首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Hypericum perforatum [St. John’s wort (SJW)] is known to cause a drug interaction with the substrates of cytochrome P450 (P450, CYP) isoforms, mainly CYP3A. This study aims to determine the dose response and time course of the effects of SJW extract on P450s, UDP-glucuronosyltransferase (UGT), glutathione S-transferase (GST), and NAD(P)H-quinone oxidoreductase (NQO) in mice. The oral administration of SJW extract to male mice at 0.6 g/kg/d for 21 days increased hepatic oxidation activity toward a Cyp3a substrate nifedipine. By extending the SJW treatment to 28 days, hepatic nifedipine oxidation (NFO) and warfarin 7-hydroxylation (WOH) (Cyp2c) activities were increased by 95% and 34%, respectively. Immunoblot analysis of liver microsomal proteins revealed that the Cyp2c protein level was elevated by the 28-day treatment. However, the liver microsomal activities of the oxidation of the respective substrates of Cyp1a, Cyp2a, Cyp2b, Cyp2d, and Cyp2e1 remained unchanged. In the kidney, SJW increased the NFO, but not the WOH activity. The extended 28-day treatment did not alter mouse hepatic and renal UGT, GST, and NQO activities. These findings demonstrate that SJW stimulates hepatic and renal Cyp3a activity and hepatic Cyp2c activity and expression. The induction of hepatic Cyp2c requires repeated treatment for a period longer than the initial induction of Cyp3a.  相似文献   

2.
目的对中国汉族、回族健康人群细胞色素P450(CYP)3A4、CYP2C9、CYP2C19及CYP2D6进行基因多态性分析,比较汉族和回族健康人群基因表型和基因频率分布。方法多聚酶链反应-限制性片段长度多态性(PCR-RFLP)法,对300名志愿者的几种基因进行分型。结果汉族、回族CYP3A4*5等位基因频率均为0,CYP3A4*18等位基因频率分别为0.18,0.19;汉族、回族CYP2C9*2等位基因频率分别为0.01,0.05;CYP2C9*13等位基因频率均为0;汉族、回族CYP2C19*2等位基因频率分别为0.39,0.50;CYP2C19*3等位基因频率分别为0.05,0.05;汉族、回族CYP2D6*10等位基因频率分别为0.57,0.39。结论汉族、回族健康人群的CYP3A4*18、CYP2C9*2、CYP2C19*2、CYP2C19*3均没有显著性差异;在汉族、回族健康人群中未发现CYP3A4*5和CYP2C9*13突变;汉族、回族CYP2D6*10等位基因频率有显著性差异(P<0.01);回族人群CYP2D6中速代谢型(*10/*10)频率为13.4%,明显低于汉族的33.1%(P<0.01)。  相似文献   

3.
1.?The in vitro metabolism of 3-((5-(6-methylpyridin-2-yl)-4-(quinoxalin-6-yl)-1H-imidazol-2-yl)methyl)benzamide (IN-1130), a selective activin receptor-like kinase-5 (ALK5) inhibitor and a candidate drug for fibrotic disease, was studied.

2.?The cytochrome P450s (CYPs) responsible for metabolism of IN-1130 in liver microsomes of rat, mouse, dog, monkey and human, and in human CYP supersomes?, were identified using specific CYP inhibitors. The order of disappearance of IN-1130 in various liver microsomal systems studied was as follows: monkey, mouse, rat, human, and dog.

3.?Five distinct metabolites (M1–M5) were identified in all the above microsomes and their production was substantially inhibited by CYP inhibitors such as SKF-525A and ketoconazole. Among nine human CYP supersomes? examined, CYP3A4, CYP2C8, CYP2D6*1, and CYP2C19 were involved in the metabolism of IN-1130, and the production of metabolites were significantly inhibited by specific CYP inhibitors. IN-1130 disappeared fastest in CYP2C8 supersomes. CYP3A4 produced four metabolites of IN-1130 (M1–M4), whereas supersomes expressing human FMO cDNAs, such as FMO1, FMO3, and FMO5, produced no metabolites.

4.?Hence, it is concluded that metabolism of IN-1130 is mediated by CYP3A4, CYP2C8, CYP2D6*1, and CYP2C19.  相似文献   

4.
3-Nitrobenzanthrone (3-NBA) is a carcinogen occurring in diesel exhaust and air pollution. Using the (32)P-postlabelling method, we found that 3-NBA and its human metabolite, 3-aminobenzanthrone (3-ABA), are activated to species forming DNA adducts by cytosols and/or microsomes isolated from rat lung, the target organ for 3-NBA carcinogenicity, and kidney. Each compound generated identical five DNA adducts. We have demonstrated the importance of pulmonary and renal NAD(P)H:quinone oxidoreductase (NQO1) to reduce 3-NBA to species that are further activated by N,O-acetyltransferases and sulfotransferases. Cytochrome P450 (CYP) 1A1 is the essential enzyme for oxidative activation of 3-ABA in microsomes of both organs, while cyclooxygenase plays a minor role. 3-NBA was also investigated for its ability to induce NQO1 and CYP1A1 in lungs and kidneys, and for the influence of such induction on DNA adduct formation by 3-NBA and 3-ABA. When cytosols from rats treated i.p. with 40mg/kg bw of 3-NBA were incubated with 3-NBA, DNA adduct formation was up to 2.1-fold higher than in incubations with cytosols from control animals. This increase corresponded to an increase in protein level and enzymatic activity of NQO1. Incubations of 3-ABA with microsomes of 3-NBA-treated rats led to up to a fivefold increase in DNA adduct formation relative to controls. The stimulation of DNA adduct formation correlated with the potential of 3-NBA to induce protein expression and activity of CYP1A1. These results demonstrate that 3-NBA is capable to induce NQO1 and CYP1A1 in lungs and kidney of rats thereby enhancing its own genotoxic and carcinogenic potential.  相似文献   

5.
AIMS: Several single nucleotide polymorphisms (SNPs) of the cytochrome P450 enzyme 1A2 gene (CYP1A2) have been reported. Here, frequencies, linkage disequilibrium and phenotypic consequences of six SNPs are described. METHODS: From genomic DNA, 114 British Caucasians (49 colorectal cancer cases and 65 controls) were genotyped for the CYP1A2 polymorphisms -3858G-->A (allele CYP1A2*1C), -2464T-->delT (CYP1A2*1D), -740T-->G (CYP1A2*1E and *1G), -164A-->C (CYP1A2*1F), 63C-->G (CYP1A2*2), and 1545T-->C (alleles CYP1A2*1B, *1G, *1H and *3), using polymerase chain reaction-restriction fragment length polymorphism assays. All patients and controls were phenotyped for CYP1A2 by h.p.l.c. analysis of urinary caffeine metabolites. RESULTS: In 114 samples, the most frequent CYP1A2 SNPs were 1545T-->C (38.2% of tested chromosomes), -164A-->C (CYP1A2*1F, 33.3%) and -2464T-->delT (CYP1A2*1D, 4.82%). The SNPs were in linkage disequilibrium: the most frequent constellations were found to be -3858G/-2464T/-740T/-164A/63C/1545T (61.8%), -3858G/-2464T/-740T/-164C/63C/1545C (33.3%), and -3858G/-2464delT/-740T/-164A/63C/1545C (3.51%), with no significant frequency differences between cases and controls. In the phenotype analysis, lower caffeine metabolic ratios were detected in cases than in controls. This was significant in smokers (n = 14, P = 0.020), and in a subgroup of 15 matched case-control pairs (P = 0.007), but it was not significant in nonsmokers (n = 100, P = 0.39). There was no detectable association between CYP1A2 genotype and caffeine phenotype. CONCLUSIONS: (i) CYP1A2 polymorphisms are in linkage disequilibrium. Therefore, only -164A-->C (CYP1A2*1F) and -2464T-->delT (CYP1A2*1D) need to be analysed in the routine assessment of CYP1A2 genotype; (ii) in vivo CYP1A2 activity is lower in colorectal cancer patients than in controls, and (iii) CYP1A2 genotype had no effect on phenotype (based on the caffeine metabolite ratio). However, this remains to be confirmed in a larger study.  相似文献   

6.
7.
In vitro quantitative studies of the oxidative metabolism of (5-methoxy-N,N-diisopropyltryptamine, 5-MeO-DIPT, Foxy) were performed using human liver microsomal fractions and recombinant CYP enzymes and synthetic 5-MeO-DIPT metabolites. 5-MeO-DIPT was mainly oxidized to O-demethylated (5-OH-DIPT) and N-deisopropylated (5-MeO-IPT) metabolites in pooled human liver microsomes. In kinetic studies, 5-MeO-DIPT O-demethylation showed monophasic kinetics, whereas its N-deisopropylation showed triphasic kinetics. Among six recombinant CYP enzymes (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) expressed in yeast or insect cells, only CYP2D6 exhibited 5-MeO-DIPT O-demethylase activity, while CYP1A2, CYP2C8, CYP2C9, CYP2C19 and CYP3A4 showed 5-MeO-DIPT N-deisopropylase activities. The apparent Km value of CYP2D6 was close to that for 5-MeO-DIPT O-demethylation, and the Km values of other CYP enzymes were similar to those of the low-Km (CYP2C19), intermediate-Km (CYP1A2, CYP2C8 and CYP3A4) and high-Km phases (CYP2C9), respectively, for N-deisopropylation in human liver microsomes. In inhibition studies, quinidine (1 microM), an inhibitor of CYP2D6, almost completely inhibited human liver microsomal 5-MeO-DIPT O-demethylation at a substrate concentration of 10 microM. Furafylline, a CYP1A2 inhibitor, quercetin, a CYP2C8 inhibitor, sulfaphenazole, a CYP2C9 inhibitor and ketoconazole, a CYP3A4 inihibitor (5 microM each) suppressed about 60%, 45%, 15% and 40%, respectively, of 5-MeO-DIPT N-deisopropylation at 50 microM substrate. In contrast, omeprazole (10 microM), a CYP2C19 inhibitor, suppressed only 10% of N-deisopropylation by human liver microsomes, whereas at the same concentration the inhibitor suppressed the reaction by recombinant CYP2C19 almost completely. These results indicate that CYP2D6 is the major 5-MeO-DIPT O-demethylase, and CYP1A2, CYP2C8 and CYP3A4 are the major 5-MeO-DIPT N-deisopropylase enzymes in the human liver.  相似文献   

8.
Human cell lines are often used for in vitro biotransformation and transport studies of drugs. In vivo, genetic polymorphisms have been identified in drug-metabolizing enzymes and ABC-drug transporters leading to altered enzyme activity, or a change in the inducibility of these enzymes. These genetic polymorphisms could also influence the outcome of studies using human cell lines. Therefore, the aim of our study was to pharmacogenotype four cell lines frequently used in drug metabolism and transport studies, HepG2, IGROV-1, CaCo-2 and LS180, for genetic polymorphisms in biotransformation enzymes and drug transporters. The results indicate that, despite the presence of some genetic polymorphisms, no real effects influencing the activity of metabolizing enzymes or drug transporters in the investigated cell lines are expected. However, this characterization will be an aid in the interpretation of the results of biotransformation and transport studies using these in vitro cell models.  相似文献   

9.
Dioxins are metabolized by cytochrome P450, family 1 (CYP1) via the aromatic hydrocarbon receptor (AHR). We determined whether different blood dioxin concentrations are associated with polymorphisms in AHR (dbSNP ID: rs2066853), AHR repressor (AHRR; rs2292596), CYP1 subfamily A polypeptide 1 (CYP1A1; rs4646903 and rs1048963), CYP1 subfamily A polypeptide 2 (CYP1A2; rs762551), and CYP1 subfamily B polypeptide 1 (CYP1B1; rs1056836) in pregnant Japanese women. These six polymorphisms were detected in 421 healthy pregnant Japanese women. Differences in dioxin exposure concentrations in maternal blood among the genotypes were investigated. Comparisons among the GG, GA, and AA genotypes of AHR showed a significant difference (genotype model: P = 0.016 for the mono-ortho polychlorinated biphenyl concentrations and toxicity equivalence quantities [TEQs]). Second, we found a significant association with the dominant genotype model ([TT + TC] vs. CC: P = 0.048 for the polychlorinated dibenzo-p-dioxin TEQs; P = 0.035 for polychlorinated dibenzofuran TEQs) of CYP1A1 (rs4646903). No significant differences were found among blood dioxin concentrations and polymorphisms in AHRR, CYP1A1 (rs1048963), CYP1A2, and CYP1B1. Thus, polymorphisms in AHR and CYP1A1 (rs4646903) were associated with maternal dioxin concentrations. However, differences in blood dioxin concentrations were relatively low.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号