首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.

Background

This paper aimed to study the effect of two enamel protective agents on the shear bond strength (SBS) of orthodontic brackets bonded with conventional and self-etching primer (SEP) adhesive systems.

Methods

The two protective agents used were resin infiltrate (ICON) and Clinpro; the two adhesive systems used were self-etching primer system (Transbond Plus Self Etching Primer + Transbond XT adhesive) and a conventional adhesive system (37% phosphoric acid etch + Transbond XT primer + Transbond XT adhesive ). Sixty premolars divided into three major groups and six subgroups were included. The shear bond strength was tested 72 h after bracket bonding. Adhesive remnant index scores (ARI) were assessed. Statistical analysis consisted of a one-way ANOVA for the SBS and Kruskal-Wallis test followed by Mann-Whitney test for the ARI scores.

Results

In the control group, the mean SBS when using the conventional adhesive was 21.1 ± 7.5 MPa while when using SEP was 20.2 ± 4.0 MPa. When ICON was used with the conventional adhesive system, the SBS was 20.2 ± 5.6 MPa while with SEP was 17.6 ± 4.1 MPa. When Clinpro was used with the conventional adhesive system, the SBS was 24.3 ± 7.6 MPa while with SEP was 11.2 ± 3.5 MPa. Significant differences in the shear bond strength of the different groups (P = .000) was found as well as in the ARI scores distribution (P = .000).

Conclusion

The type of the adhesive system used to bond the orthodontic brackets, either conventional or self-etching primer, influenced the SBS, while the enamel protective material influenced the adhesive remnant on the enamel surface after debonding.  相似文献   

2.
Abstract Objective: To determine if a new experimental resin-based material containing Portland cement (PC) can help prevent enamel caries while providing adequate shear bond strength (SBS). Materials and Methods: Brackets were bonded to human premolars with experimental resin-based adhesive pastes composed of three weight rations of resin and PC powder (PC 30, 7∶3; PC 50, 5∶5; PC 70, 3∶7; n = 7). Self-etching primer (SEP) adhesive (Transbond Plus) and resin-modified glass ionomer cement (RMGIC) adhesive (Fuji Ortho FC Automix) were used for comparison. All of the bonded teeth were subjected to alternating immersion in demineralizing (pH?4.55) and remineralizing (pH?6.8) solutions for 14?days. The SBS for each sample was examined, and the Adhesive Remnant Index (ARI) score was calculated. The hardness and elastic modulus of the enamel were determined by a nanoindenter at 20 equidistant depths from the external surface at 100?μm from the bracket edge. Data were compared by one-way analysis of variance and a chi-square test. Results: PC 50 and PC 70 showed significantly greater SBS than Fuji Ortho FC Automix, although Transbond Plus showed significantly greater SBS than other bonding systems. No significant difference in the ARI category was observed among the five groups. For specimens bonded with PC 50 and PC 70, the hardness and elastic modulus values in most locations were equivalent to those of Fuji Ortho FC Automix. Conclusions: Experimental resin-based bonding material containing PC provides adequate SBS and a caries-preventive effect equivalent to that of the RMGIC adhesive system.  相似文献   

3.
OBJECTIVE: To evaluate the effect of a self-etching primer on shear bond strengths (SBS) at the different debond times of 5, 15, 30, and 60 minutes and 24 hours. MATERIALS AND METHODS: Brackets were bonded to human premolars with different etching protocols. In the control group (conventional method [CM]) teeth were etched with 37% phosphoric acid. In the study group, a self-etching primer (SEP; Transbond Plus Self Etching Primer; 3M Unitek, Monrovia, Calif) was applied as recommended by the manufacturer. Brackets were bonded with light-cure adhesive paste (Transbond XT; 3M Unitek) and light-cured for 20 seconds in both groups. The shear bond test was performed at the different debond times of 5, 15, 30 and 60 minutes and 24 hours. RESULTS: Lowest SBS was attained with a debond time of 5 minutes for the CM group (9.51 MPa) and the SEP group (8.97 MPa). Highest SBS was obtained with a debond time of 24 hours for the CM group (16.82 MPa) and the SEP group (19.11 MPa). Statistically significant differences between the two groups were not observed for debond times of 5, 15, 30, or 60 minutes. However, the SBS values obtained at 24 hours were significantly different (P < .001). CONCLUSIONS: Adequate SBS was obtained with self-etching primer during the first 60 minutes (5, 15, 30 and 60 minutes) when compared with the conventional method. It is reliable to load the bracket 5 minutes after bonding using self-etching primer (Transbond Plus) with the light-cure adhesive (Transbond XT).  相似文献   

4.
Objective:To comparatively assess the failure rate of adhesive precoated (APC) self-ligating metal brackets bonded with two different enamel surface preparation techniques: self-etching primer (SEP) and conventional two-step etch and primer method (CM).Materials and Methods:Fifty-seven patients with complete permanent dentition were included in this study. A total of 1140 APC self-ligating brackets (3M Unitek, Monrovia, Calif) were bonded using a split-mouth design. For each patient, SEP (Transbond Plus SEP, 3M Unitek) and CM (37% phosphoric acid) were used in alternate quadrants. All brackets were bonded by the same investigator after pumicing and rinsing of all of the teeth. The number, site, and date of first-time bracket failures were monitored throughout orthodontic treatment (mean, 22 months). The survival rates of the brackets were estimated by Kaplan-Meier and log-rank tests (P < .05). The adhesive remnant index was used to determine the bond failure interface.Results:The bond failure rates were 2.97% and 2.18% for the CM and SEP, respectively. No statistically significant difference in failure rates was found between the groups. The bond failure sites were predominantly at the enamel-adhesive interface in both groups.Conclusion:This long-term in vivo study showed that the combined use of SEP and the APC bracket system can be used effectively for bonding brackets after pumicing the enamel surfaces in clinical orthodontics.  相似文献   

5.
The purpose of this study was to investigate the effects of enamel pre-treatment with a new fluoride-containing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) complex on the shear bond strength (SBS) of brackets bonded with etch-and-rinse or self-etching adhesive systems. The material comprised 66 extracted human premolars randomly divided into six equal groups with respect to the enamel pre-treatment and adhesive system employed: 1. No pre-treatment and brackets bonded with the etch-and-rinse adhesive system (Transbond XT). 2. Pre-treatment with fluoride-containing CPP-ACP paste (MI Paste Plus) and Transbond XT. 3. Pre-treatment with non-fluoride CPP-ACP paste (MI Paste) and Transbond XT.4. No pre-treatment and brackets bonded with the self-etching adhesive system (Transbond Plus). 5 and 6. Enamel pre-treated as for groups 2 and 3, respectively, and the Transbond Plus. Bonded specimens were subjected to thermal cycling (×1000) before SBS testing. The residual adhesive on the enamel surface was evaluated after debonding with the adhesive remnant index (ARI). Data evaluation was made using one-way analysis of variance and Tukey test for SBS results, and Kruskal-Wallis test for ARI results. The results showed that enamel pre-treatment with either fluoride or non-fluoride CPP-ACP paste had no significant effect on the SBS of the self-etching adhesive system (P > 0.05). Enamel pre-treatment with non-fluoride CPP-ACP in group 3 significantly reduced the SBS of the etch-and-rinse adhesive (P < 0.001), while pre-treatment with fluoride-containing CPP-ACP paste (groups 2 and 5) did not affect debonding values (P > 0.05). The fluoride-containing CPP-ACP did not compromise the SBS of brackets bonded with the tested etch-and-rinse and self-etching systems, but its non-fluoride version significantly decreased the SBS of the etch-and-rinse adhesive system.  相似文献   

6.
OBJECTIVE: To evaluate shear bond strengths (SBSs) of a self-etching primer (SEP) following saliva contamination at different stages of bonding at debond times of 5, 15, and 30 minutes and 24 hours. MATERIALS AND METHODS: Two-hundred forty human premolars were divided into four groups: group 1, uncontaminated; group 2, saliva contamination after priming; group 3, saliva contamination before priming; and group 4, saliva contamination before and after priming. Four subgroups according to debond times of 5, 15, 30 minutes and 24 hours were composed. Metal brackets were bonded with an SEP (Transbond Plus) and light-cure adhesives paste (Transbond XT). SBS values and the adhesive remnants were determined. RESULTS: The highest SBS was obtained at a debond time of 24 hours for the control group. This was significantly different from the other groups. SBSs at 5, 15, and 30 minutes showed no significant difference from each other in the control group (P>.05). Lowest SBSs were obtained at a debond time of 5 minutes for groups 1, 2, 3, and 4 (8.38, 7.10, 7.06, and 6.26 MPa, respectively) and were not significantly different from each other (P>.05). SBSs at 24 hours were not significantly different from each other for groups 2, 3, and 4 (P>.05). Significant differences were found in the adhesive remnant (P<.001). CONCLUSIONS: SEP (Transbond Plus) may produce clinically acceptable bracket bonding after 5, 15, and 30 minutes from time of placement on the teeth, even with light and heavy saliva contamination.  相似文献   

7.
OBJECTIVE: To compare the shear bond strength (SBS) of orthodontic brackets when the self-etching primer (SEP) and the bracket adhesive are light cured either separately or simultaneously. MATERIALS AND METHODS: Seventy-five human molars were randomly divided into five equal groups. Brackets precoated with Transbond XT composite adhesive were used. The five protocols were: Group 1 (control), the SEP Transbond Plus was applied, brackets placed, and adhesive light cured for 20 seconds; Group 2, SEP Adper Prompt L-Pop was applied, light cured, brackets placed, and light cured; Group 3, the same SEP as in Group 2 was used, however, the SEP and bracket adhesive were light cured together; Group 4, SEP Clearfil S3 Bond was applied, light cured, brackets placed, and light cured; and Group 5, the same SEP as in group 4 was used, however, the SEP and the adhesive were light cured together. The teeth were debonded using a universal testing machine, and the enamel was examined for residual adhesive. Analysis of variance was used to compare the SBS. RESULTS: The SBS of Clearfil S3 Bond after one light cure and two light cures were significantly greater than the bonds of brackets using Transbond Plus. Brackets bonded using Adper Prompt L-Pop after one light cure and two light cures were not significantly different from the other groups. The groups did not differ significantly in their bracket failure modes. CONCLUSION: Only one light curing application is needed to successfully bond brackets when using SEPs and adhesives. This approach can potentially reduce technique sensitivity as well as chair time.  相似文献   

8.

Objectives:

To evaluate the microtensile bond strength (μTBS) of one- (Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days).

Material and Methods:

Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10). The restored teeth were stored in distilled water at 37°C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm2 cross-sectional area, which were subjected to μTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The μTBS data in MPa were subjected to three-way analysis of variance and Tukey''s test (α= 0.05).

Results:

The interaction effect for all three factors was statistically significant (three-way ANOVA, p<0.001). All eight experimental means (MPa) were compared by the Tukey''s test (p<0.05) and the following results were obtained: Tyrian-One Step Plus/C&B/24 h (22.4±7.3); Tyrian-One Step Plus/Variolink II/24 h (39.4±11.6); Xeno III/C&B/24 h (40.3±12.9); Xeno III/Variolink II/24 h (25.8±10.5); Tyrian-One Step Plus/C&B/90 d (22.1±12.8) Tyrian-One Step Plus/VariolinkII/90 d (24.2±14.2); Xeno III/C&B/90 d (27.0±13.5); Xeno III/Variolink II/ 90 d (33.0±8.9).

Conclusions:

Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water.  相似文献   

9.
Objective:To determine the shear bond strength (SBS) and microleakage of metal brackets bonded with two different adhesives when a resin coat and the adhesive were light-cured separately or simultaneously.Materials and Methods:Eighty stainless steel brackets were bonded to the enamel of extracted premolars, 40 with Transbond Plus adhesive (group 1) and 40 with Transbond XT (group 2). Each group was subdivided into four equal subgroups; a, b, c, and d. Brackets in subgroups a and b were bonded with the adhesive without coating. For brackets in subgroup c, Ortho-Choice Ortho-Coat was applied and cured after curing of the adhesive, while the coat was applied and cured with the adhesive for brackets in subgroup d. The specimens were immersed in a 2% methylene blue dye. After debonding, the teeth and brackets were examined with a stereomicroscope. The data were subjected to a two-way analysis of variance (ANOVA), Duncan multiple range test, and Pearson correlation.Results:Both adhesives had comparable SBS. Curing of the coat after curing of the adhesive showed significantly higher SBS than other protocols. There was no significant difference in SBS of the adhesives without coating and with curing of the coat and adhesive simultaneously. Application of the coat significantly reduced microleakage. There was a significant negative relationship between SBS and microleakage.Conclusions:SBS was significantly improved with curing of the coat and adhesive separately, while it was not adversely affected when the coat and adhesive were cured simultaneously. Using the coat with either protocol significantly reduced the microleakage.  相似文献   

10.
Abstract

Aim. This study aimed to evaluate the effect of pre-heated composite restoratives on the shear bond strength (SBS) of orthodontic brackets. Methods. The following materials were tested: a microhybrid composite restorative (Filtek Z250), two nanofilled composite restoratives (Filtek Z350 and NT Premium), a nanohybrid composite restorative (Brilliant) and a conventional orthodontic adhesive (Transbond XT). All materials were stored for 1 h in the incubator either at 25°C (room temperature simulation) or 60°C before bonding 100 orthodontic brackets on bovine lower incisors (n = 10). One Coat Bond SL and Transbond XT were used to bond the composite restoratives and the Transbond XT adhesive paste, respectively. After storage in distilled water for 24 h, the brackets were subjected to SBS test at a speed of 0.5 mm/min until bracket debonding. The Adhesive Remnant Index (ARI) was assigned to the fractured specimens. Data were analyzed using the one-way ANOVA and the Tukey post-hoc test (p < 0.05). The Kruskal-Wallis test was used to compare ARI scores between the groups (p < 0.05). Results. There was no statistically significant difference between the materials at room temperature. Samples bonded with pre-heated materials showed a statistically higher SBS than those bonded with room temperature materials. Samples bonded with the pre-heated orthodontic adhesive showed the highest SBS among all the pre-heated materials. All preheated composite restoratives produced an SBS mean higher than that of Transbond XT stored at room temperature. Conclusion. The use of pre-heated composite restoratives and orthodontic adhesives might be an alternative approach to bond orthodontic brackets.  相似文献   

11.
《Dental materials》2023,39(2):170-180
ObjectiveInvestigating the impact of different pretreatment methods, attachment materials and aging regimens on shear bond strength (SBS) between zirconia and indirectly bonded brackets using CAD/CAM transfer trays.MethodsZirconia substrates were conditioned with silica coated alumina (CoJet) and a) Clearfil Ceramic Primer Plus (CF), b) RelyX Ceramic Primer (RXP), c) Futurabond U (FU). Brackets were virtually placed, transfer tray designed (OnyxCeph) and 3D-printed for indirect bonding with a) Transbond LV (TBL), b) Nexus NX3 (NX3), c) Maximum Cure (MC). SBS testing was performed with a universal testing machine after 24 h, 500 thermal cycles, 90 d. Directly bonded brackets to human enamel using Transbond XT Adhesive served as control. The adhesive remnant index (ARI) was evaluated. Data was analyzed with Shapiro–Wilk, Kruskal–Wallis and Dunn’s post-hoc test with Bonferroni correction, Chi2 test (p < 0.05), and the Weibull modulus was calculated.ResultsSBS ranged from 0.1 to 15.5 MPa and were influenced mostly by the attachment material. NX3 generally showed the highest values (9.5–15.8 MPa). Initially RXP/TBL and FU/TBL presented the lowest values (4.3/4.8 MPa). Aging regimens reduced SBS of MC irrespective of pretreatment, after 90 d values ranged from 0.1 to 0.9 MPa. ARI 1 was predominant in all MC groups and FU/NX3, 2 and 3 in the other groups. Weibull moduli ranged between 0.15 (MC/RXP/500 TC) and 6.24 (NX3/RXP/500 TC).SignificanceMC seems not to be suitable for indirect bonding using CAD/CAM transfer trays to zirconia. NX3 showed similar SBS values compared to the control, TBL lower.  相似文献   

12.
Objective:To investigate the shear bond strength (SBS) of orthodontic metal brackets applied to different types of ceramic surfaces treated with different etching procedures and bonding agents.Materials and Methods:Monolithic CAD/CAM ceramic specimens (N = 120; n = 40 each group) of feldspathic ceramic Vita Mark II, resin nanoceramic Lava Ultimate, and hybrid ceramic Vita Enamic were fabricated (14 × 12 × 3 mm). Ceramic specimens were separated into four subgroups (n = 10) according to type of surface treatment and bonding onto the ceramic surface. Within each group, four subgroups were prepared by phosphoric acid, hydrofluoric acid, Transbond XT primer, and Clearfill Ceramic primer. Mandibular central incisor metal brackets were bonded with light-cure composite. The SBS data were analyzed using three-way analysis of variance (ANOVA) and Tukey HSD tests.Results:The highest SBS was found in the Vita Enamic group, which is a hybrid ceramic, etched with hydrofluoric acid and applied Transbond XT Adhesive primer (7.28 ± 2.49 MPa). The lowest SBS was found in the Lava Ultimate group, which is a resin nano-ceramic etched with hydrofluoric acid and applied Clearfill ceramic primer (2.20 ± 1.21 MPa).Conclusions:CAD/CAM material types and bonding procedures affected bond strength (P < .05), but the etching procedure did not (P > .05). The use of Transbond XT as a primer bonding agent resulted in higher SBS.  相似文献   

13.
The purpose of this study was to test the hypothesis that a torsional load applied after bracket bonding does not affect the shear bond strength (SBS) with different bonding techniques. Sixty human premolars were divided into two groups (experimental and control) to investigate the effects of a torsion load, and the two groups were further subdivided into three groups of 10 for the evaluation of different adhesive systems (one etch-and-rinse adhesive, Transbond XT; two self-etching primer adhesives, Transbond Plus and Beauty Ortho Bond). A torsion load (1.45 N/cm) was applied by beta-titanium wire at 15 minutes after bracket bonding in the experimental groups. All specimens were then thermocycled between 5 and 55°C for approximately 1 week (6000 cycles). The SBS for each sample was examined with a universal testing machine and the adhesive remnant index (ARI) score was calculated. Data were compared by two-way analysis of variance, Student's t-test, and a chi-square test. The SBS for Transbond XT after thermocycling with a torsion load was significantly lower than that without a torsion load. For Transbond Plus and Beauty Ortho Bond, there was no significant difference in the mean SBS between specimens thermocycled with and without a torsion load. No significant difference in the distribution of frequencies among the ARI categories was observed among the six groups, although the ARI scores for specimens with a torsion load tended to be higher than those without a torsion load. In conclusion, the SBS of the conventional etch-and-rinse adhesive system significantly decreased under a torsion load with thermocycling.  相似文献   

14.
The objective of this research was to investigate the effect of applying a sustained seating force during bonding on the adhesive layer and on shear bond strength (SBS) of orthodontic brackets. Forty human premolars divided into two groups were included in the study. Stainless steel brackets were bonded to the premolars with Transbond XT light cure adhesive and Transbond Plus Self Etch Primer (SEP). The brackets in both groups were subjected to an initial seating force of 300 g for 3 seconds, sufficient to position the bracket. The seating force was maintained throughout the 40 seconds of light curing in group 2. SBS was tested 24 hours after bracket bonding with a shear blade using an Instron testing unit at a crosshead speed of 2 mm/minute. A Student's t-test was used to compare the bond strength of the two groups and a chi-square test to compare the frequencies of the adhesive remnant index (ARI) scores. The mean SBS was significantly different between the two groups (P=0.025). The bond strength was higher (mean 8.15±0.89 MPa) in group 2 compared with group 1 (mean 7.39±1.14 MPa). There was no significant difference (P=0.440) in the ARI scores between the two groups. Applying a sustained seating force during orthodontic bracket bonding improves bond strength but does not change the distribution of the ARI scores.  相似文献   

15.
The aim of this study was to evaluate, over an 18-month period, the clinical performance of a self-etch adhesive [Transbond Plus Self Etching Primer (SEP), 3M Unitek] compared with a conventional adhesive that employs the etch-and-rinse approach (Transbond XT, 3M Unitek). One operator, using the straight-wire technique, bonded 567 metallic brackets to the teeth of 30 patients (age range 12-18 years) in a way that patients acted as self-control. The brackets were bonded following the manufacturers' instructions except for the fact that the self-etch system was brushed for a longer time than recommended (10-15 seconds) since previous investigations have reported that prolonged application times can improve the bonding efficacy of self-etch systems to enamel. The failure modes were visually classified into: adhesive-enamel, adhesive-bracket, and cohesive failure. The survival rates of the brackets were estimated by Kaplan-Meier and log-rank test (P < 0.05). The failure rates of the self-etch and conventional adhesives were 15.6 and 17.6 per cent, respectively. No significant differences in the survival rate were observed between the materials (P > 0.05). Most of the failures were cohesive and at the adhesive-enamel interface. There was no difference in the fracture debonding mode. These findings indicate that Transbond Plus SEP can be safely used for orthodontic brackets since the survival rates are similar to the conventional Transbond XT.  相似文献   

16.
OBJECTIVE: To evaluate a new self-etch conditioner used with resin-modified glass ionomers (RMGIs) in bonding orthodontic brackets. MATERIALS AND METHODS: Sixty human molars were cleaned, mounted, and randomly divided into three groups. In group 1 (control), 20 orthodontic brackets were bonded to teeth using Transbond Plus Self-etching Primer; in group 2, 20 brackets were bonded using an RMGI with a 10% polyacrylic acid conditioner. In group 3, 20 brackets were bonded using Fuji Ortho LC with a new no-rinse self-conditioner for RMGIs. The same bracket type was used on all groups. The teeth were debonded in shear mode using a universal testing machine, and the amount of residual adhesive remaining on each tooth was evaluated. Analysis of variance was used to compare the shear bond strength (SBS), and the chi(2) test was used to compare the Adhesive Remnant Index (ARI) scores. RESULTS: There were no significant differences in the SBS (P = .556) between the groups. The mean SBS for Transbond Plus was 8.6 +/- 2.6 MPa, for Fuji Ortho LC using 10% polyacrylic acid 9.1 +/- 4.6 MPa, and for Fuji Ortho LC using GC Self-conditioner 9.9 +/- 4.1 MPa. The comparisons of the ARI scores between the three groups (chi(2) = 35.5) indicated that bracket failure mode was significantly different (P < .001), with more adhesive remaining on the teeth bonded using Transbond. Conclusions: The new self-etch conditioner can be used with an RMGI to successfully bond brackets. In addition, brackets bonded with Fuji Ortho LC resulted in less residual adhesive remaining on the teeth.  相似文献   

17.
The shear bond strength (SBS) of a light-cured, resin-reinforced glass ionomer and a composite adhesive in combination with a self-etching primer was compared after different setting times to evaluate when orthodontic wires could be placed. Additionally, the fracture site after debonding was assessed using the Adhesive Remnant Index (ARI). Eighty freshly extracted human premolars were used. Twenty teeth were randomly assigned to each of four groups: (1) brackets bonded with Transbond XT with a Transbond Plus etching primer and debonded within 5 minutes; (2) brackets bonded with Fuji Ortho LC and debonded within 5 minutes; (3) brackets bonded as for group 1 and debonded within 15 minutes; (4) brackets bonded as for group 2 and debonded within 15 minutes. The SBS of each sample was determined with an Instron machine. The mean SBS were, respectively: (1) 8.8 +/- 2 MPa; (2) 6.6 +/- 2.5 MPa; (3) 11 +/- 1.6 MPa and (4) 9.6 +/- 1.6 MPa. Interpolating the cumulative fracture probability by means of a Weibull analysis, the 10 per cent probabilities of fracture for the groups were found to be attained for shear stresses of 6.1, 3.1, 8.3 and 7.1 MPa, respectively. Chi-square testing of the ARI scores revealed that the nature of the remnant did not vary significantly with time, but the type of bonding material could generally be distinguished in leaving more or less than 10 per cent of bonding material on the tooth. After debonding, the Transbond system was likely to leave adhesive on at least 10 per cent of the bonded area of the tooth. The present findings indicate that brackets bonded with either Transbond XT in combination with Transbond Plus etching primer and Fuji Ortho LC had adequate bond strength at 5 minutes and were even stronger 15 minutes after initial bonding.  相似文献   

18.
Objective: The purpose of this study was to evaluate the in vitro shearing force performance of orthodontic attachments using two self-etching primers (SEPs): iBOND and G-Bond. Design: In vitro, laboratory study. Material and methods: One hundred and eighty human molars were randomly divided into four groups and again into three sub-groups with 15 teeth each. Teeth were bonded with a stainless steel button (GAC International,Bohemia, NY, USA) using Transbond XT adhesive composite. The bonding agents were iBOND, G-Bond, Transbond Plus SEP and Transbond XT primer. Shearing force tests were carried out immediately, and at 24 hours and 3 months using a universal testing machine. Force to debond (N) and Adhesive Remnant Index (ARI) scores were evaluated and compared. Results: Transbond XT primer required a higher immediate (P<0·05)force to debond when compared to the Transbond Plus SEP, iBOND and G-Bond.After 24 hours, mean force to debond for Transbond XT primer and Transbond Plus SEP showed significant increases. At 3 months, all four bonding agents demonstrated force levels to debond that were not significantly different from one another. Furthermore, comparison of ARI scores indicated a significant difference between the groups at all time points. Conclusions: iBOND and G-Bond may well sufficiently with stand the alignment and occlusal forces imparted by light archwires during immediate archwire tie-in and over the initial levelling and alignment phase.  相似文献   

19.

Aim

The objective of present study was to examine influence of adhesives and methods of enamel pretreatment on the shear bond strength (SBS) of orthodontic brackets. The adhesives used were resin-reinforced glass ionomer cements-GIC (Fuji Ortho LC) and composite resin (Transbond XT).

Material and Methods

The experimental sample consisted of 80 extracted human first premolars. The sample was divided into four equal groups, and the metal brackets were bonded with different enamel pretreatments by using two adhesives: group A-10% polyacrylic acid; Fuji Ortho LC, group B–37% phosphoric acid; Fuji Ortho LC, group C–self etching primer; Transbond XT, group D–37% phosphoric acid, primer; Transbond XT. SBS of brackets was measured. After debonding of brackets, the adhesive remnant index (ARI) was evaluated.

Results

After the statistical analysis of the collected data was performed (ANOVA; Sheffe post-hoc test), the results showed that significantly lower SBS of the group B was found in relation to the groups C (p=0.031) and D (p=0.026). The results of ARI were similar in all testing groups and it was not possible to determine any statistically significant difference of the ARI (Chi- square test) between all four experimental groups.

Conclusion

The conclusion is that the use of composite resins material with appropriate enamel pretreatment according to manufacturer’s recommendation is the “gold standard” for brackets bonding for fixed orthodontic appliances.Key words: orthodontic brackets, shear strength, adhesive, enamel preparation  相似文献   

20.
Objective:To investigate the shear bond strength (SBS) of orthodontic brackets bonded to eroded enamel treated with preventive approaches and to examine the enamel/bracket interfaces.Materials and Methods:Ninety-one brackets were bonded to seven groups of enamel samples: sound; eroded; eroded+treated with calcium silicate–sodium phosphate salts (CSP); eroded+infiltrated by ICON®; eroded+infiltrated by ICON® and brackets bonded with 1-month delay; eroded+infiltrated by an experimental resin; and eroded+infiltrated by an experimental resin and brackets bonded with 1-month delay. For each group, 12 samples were tested in SBS and bond failure was assessed with the adhesive remnant index (ARI); one sample was examined using scanning electron microscopy (SEM).Results:Samples treated with CSP or infiltration showed no significant differences in SBS values with sound samples. Infiltrated samples followed by a delayed bonding showed lower SBS values. All of the values remained acceptable. The ARI scores were significantly higher for sound enamel, eroded, and treated with CSP groups than for all infiltrated samples. SEM examinations corroborated the findings.Conclusions:Using CSP or resin infiltration before orthodontic bonding does not jeopardize the bonding quality. The orthodontic bonding should be performed shortly after the resin infiltration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号