首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose : To investigate initial chromatid breaks in prematurely condensed G2 chromosomes following exposure to heavy ions of different LET. Material and methods : Exponentially growing human fibroblast cells AG1522 were irradiated with γ-rays, energetic carbon (13 keV/ μ m, 80keV/ μ m), silicon (55 keV/ μ m) and iron (140 keV/ μ m, 185keV/ μ m, 440keV/ μ m) ions. Chromosomes were prematurely condensed using calyculin-A. Initial chromatid-type and isochromatid breaks in G2 cells were scored. Results : The dose-response curves for total chromatid breaks were linear regardless of radiation type. The relative biological effectiveness (RBE) showed a LET-dependent increase, peaking around 2.7 at 55-80 keV/ μ m and decreasing at higher LET. The dose-response curves for isochromatid-type breaks were linear for high-LET radiations, but linear-quadratic for γ-rays and 13 keV/ μ m carbon ions. The RBE for the induction of isochromatid breaks obtained from linear components increased rapidly between 13 keV/ μ m (about 7) and 80 keV/ μ m carbon (about 71), and decreased gradually until 440keV/ μ m iron ions (about 66). Conclusions : High-LET radiations are more effective at inducing isochromatid breaks, while low-LET radiations are more effective at inducing chromatid-type breaks. The densely ionizing track structures of heavy ions and the proximity of sister chromatids in G2 cells result in an increase in isochromatid breaks.  相似文献   

2.
PURPOSE: To determine by means of the G2 assay the number of chromatid breaks induced by low-LET gamma-rays and high-LET neutrons, and to compare the kinetics of chromatid break rejoining for radiations of different quality. MATERIALS AND METHODS: The G2 assay was performed on blood samples of four healthy donors who were irradiated with low-LET gamma-rays and high-LET neutrons. In a first set of experiments a dose-response curve for the formation of chromatid breaks was carried out for gamma-rays and neutrons with doses ranging between 0.1 and 0.5 Gy. In a second set of experiments, the kinetics of chromatid break formation and disappearance were investigated after a dose of 0.5 Gy using post-irradiation times ranging between 0.5 and 3.5 h. For the highest dose of 0.5 Gy, the number of isochromatid breaks was also scored. RESULTS: No significant differences in the number of chromatid breaks were observed between low-LET gamma-rays and high-LET neutrons for the four donors at any of the doses given. The dose-response curves for the formation of chromatid breaks are linear for both radiation qualities and RBEs = 1 were obtained. Scoring of isochromatid breaks at the highest dose of 0.5 Gy revealed that high-LET neutrons were, however, more effective at inducing isochromatid breaks (RBE = 6.2). The rejoining experiments further showed that the kinetics of disappearance of chromatid breaks following irradiation with low-LET gamma-rays or high-LET neutrons were not significantly different. Half-times of 0.92 h for gamma-rays and 0.84 h for neutrons were obtained. CONCLUSIONS: Applying the G2 assay, the results demonstrate that at low doses of irradiation, the induction as well as the disappearance of chromatid breaks is independent of the LET of the radiation qualities used (0.24 keV x microm(-1) 60Co gamma-rays and 20 keV x microm(-1) fast neutrons). As these radiation qualities produce the same initial number of double-strand breaks, the results support the signal model that proposes that chromatid breaks are the result of an exchange process which is triggered by a single double-strand break.  相似文献   

3.
Human hepatoma and normal liver cells were irradiated with (12)C(6+) ion beams (linear energy transfer (LET) = 96 keV microm(-1)) and gamma-rays at the Heavy Ion Research Facility in Lanzhou (HIRFL). The numbers and types of chromatid breaks were detected using the premature chromosome condensation technique. Irradiation with (12)C(6+) ions produced a majority of isochromatid break types, while chromatid breaks were dominant for irradiation with gamma-rays. Experimental results showed that the initial level of chromatid breaks is clearly related to the absorbed dose from (12)C(6+) ions and gamma-rays. The (12)C(6+) ions are relatively more effective at inducing initial chromatid breaks when compared with the gamma-rays. A relative biological effectiveness (RBE) of about 2.5 resulted for the induction of initial chromatid breaks by (12)C(6+) ions relative to gamma-rays in both cell lines.  相似文献   

4.
We have studied induction and repair of chromosome damage induced by high linear energy transfer (LET) heavy ions in G1/G0 interphase Syrian golden hamster embryo (SHE) cells as revealed by the premature chromosome condensation (PCC) technique. The number of chromosome breaks in condensed chromosomes induced by high LET heavy ions was higher than those induced by 137Cs gamma-rays. Compared with 137Cs gamma rays, the relative biological effectiveness (RBE) for PCC breaks was 1.5 for 35 keV/microns 4He ions, 1.9 for 77keV/microns 4He ions, and 2.5 for 530keV/microns 14N ions. Although 95% of the PCC breaks induced by gamma-rays rejoined during 8 h post-irradiation incubation, only 35-45% of fragments induced by high LET radiations rejoined in the same time. These results suggest that there is a difference, spatial or qualitative, in the initial chromosome damage produced by high LET radiations and low LET radiations.  相似文献   

5.
PURPOSE: To investigate the time-course of chromosomal aberrations following radiations of differing LET. MATERIALS AND METHODS: Syrian hamster embryonic cells were irradiated with nitrogen ions (LET(infinity) = 530 keV/microm) and helium-ions (LET(infinity) = 36 and 77 keV/microm), also 137Cs gamma-rays as a reference radiation. The frequency of chromatid-type aberrations was determined after 0-6 h incubation in a 5% CO2 incubator at 37 degrees C. RESULTS: The amount of chromosomal damage per cell for nitrogen ions detected immediately after irradiation was lower than induced by 137Cs gamma-rays. In contrast, helium ions were more effective than gamma rays in inducing chromatid type damage. The RBE values for the nitrogen-ion beams were 0.45 for gaps, 0.43 for deletions and 0.20 for exchanges. For helium-ion beams, the RBE values for the 36 keV/microm beams and the 77 keV/microm beams were 1.2 and 1.5 for gaps, 1.3 and 2.1 for deletions, and 1.5 and 1.9 for exchanges, respectively. The frequency of cells with chromosomal damage following exposure to gamma-rays and helium-ion beams showed a downward trend with increasing incubation period. In contrast, in the case of nitrogen-ion beams, there was an increase with the incubation period. CONCLUSIONS: The results show that it is possible to underestimate chromosomal damage for different types of radiation by scoring aberrations at a single fixed sampling time.  相似文献   

6.
PURPOSE: To determine the number of initial chromatid breaks induced by low- or high-LET irradiations, and to compare the kinetics of chromatid break rejoining for radiations of different quality. MATERIAL AND METHODS: Exponentially growing human fibroblast cells AG1522 were irradiated with gamma-rays, energetic carbon (290MeV/u), silicon (490MeV/u) and iron (200 and 600 MeV/u). Chromosomes were prematurely condensed using calyculin A. Chromatid breaks and exchanges in G2 cells were scored. PCC were collected after several post-irradiation incubation times, ranging from 5 to 600 min. RESULTS: The kinetics of chromatid break rejoining following low- or high-LET irradiation consisted of two exponential components representing a rapid and a slow time constant. Chromatid breaks decreased rapidly during the first 10min after exposure, then continued to decrease at a slower rate. The rejoining kinetics were similar for exposure to each type of radiation. Chromatid exchanges were also formed quickly. Compared to low-LET radiation, isochromatid breaks were produced more frequently and the proportion of unrejoined breaks was higher for high-LET radiation. CONCLUSIONS: Compared with gamma-rays, isochromatid breaks were observed more frequently in high-LET irradiated samples, suggesting that an increase in isochromatid breaks is a signature of high-LET radiation exposure.  相似文献   

7.
PURPOSE: To determine the radiation sensitivity and relationship between linear energy transfer (LET) and relative biological effectiveness (RBE) in single plant cells irradiated with heavy ions. MATERIALS AND METHODS: Single cells were isolated from the tobacco BY-2 cell line and irradiated with carbon ions (78.6-309 keV microm(-1)) and gamma-rays (0.2 keV microm(-1)). Two weeks after irradiation, colonies with 16 cells or more derived from the irradiated cells were counted as survivors. The surviving fraction was fitted using the single-hit, multitarget theory. RESULTS: The doses needed to reduce the surviving fraction of the cells to 0.1 (D10) of gamma-rays and carbon ions were 47.2 and 10.5-12.6 Gy, respectively. The RBE based on the D10 peaked at an LET of 247 keV microm(-1). The inactivation cross-section of carbon ions reached a plateau of 11.3 microm2 at an LET of 247 keV microm(-1). CONCLUSIONS: The radiation sensitivity of single tobacco cells was much lower than that of mammalian cells, although the mean number of base pairs per chromosome in the two cell types was similar. The RBE peak based on the D10 of carbon ions in single tobacco cells occurred at a higher LET than it does in other organisms.  相似文献   

8.
Purpose : To determine by means of the G2 assay the number of chromatid breaks induced by low-LET γ-rays and high-LET neutrons, and to compare the kinetics of chromatid break rejoining for radiations of different quality. Materials and methods : The G2 assay was performed on blood samples of four healthy donors who were irradiated with low-LET γ-rays and high-LET neutrons. In a first set of experiments a dose-response curve for the formation of chromatid breaks was carried out for γ-rays and neutrons with doses ranging between 0.1 and 0.5 Gy. In a second set of experiments, the kinetics of chromatid break formation and disappearance were investigated after a dose of 0.5 Gy using post-irradiation times ranging between 0.5 and 3.5 h. For the highest dose of 0.5 Gy, the number of isochromatid breaks was also scored. Results : No significant differences in the number of chromatid breaks were observed between low-LET γ-rays and high-LET neutrons for the four donors at any of the doses given. The dose-response curves for the formation of chromatid breaks are linear for both radiation qualities and RBEs = 1 were obtained. Scoring of isochromatid breaks at the highest dose of 0.5 Gy revealed that high-LET neutrons were, however, more effective at inducing isochromatid breaks (RBE = 6.2). The rejoining experiments further showed that the kinetics of disappearance of chromatid breaks following irradiation with low-LET γ-rays or high-LET neutrons were not significantly different. Half-times of 0.92 h for γ-rays and 0.84 h for neutrons were obtained. Conclusions : Applying the G2 assay, the results demonstrate that at low doses of irradiation, the induction as well as the disappearance of chromatid breaks is independent of the LET of the radiation qualities used (0.24 keV μ m -1 60 Co γ-rays and 20 keV μ m -1 fast neutrons). As these radiation qualities produce the same initial number of double-strand breaks, the results support the signal model that proposes that chromatid breaks are the result of an exchange process which is triggered by a single double-strand break.  相似文献   

9.
PURPOSE: Anhydrobiotic larvae of Polypedilum vanderplanki are known to show an extremely high tolerance against a range of stresses. We have recently reported that this insect withstands exposure to high doses of gamma-rays (linear energy transfer [LET] 0.2 keV/microm). However, its tolerance against high LET radiation remains unknown. The aim of this study is to characterize the tolerance to high-LET radiations of P. vanderplanki. MATERIALS AND METHODS: Larval survival and subsequent metamorphoses were compared between anhydrobiotic (dry) and non-anhydrobiotic (wet) samples after exposure to 1 - 7000 Gy of three types of heavy ions delivered from the azimuthally varying field (AVF) cyclotron with LET values ranging from 16.2 - 321 keV/microm. The tolerance against 4He ions was also compared among three chironomid species. RESULTS: At all LET values measured, dry larvae consistently showed greater radiation tolerance than hydrated larvae, perhaps due to the presence of high concentrations of the disaccharide trehalose in anhydrobiotic animals, and the radiation-induced damage became evident at lower doses as development progressed. Relative biological effectiveness (RBE) values based on the median inhibitory doses reached a maximum at 116 keV/microm (12C), and the maximum RBE clearly increased as development progressed. Lower D0 (dose to reduce survival from relative value 1.00 - 0.37 on the exponential part of the survival curve), and higher Dq (quasi-threshold dose) were found in individuals exposed to 4He ions, compared to gamma-rays, and in P. vanderplanki larvae compared to non-anhydrobiotic chironomids. CONCLUSION: Anhydrobiosis potentiates radiation tolerance in terms of larval survival, pupation and adult emergence of P. vanderplanki exposed to high-LET radiations as well as to low-LET radiation. P. vanderplanki larvae might have more efficient DNA damage repair after radiation than other chironomid species.  相似文献   

10.
Purpose : To determine the number of initial chromatid breaks induced by low- or high-LET irradiations, and to compare the kinetics of chromatid break rejoining for radiations of different quality. Material and methods : Exponentially growing human fibroblast cells AG1522 were irradiated with γ-rays, energetic carbon (290 MeV/u), silicon (490 MeV/u) and iron (200 and 600 MeV/u). Chromosomes were prematurely condensed using calyculin A. Chromatid breaks and exchanges in G2 cells were scored. PCC were collected after several post-irradiation incubation times, ranging from 5 to 600 min. Results : The kinetics of chromatid break rejoining following low-or high-LET irradiation consisted of two exponential components representing a rapid and a slow time constant. Chromatid breaks decreased rapidly during the first 10 min after exposure, then continued to decrease at a slower rate. The rejoining kinetics were similar for exposure to each type of radiation. Chromatid exchanges were also formed quickly. Compared to low-LET radiation, isochromatid breaks were produced more frequently and the proportion of unrejoined breaks was higher for high-LET radiation. Conclusions : Compared with γ-rays, isochromatid breaks were observed more frequently in high-LET irradiated samples, suggesting that an increase in isochromatid breaks is a signature of high-LET radiation exposure.  相似文献   

11.
PURPOSE: To determine the relationship between linear energy transfer (LET) and the relative biological effectiveness (RBE) for survival reduction and chromosome aberration induction in plants. MATERIALS AND METHODS: Tobacco seeds were exposed to carbon ions having LET ranging from 92 to 260 keV microm(-1). Survival ratc was determined at 7 weeks after sowing. Chromosome aberrations were observed when the root length reached about 0.5 mm (immediately after radicle emergence), 3 and 10 mm. RESULTS: The RBE for both endpoints increased with increasing LET and showed the highest value at 230 keV um(-1). The highest RBE was 65.0 for survival reduction and 52.5 for chromosome aberration induction. The types and yield ratio of chromosome aberrations such as fragments and bridges were not affected by radiation type at 0.5mm root length. As the roots elongated from 0.5 to 10 mm, the frequency of aberrant cells gradually decreased. The number of cells with fragments decreased faster than the number of cells with bridges. The decrement of chromosome aberrations appeared to be slower in roots irradiated by carbon ions than in roots irradiated by gamma-rays. CONCLUSIONS: The results show a close relationship between survival reduction and chromosome aberration induction in plants. The types and yield ratio of initial chromosome aberrations did not differ among gamma-rays and carbon ions with different LET.  相似文献   

12.
PURPOSE: The LET position of the RBE maximum and its dependence on the cellular repair capacity was determined for carbon ions. Hamster cell lines of differing repair capacity were irradiated with monoenergetic carbon ions. RBE values for cell inactivation at different survival levels were determined and the differences in the RBE-LET patterns were compared with the individual sensitivity to photon irradiation of the different cell lines. MATERIAL AND METHODS: Three hamster cell lines, the wild-type cell lines V79 and CHO-K1 and the radiosensitive CHO mutant xrs5, were irradiated with carbon ions of different energies (2.4-266.4 MeV/u) and LET values (13.7-482.7 keV/microm) and inactivation data were measured in comparison to 250 kV x-rays. RESULTS: For the repair-proficient cell lines a RBE maximum was found at LET values between 150 and 200 keV/microm. For the repair-deficient cell line the RBE failed to show a maximum and decreased continuously for LET values above 100 keV/microm. CONCLUSIONS: The carbon RBE LET relationship for inactivation is shifted to higher LET values compared with protons and alpha-particles. RBE correlated with the repair capacity of the cells.  相似文献   

13.
PURPOSE: To analyse the cell inactivation frequencies induced by low energy protons in human cells with different sensitivity to photon radiation. MATERIALS AND METHODS: Four human cell lines with various sensitivities to photon irradiation were used: the SCC25 and SQ20B derived from human epithelium tumours of the tongue and larynx, respectively, and the normal lines M/10, derived from human mammary epithelium, and HF19 derived from a lung fibroblast. The cells were irradiated with y-rays and proton beams with linear energy transfer (LET) from 7 to 33 keV/microm. Clonogenic survival was assessed. RESULTS: Survival curves are reported for each cell line following irradiation with gamma-rays and with various proton LETs. The surviving fraction after 2 Gy of gamma-rays was 0.72 for SQ20B cells, and 0.28-0.35 for the other cell lines. The maximum LET proton effectiveness was generally greater than that of gamma-rays. In particular there was a marked increase in beam effectiveness with increasing LET for the most resistant cells (SQ20B) whose 2 Gy-survival varied from 0.72 with gamma-radiation down to 0.37 with 30 keV/microm protons. The relative biological effectiveness (RBE(2 Gy gamma)) with the 30 keV/microm beam, evaluated as the ratio of 2 Gy to the proton dose producing the same inactivation level as that given by 2 Gy of gamma-rays, was 3.2, 1.8, 1.3 and 0.8 for SQ20B, M/10, SCC25, and HF19, respectively. CONCLUSIONS: RBE for inactivation with high-LET protons increased with the cellular radioresistance to gamma-rays. The cell line with the greatest resistance to gamma-rays was the most responsive to the highest LET proton beam. A similar trend has also been found in studies reported in the literature with He, C, N ions with LET in the range 20-125 keV/microm on human tumour cell lines.  相似文献   

14.
PURPOSE: Biophysical models for predicting survival for mixed LET radiations have been investigated by comparisons with experimental results from heavy ion irradiations. The aim was to choose a model for further theoretical studies on the effects of a variable RBE for protons. METHODS AND MATERIALS: Predicted survival curves by the Katz track-structure model, the linear quadratic model, LQ model, by Kellerer and Rossi and the lesion additivity model of Lam were compared to experimental survival curves for V79 cells that were irradiated with a mixture of nitrogen ions with an LET of either 78 or 165 keV/microm and 60Co gamma-rays. RESULTS: Results showed that all three models could predict survival within the uncertainty of the measurements for the different mixed radiation schedules used in this study. CONCLUSION: The choice of model could be made on other grounds, such as the type of model parameters and the availability of biological data for these parameters. Also, the possibility of including dose-rate effects and repair functions should be considered. For the purpose of carrying out theoretical studies on the effects of a variable RBE for protons, the LQ model was preferred.  相似文献   

15.
Purpose: To determine the relationship between the relative biological effectiveness (RBE) for cell inactivation and linear energy transfer (LET) in the Bragg peak region of 12C and 20Ne ions.

Materials and methods: Chinese hamster ovary (CHO-K1) cells were exposed to high LET 12C (33.2 MeV, 20.3 MeV, 9.1 MeV at cell entrance) and 20Ne ions (56.2 MeV, 34.7 MeV, 15 MeV at cell entrance) and to low LET x-rays. Technical details of the irradiation facility are presented which is based on the Monte Carlo simulation of the lateral spread of heavy ions as a result of the multiscattering small-angle process in physical conditions of the experimental set-up.

Results: RBE has been measured for LET values close to the Bragg peak maximum, i.e., 440–830 keV/μm for 12C and for 1020–1600 keV/μm for 20Ne ions. RBE values at several levels of survival were estimated and were found to decrease with increasing LET. The inactivation cross sections were calculated from the final slope of dose-response curves and were found to increase with increasing LET.

Conclusions: The RBE decreases with increasing LET in the range between 440 and 1600 keV/μm for the two types of radiations forming a single line when plotted together, pointing towards LET as the single determinant of RBE. The inactivation cross section describing the killing efficiency of a single particle at the end of particle range comes close to the size of the cell nucleus.  相似文献   

16.
PURPOSE: To evaluate and compare cytotoxic and mutational effects of graded doses of gamma-rays and 4He++ ions at different LET values (nominally 80 and 123 keV/microm) in V79 cells. MATERIALS AND METHODS: 4He++ ion beams at 80 and 123 keV/microm were supplied by the 7 MV Van de Graaff CN accelerator of the INFN-LNL in the dose range 0.3 2.4 Gy at a dose rate of 1 Gy/min. Gamma-irradiation was performed by the 60Co 'gamma beam' of CNR-FRAE (at the INFN-LNL) in the dose range 0.5 6.0 Gy at a dose rate of 1 Gy/min. After irradiation, the cells were seeded to measure surviving fraction (SF) and mutant frequency (MF) at the Hprt locus on the basis of 6-thioguanine resistance. Alterations at minisatellite sequences (MS) of clones derived from irradiated and unirradiated cells were detected by Southern blot analysis using a multi-locus probe (DNA fingerprinting). RESULTS: Survival data from 4He++ irradiation at two LET values (80 and 123 keV/microm) yielded similar results: alpha = (1.08 +/- 0.04)/Gy and (0.90 +/- 0.03)/Gy, respectively. The best fit for mutant induction at the Hprt locus after 80keV/microm 4He++ was a linear function of the dose in the dose-interval 0-1.5 Gy: alpha= (47.77 +/- 16.01) x 10(-6)/Gy. The best fit for mutant induction after 123 keV/microm 4He++ in the dose-interval 0-1.2 Gv was a linear-quadratic function: alpha=(86.01 +/- 13.80) x 10(-6)/Gy; beta = (42.87 +/- 11.03) x 10(-6)/Gy2. For gamma-irradiation, the best fit of Hprt mutation data gave: alpha = (4.14+2.67)x 10(-6)/Gy: beta = (0.63 +/- 0.86) x 10(-6)/Gy2. The best fitting of MS alteration data with linear-quadratic or linear relationships gave: for gamma-rays, alpha = 0.56 mutants/Gy and beta = 0.52 mutants/Gy2; for 80 keV/microm 4He++, alpha = 3.70 mutants/Gy and beta = 9.00 mutants/Gy2; for 123keV/microm 4He++, alpha = 4.36 mutants/Gy. CONCLUSIONS: The results reported here confirmed the higher cytotoxic and mutagenic effects of helium ions in comparison with gamma-irradiation and the ability of DNA fingerprint analysis to investigate DNA damage induced by different ionizing radiations. The results of the mutagenic effects measured by the two tests are in agreement.  相似文献   

17.
PURPOSE: The repair of double-strand breaks (dsb) in mammalian cells is characterized by a rapid phase with a half-life of less than half an hour and a slower phase that lasts for many hours. The proportion of slow repair increase with LET and it has been suggested that the slow repair component consists of more complex damage and is more deleterious to the cells. To see if removal of OH radicals could remove part of the damage in complex dsb and make them easier to repair, human cells were irradiated in the presence of dimethyl sulphoxide (DMSO). METHODS: Induction and repair of dsb were studied by neutral elution in human VH10 cells exposed to y-rays, helium ions (mean LET 40 keV/microm) and 80 and 125 keV/microm monoenergetic nitrogen ions in the presence and absence of 2 M DMSO. RESULTS: Incubation of cells exposed to gamma-rays, 40 keV/microm helium and 80 keV/microm N ions demonstrated that scavenging of OH radicals by DMSO removed most of the rapid repair component. The response to DMSO was less marked after 125 keV/microm nitrogen ions, where about half of the rapid repair was resistant to DMSO. CONCLUSIONS: It is unlikely that the complexity of dsb is responsible for the slow repair because the removal of OH radicals did not make the breaks easier to repair. Instead, it is suggested that rapid and slow repair can be explained on the basis of how different parts of the chromatin are accessible to repair enzymes.  相似文献   

18.
Effects of low-dose heavy charged particles (HCP) of varying LET on quantitative and qualitative changes in chromosomes of the comeal epithelium cells were studied in mice. Cytogenetic damages in the comeal epithelium cells were analyzed after irradiation by ions of helium and carbon with an energy of 300 MeV/nucleon (LET = 1.36 and 12.6 keV/microm), and 137Cs gamma-rays with the doses from 5 to 200 Gy. Accelerated nuclei were shown to be more effective. On the basis of aberrant mitosis rate, RBE values for helium and carbon ions in 24, 72 and 120 hrs. after irradiation were 6.0; 3.6 and 2.2 for helium ions and 7.0; 3.8 and 2.4 for carbon ions, respectively. The dose region of 20-30 Gy turned to be dose-independent. It was established that the period of chromosomal aberration sustenance in cells is also LET-dependent.  相似文献   

19.
PURPOSE: To investigate DNA fragmentation as a function of linear energy transfer (LET) after exposure to accelerated ions in the LET range 40-225 keV/microm. MATERIALS AND METHODS: Fragmentation patterns of double-stranded DNA in the range 5 kilobasepairs (kbp) to 5.7 megabasepairs (Mbp) were analysed after irradiation of low-passage GM 5758 normal human fibroblast cells with 60Co-photons, helium ions at 40 keV/microm and high-LET nitrogen ions between 80 and 225 keV/microm. Two separate pulsed-field gel electrophoresis protocols were used, optimized for separation of 1-6 Mbp and 5 kbp to 1.5 Mbp fragments. RESULTS: An increased probability of formation of short and medium-sized DNA fragments was revealed following high-LET irradiation. The DNA double-strand break (dsb) induction yields were, respectively, 5.8 and 6.9-8.8 x 10(-9) dsb bp(-1) Gy(-1) for 60Co-photons and ions. The ion yields were some 80-110% higher than those calculated according to a conventional approach, disregarding the fragment distributions. For photons, the yield was 13% higher. The corresponding relative biological effectiveness (RBE) of dsb induction was in the range 1.2-1.5. CONCLUSIONS: A significant non-random contribution to the number of dsb after irradiation with high-LET was confirmed by detailed fragment analysis using pulsed-field gel electrophoresis. The LET had a strong influence on the initial DNA fragment distribution, and hence also on the induction yields measured. However, when the LET was increased to the highest values studied for nitrogen ions, the yield decreased slightly.  相似文献   

20.
PURPOSE: In order to study the role of the Linear Energy Transfer (LET) of fast atomic ions in platinum-DNA complexes inducing breaks, DNA Plasmids were irradiated by C(6+) and Fe(26+) ions. MATERIAL AND METHODS: DNA Plasmids (pBR322) loaded with different amounts of platinum contained in a terpyridine-platinum molecule (PtTC) were irradiated by C(6+) ions and Fe(26+) ions. The LET values ranged between 13.4 keV/microm and 550 keV/microm. In some experiments, dimethyl sulfoxide (DMSO) was added. RESULTS: In all experiments, a significant increase in DNA strand breaks was observed when platinum was present. The yield of breaks induced per Gray decreased when the LET increased. The yield of single and double strand breaks per plasmid per track increased with the LET, indicating that the number of DNA breaks per Gray was related to the number of tracks through the medium. CONCLUSIONS: These findings show that more DNA breaks are induced by atomic ions when platinum is present. This effect increases for low LET heavy atoms. As DSB induction may induce cell death, these results could open new perspectives with the association of hadrontherapy and chemotherapy. Thus the therapeutic index might be improved by loading the tumour with platinum salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号