggregates (micelles or vesicles). The effective diffusion coefficient in the biorelevant medium and the particle size distribution of drug particles were simultaneously factored into the Nernst-Brunner equation. The effective diffusion coefficient of a drug in the biorelevant medium was calculated to be smaller than that in the blank buffer, since the diffusion coefficient of a drug bound to the aggregates became similar to that of the aggregates. The particle size distribution of a drug powder was simulated as the sum of mono-disperse fractions covering the particle size range. To verify the modified equation, the dissolution profile of griseofulvin and danazol in a taurocholic acid/egg lecithin (4:1 mixture, taurocholic acid = 0-30 mM) system was investigated. It was clearly demonstrated that both modifications on the Nernst-Brunner equation improved the prediction accuracy. When the effect of the particle size distribution was neglected, the theoretical curve underestimated the observed value at the early phase of dissolution process. When the diffusion coefficient of a free drug was used instead of the effective diffusion coefficient, the theoretical curve overestimated the observed value. The results of the present study suggested that the effect of the particle size distribution and the effective diffusion coefficient should be taken into consideration.  相似文献   

6.
This investigation relates to a two-step formulation development technique-synthesis of sterically stabilized drug microcrystals followed by direct surface modification by sequential electrostatic adsorption. Stable microcrystals of naproxen were produced by pH-induced reprecipitation in presence of a stabilizer. Sequential layer growth was achieved by the layer-by-layer assembly of biocompatible polyelectrolytes (PEs) and was registered using microelectrophoresis. The coated colloids were characterized using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The in vitro controlled release pattern of the drug through the PE diffusion barrier was studied using a diffusion cell assembly at physiological pH of 7.4, both before and after freeze-drying. Thermodynamically stable naproxen microcrystals were obtained by association and had a mean length of 15 microm and a zeta potential of -37.5 mV and were surface modified efficiently using biocompatible polysaccharide/protein-based PEs. Sufficient charge reversal with each layer was evident indicating layer growth with successive deposition cycles. The coating was complete and homogeneous as visualized under CLSM and SEM. The in vitro release study revealed that the stoichiometry of PEs in the complex coating and its molecular architecture played important roles in forming the diffusion barrier, which offered efficient control of the dissolution rate of drug core (up to 50% lower than bare crystal). The release profile fitted zero order release kinetics. This novel formulation technique enables administration of high concentrations of water-insoluble drugs in a stable, tissue compatible form, simultaneously affording sustained release.  相似文献   

7.
超临界过程参数对药物微粉化的影响   总被引:4,自引:0,他引:4  
概述了超临界溶液快速膨胀(RESS)法和超临界抗溶剂(SAS)过程及其衍生方法的基本原理,以及工艺参数对药物微粉化的影响.介绍了RESS、SAS及其衍生技术在制备固体药物细微颗粒方面的应用前景.  相似文献   

8.
熊迎新  尹宗宁 《中国新药杂志》2004,13(12):1275-1279
综述了近年来国内外靶向给药表面修饰的新进展,制剂载体通过各种表面修饰途径,药物被更有效的运送至靶区,从而提高疗效,减轻不良反应.  相似文献   

9.
  1. Download : Download high-res image (204KB)
  2. Download : Download full-size image
  相似文献   

10.
It has gradually become evident that nanomaterials, which are widely used in cosmetics, foods, and medicinal products, could induce substantial inflammation. However, the roles played by the physical characteristics of nanomaterials in inflammatory responses have not been elucidated. Here, we examined how particle size and surface modification influenced the inflammatory effects of nanosilica particles, and we investigated the mechanisms by which the particles induced inflammation. We compared the inflammatory effects of silica particles with diameters of 30–1,000 nm in vitro and in vivo. In macrophages in vitro, 30- and 70-nm nanosilica particles (nSP30 and nSP70) induced higher production of tumor necrosis factor-α (TNFα) than did larger particles. In addition, intraperitoneal injection of nSP30 and nSP70 induced stronger inflammatory responses involving cytokine production than did larger particles in mice. nSP70-induced TNFα production in macrophage depended on the production of reactive oxygen species and the activation of mitogen-activated protein kinases (MAPKs). Furthermore, nSP70-induced inflammatory responses were dramatically suppressed by surface modification of the particles with carboxyl groups in vitro and in vivo; the mechanism of the suppression involved reduction in MAPK activation. These results provide basic information that will be useful for the development of safe nanomaterials.  相似文献   

11.
载药聚乳酸类纳米粒子的修饰研究进展   总被引:3,自引:0,他引:3  
朱悦  贾叙东  丁安伟 《上海医药》2004,25(11):502-504
聚乳酸类材料主要有聚乳酸(Polylactic acid,PLA)、聚乙醇酸(Poly D,L—lactide—co—glycolide,PLGA)、聚己内酯(Polycaprolactone,PCL)等,在体内代谢的最终产物是二氧化碳和水,中间产物乳酸也是体内的代谢产物,已被美国FDA批准用作医用手术缝合线以及注射用微囊、微球、埋植剂等制剂的材料。但是,由聚乳酸类材料制成的载药纳米粒子因表面疏水和分子链基团的单一,在用于靶向制剂及长效制剂方面受到很大限制。近年来,有关聚乳酸材料的亲水性修饰及靶向识别修饰,研究者做了大量的工作。本文就近5年来这方面的研究工作作一综述。  相似文献   

12.
目的研究微粉化工艺对羊血提取物中氯高铁血红素溶出度的影响。方法采用溶出度参数T50值对比了原药粉和3种原料药与乳糖的混合工艺(包括微粉化处理、高速粉碎机粉碎、简单混合)对氯高铁血红素溶出度的影响。结果原料药与乳糖混合后3种不同的处理方法对氯高铁血红素溶出度均有不同程度的改善,它们的T50值依次为2.36,3.79和10.29min,而原料药为28.03min。其中经过微粉化的样品溶出最快,比原料药加快了近12倍。结论将氯高铁血红素与乳糖一起微粉化是改善溶出度行之有效的方法。  相似文献   

13.
Improvement in flow and bulk density, the two most important properties that determine the ease with which pharmaceutical powders can be handled, stored and processed, is done through surface modification. A limited design of experiment was conducted to establish a standardized dry coating procedure that limits the extent of powder attrition, while providing the most consistent improvement in angle of repose (AOR). The magnetically assisted impaction coating (MAIC) was considered as a model dry-coater for pharmaceutical powders; ibuprofen, acetaminophen, and ascorbic acid. Dry coated drug powders were characterized by AOR, particle size as a function of dispersion pressure, particle size distribution, conditioned bulk density (CBD), Carr index (CI), flow function coefficient (FFC), cohesion coefficient using different instruments, including a shear cell in the Freeman FT4 powder rheometer, and Hansen flowability index. Substantial improvement was observed in all the measured properties after dry coating relative to the uncoated powders, such that each powder moved from a poorer to a better flow classification and showed improved dispersion. The material intrinsic property such as cohesion, plotted as a function of particle size, gave a trend similar to those of bulk flow properties, AOR and CI. Property improvement is also illustrated in a phase map of inverse cohesion (or FFC) as a function of bulk density, which also indicated a significant positive shift due to dry coating. It is hoped that such phase maps are useful in manufacturing decisions regarding the need for dry coating, which will allow moving from wet granulation to roller compaction or to direct compression based formulations.  相似文献   

14.
The differential equation governing the rate of change of radius of a spherical particle dissolving or growing in a fluid has been numerically integrated by computer. The particle radius, as a function of time, can thus be calculated, and the dependence of the overall particle lifetime upon physical parameters obtained. The effects of high mass flux, change of solubility with particle size, and progressive saturation due to dissolution into a finite volume of liquid can all be taken into account during the integration process. Results are presented for salicylic, boric and citric acids dissolving in and crystallizing from water; these represent the behaviour of sparingly soluble, moderately soluble and very soluble compounds respectively.  相似文献   

15.
Solvent-mediated solid-phase transformations may occur during dissolution tests which complicates the evaluation of dissolution rates in cases of metastable drugs. The purpose of this study was to determine the effects of solvent-mediated transformations of theophylline anhydrate (TP (A)) on the intrinsic dissolution rate in simulated gastric fluid at pH 1.2. A combined method set-up for simultaneous measurement of the dissolved quantity of drug and the solid form composition was constructed from in situ Raman spectroscopy and UV-vis-spectrophotometry. Transformation kinetics in the traditional USP rotating disc (RD) dissolution apparatus was compared with the recently introduced channel flow cell (CFC). Solid-phase data, supported by scanning electron micrographs taken off-line, explained the changes in the intrinsic dissolution rates due to hydrate formation. Kinetic modelling showed that first order kinetics fitted the data in CFC, but the conversion in RD was strongly S-shaped. These differences were related to dissimilar hydrodynamic conditions and diffusion characteristics in the two dissolution testing devices. In situ solid-phase measurement during dissolution testing can largely improve the understanding of the dissolution results of metastable drugs. This information is valuable in drug candidate selection as well as in explaining and controlling the behaviour of drug substances in the final drug products.  相似文献   

16.
17.
A combination of solid dispersion and surface adsorption techniques was used to enhance the dissolution of a poorly water-soluble drug, BAY 12-9566. In addition to dissolution enhancement, this method allows compression of the granulated dispersion into tablets. Gelucire 50/13 (polyglycolized glycerides) was used as the solid dispersion carrier. Hot-melt granulation was performed to adsorb the melt of the drug and Gelucire 50/13 onto the surface of Neusilin US2 (magnesium alumino silicate), the surface adsorbent. Dispersion granules using various ratios of drug-Gelucire 50/13-Neusilin US2 were thus prepared. The dissolution profiles of BAY 12-9566 from the dispersion granules and corresponding physical mixtures were evaluated using USP Type II apparatus at 75 rpm. The dissolution medium consisted of 0.1 N hydrochloric acid (HCl) with 1% w/v sodium lauryl sulfate (SLS). Dissolution of BAY 12-9566 from the dispersion granules was enhanced compared to the physical mixture. The dissolution of BAY 12-9566 increased as a function of increased Gelucire 50/13 and Neusilin US2 loading and decreased with increased drug loading. In contrast to the usually observed decrease in dissolution on storage, an enhancement in dissolution was observed for the dispersion granules stored at 40 degrees C/75% relative humidity (RH) for 2 and 4 weeks. Additionally, the flow and compressibility properties of dispersion granules were improved significantly when compared to the drug alone or the corresponding physical mixture. The ternary dispersion granules were compressed easily into tablets with up to 30% w/w drug loading. The extent of dissolution of drug from these tablets was greater than that from the uncompressed dispersion granules.  相似文献   

18.
19.
The dissolution of a drug administered in the solid state is a pre-requisite for efficient subsequent transport within the human body. This is because only dissolved drug molecules/ions/atoms are able to diffuse, e.g. through living tissue. Thus, generally major barriers, including the mucosa of the gastro intestinal tract, can only be crossed after dissolution. Consequently, the process of dissolution is of fundamental importance for the bioavailability and, hence, therapeutic efficacy of various pharmaco-treatments. Poor aqueous solubility and/or very low dissolution rates potentially lead to insufficient availability at the site of action and, hence, failure of the treatment in vivo, despite a potentially ideal chemical structure of the drug to interact with its target site. Different physical phenomena are involved in the process of drug dissolution in an aqueous body fluid, namely the wetting of the particle's surface, breakdown of solid state bonds, solvation, diffusion through the liquid unstirred boundary layer surrounding the particle as well as convection in the surrounding bulk fluid. Appropriate mathematical equations can be used to quantify these mass transport steps, and more or less complex theories can be developed to describe the resulting drug dissolution kinetics. This article gives an overview on the current state of the art of modeling drug dissolution and points out the assumptions the different theories are based on. Various practical examples are given in order to illustrate the benefits of such models. This review is not restricted to mathematical theories considering drugs exhibiting poor aqueous solubility and/or low dissolution rates, but also addresses models quantifying drug release from controlled release dosage forms, in which the process of drug dissolution plays a major role.  相似文献   

20.
Biointegration refers to the interconnection between a biomedical device and the recipient tissue. In many implant devices, the lack of proper biointegration can cause device failure and potentially serious medical problems. This review summarizes the recent progress in surface chemistry, drug delivery and antifouling methods to improve the biointegration of implants. Much progress has been made as our understanding of biological systems and material properties expands and as new technologies become available. This article addresses methods of enhancing biointegration by means of modifying implant surface chemistry and by drug-delivery approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号