首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The canonical Wnt/β-catenin signaling pathway has been shown to play a major role during embryonic development and maturation of the central nervous system including the retina. It has a significant impact on retinal vessel formation and maturation, as well as on the establishment of synaptic structures and neuronal function in the central nervous system. Mutations in components of the Wnt/β-catenin signaling cascade may lead to severe retinal diseases, while dysregulation of Wnt signaling can contribute to disease progression. Apart from the angiogenic role of Wnt/β-catenin signaling, research in the last decades leads to the theory of a protective effect of Wnt/β-catenin signaling on damaged neurons. In this review, we focus on the neuroprotective properties of the Wnt/β-catenin pathway as well as its downstream signaling in the retina.  相似文献   

2.
Contrary to the previous belief that insulin does not act in the brain, studies in the last three decades have demonstrated important roles of insulin and insulin signal transduction in various functions of the central nervous system. Deregulated brain insulin signaling and its role in molecular pathogenesis have recently been reported in Alzheimer's disease (AD). In this article, we review the roles of brain insulin signaling in memory and cognition, the metabolism of amyloid 13 precursor protein, and tau phosphorylation. We further discuss deficiencies of brain insulin signaling and glucose metabolism, their roles in the development of AD, and recent studies that target the brain insulin signaling pathway for the treatment of AD. It is clear now that deregulation of brain insulin signaling plays an important role in the development of sporadic AD. The brain insulin signaling pathway also offers a promising therapeutic target for treating AD and probably other neurodegenerative disorders.  相似文献   

3.
Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system.Axons in the central nervous system fail to regenerate,meaning that injuries or diseases that cause loss of axonal connectivity have life-changing consequences.In 2008,genetic deletion of PTEN was identified as a means of stimulating robust regeneration in the optic nerve.PTEN is a phosphatase that opposes the actions of PI3-kinase,a family of enzymes that function to generate the membrane phospholipid PIP3 from PIP2(phosphatidylinositol(3,4,5)-trisphosphate from phosphatidylinositol(4,5)-bisphosphate).Deletion of PTEN therefore allows elevated signaling downstream of PI3-kinase,and was initially demonstrated to promote axon regeneration by signaling through mTOR.More recently,additional mechanisms have been identified that contribute to the neuron-intrinsic control of regenerative ability.This review describes neuronal signaling pathways downstream of PI3-kinase and PIP3,and considers them in relation to both developmental and regenerative axon growth.We briefly discuss the key neuron-intrinsic mechanisms that govern regenerative ability,and describe how these are affected by signaling through PI3-kinase.We highlight the recent finding of a developmental decline in the generation of PIP3 as a key reason for regenerative failure,and summarize the studies that target an increase in signaling downstream of PI3-kinase to facilitate regeneration in the adult central nervous system.Finally,we discuss obstacles that remain to be overcome in order to generate a robust strategy for repairing the injured central nervous system through manipulation of PI3-kinase signaling.  相似文献   

4.
5.
The development of the nervous system is under the strict control of a number of signal transduction pathways, often interconnected.Among them,the phosphoinositide(PI) pathway and the related phospholipase C(PI-PLC) family of enzymes have been attracting much attention.Besides their well-known role in the regulation of intracellular calcium levels,PI-PLC enzymes interact with a number of molecules belonging to further signal transduction pathways,contributing to a specific and complex network in the developing nervous system.In this review,the connections of PI signalling with further transduction pathways acting during neural development are discussed,with special regard to the role of the PI-PLC family of enzymes.  相似文献   

6.
7.
Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain injury. Vascular endothelial growth factor is expressed in the central nervous system after hypoxic/ischemic brain injury, and is involved in the process of brain repairvia the regulation of angiogenesis, neurogenesis, neurite outgrowth, and cerebral edema, which all require vascular endothelial growth factor signaling. In this review, we focus on the role of the vascular endothelial growth factor signaling pathway in the response to hypoxic/ischemic brain injury, and discuss potential therapeutic interventions.  相似文献   

8.
Most researchers believe that neurogenesis in mature mammals is restricted only to the subgranular zone of the dentate gyrus and the subventricular zone of the lateral ventricle in the central nervous system. In the peripheral nervous system, neurogenesis is thought to be active only during prenatal development, with the exception of the olfactory neuroepithelium. However, sensory ganglia in the adult peripheral nervous system have been reported to contain precursor cells that can proliferate in vitro and be induced to differentiate into neurons. The occurrence ofinsult-induced neurogenesis, which has been reported by several investigators in the brain, is limited to a few recent reports for the peripheral nervous system. These reports suggest that damage to the adult nervous system induces mechanisms similar to those that control the generation of new neurons during prenatal development. Understanding conditions under which neurogenesis can be induced in physiologically non-neurogenic regions in adults is one of the major challenges for developing therapeutic strategies to repair neurological damage. However, the induced neurogenesis in the peripheral nervous system is still largely unexplored. This review presents the history of research on adult neurogenesis in the peripheral nervous system, which dates back more than 100 years and reveals the evidence on the under estimated potential for generation of new neurons in the adult peripheral nervous system.  相似文献   

9.
Neuroinlfammation is a well-recognized consequence of subarachnoid hemorrhage (SAH), and Toll-like receptor (TLR) 4 may be an important therapeutic target for post-SAH neuroinlfammation. Of the TLR family members, TLR4 is expressed in various cell types in the central nervous system, and is unique in that it can signal through both the myeloid differentiation primary-response protein 88-dependent and the toll receptor associated activator of interferon-dependent cascades to coordinate the maximal inlfamma-tory response. TLR4 can be activated by many endogenous ligands having damage-associated molecular patterns including heme and ifbrinogen at the rupture of an intracranial aneurysm, and the resultant inlfam-matory reaction and thereby tissue damages may furthermore activate TLR4. It is widely accepted that the excreted products of TLR4 signaling alter neuronal functions. Previous studies have focused on the pathway through nuclear factor (NF)-κΒ signaling among TLR4 signaling pathways as to the development of early brain injury (EBI) such as neuronal apoptosis and blood-brain barrier disruption, and cerebral vasospasm. However, many ifndings suggest that both pathwaysvia NF-κΒ and mitogen-activated protein kinases may be involved in EBI and cerebral vasospasm development. To overcome EBI and cerebral vasospasm is im-portant to improve outcomes atfer SAH, because both EBI and vasopasm are responsible for delayed brain injuries or delayed cerebral ischemia, the most important preventable cause of poor outcomes atfer SAH. Increasing evidence has shown that TLR4 signaling plays an important role in SAH-induced brain injuries. Better understanding of the roles of TLR4 signaling in SAH will facilitate development of new treatments.  相似文献   

10.
11.
The Hedgehog signaling pathway plays a key role in embryonic development and organ formation.Sonic hedgehog signaling participates in nervous system development,regulates proliferation and differentiation of neural stem cells,controls growth and targeting of axons,and contributes to specialization of oligodendrocytes.For further studies of the Sonic hedgehog signaling pathway and for the development of new drugs in the treatment of nervous system diseases,it is beneficial to understand these mechanisms.  相似文献   

12.
Sonic hedgehog (Shh) signaling from the primary cilium drives cerebellar granule cell precursor (GCP) proliferation. Mutations of hedgehog (Hh) pathway repressors commonly cause medulloblastoma, the most prevalent and malignant childhood brain tumor that arises from aberrant GCP proliferation. We demonstrate that Nestin Cre-driven conditional knock-out (CKO) of a Shh pathway repressor-Rab23 in the mouse brain of both genders caused mis-patterning of cerebellar folia and elevated GCP proliferation during early development, but with no prevalent occurrence of medulloblastoma at adult stage. Strikingly, Rab23-depleted GCPs exhibited upregulated basal level of Shh pathway activities despite showing an abnormal ciliogenesis of primary cilia. In line with the compromised ciliation, Rab23-depleted GCPs were desensitized against Hh pathway activity stimulations by Shh ligand and Smoothened (Smo) agonist-SAG, and exhibited attenuated stimulation of Smo-localization on the primary cilium in response to SAG. These results implicate multidimensional actions of Rab23 on Hh signaling cascade. Rab23 represses the basal level of Shh signaling, while facilitating primary cilium-dependent extrinsic Shh signaling activation. Collectively, our findings unravel instrumental roles of Rab23 in GCP proliferation and ciliogenesis. Furthermore, Rab23''s potentiation of Shh signaling pathway through the primary cilium and Smo suggests a potential new therapeutic strategy for Smo/primary cilium-driven medulloblastoma.SIGNIFICANCE STATEMENT Primary cilium and Sonic hedgehog (Shh) signaling are known to regulate granule cell precursor (GCP) proliferation. Aberrant overactivation of Shh signaling pathway ectopically increases GCP proliferation and causes malignant childhood tumor called medulloblastoma. However, the genetic and molecular regulatory cascade of GCP tumorigenesis remains incompletely understood. Our finding uncovers Rab23 as a novel regulator of hedgehog (Hh) signaling pathway activity and cell proliferation in GCP. Intriguingly, we demonstrated that Rab23 confers dual functions in regulating Shh signaling; it potentiates primary cilium and Shh/Smoothened (Smo)-dependent signaling activation, while antagonizes basal level Hh activity. Our data present a previously underappreciated aspect of Rab23 in mediating extrinsic Shh signaling upstream of Smo. This study sheds new light on the mechanistic insights underpinning Shh signaling-mediated GCP proliferation and tumorigenesis.  相似文献   

13.
Oligodendrocyte precursor development in the embryonic spinal cord is thought to be regulated by the secreted signal, Sonic hedgehog (Shh). Such precursors can be identified by the expression of Olig genes, encoding basic helix-loop-helix factors, in the spinal cord and brain. However, the signaling pathways that govern oligodendrocyte precursor (OLP) development in the rostral central nervous system are poorly understood. Here, we show that Shh is required for oligodendrocyte development in the mouse forebrain and spinal cord, and that Shh proteins are both necessary and sufficient for OLP production in cortical neuroepithelial cultures. Moreover, adenovirus-mediated Olig1 ectopic expression can promote OLP formation independent of Shh activity. Our results demonstrate essential functions for Shh during early phases of oligodendrocyte development in the mammalian central nervous system. They further suggest that a key role of Shh signaling is activation of Olig genes.  相似文献   

14.
The signaling molecule Sonic hedgehog (Shh) is involved in several processes of central nervous system development. Recent reports indicate that Shh expression plays a role also in certain pathologic conditions in the adult brain, including multiple sclerosis and its animal model. However, the role of Shh signaling in immune-mediated demyelinating disease remains still uncertain. The aim of our study was to investigate the distribution pattern of Shh immunoreactivity (Shh-IR) during lesion evolution in myelin-oligodendrocyte-glycoprotein-induced experimental autoimmune encephalomyelitis (MOG-EAE), a model strongly mimicking multiple sclerosis. MOG-EAE was actively induced in DA rats. Histologic evaluation was performed with light and confocal microscopy on paraffin-embedded central nervous system sections from days 20 to 120 after active immunization. Shh-IR was present within the lesions of MOG-EAE during all stages of lesion evolution. The highest staining intensity for Shh was found in remyelinating lesions. In actively demyelinating, inactive demyelinated lesions, and in remyelinating lesions, Shh-IR was detected in macrophages, endothelium, and astrocytes. Shh-IR in axons was exclusively present in remyelinating lesions. Although the exact molecular mechanisms of the Shh-signaling pathway in experimental autoimmune encephalomyelitis are yet to be determined, our findings may imply a role of Shh signaling in facilitating remyelination.  相似文献   

15.
Kwon IS  Park RH  Choi JM  Kim SU  Lee YD  Suh-Kim H 《Neuroreport》2006,17(7):693-698
Sonic hedgehog functions to induce floor plate in early stages, and spinal motor neurons and midbrain dopaminergic neurons in later stages of development. Here, we investigated the effects of sonic hedgehog on tyrosine hydroxylase expression in three cell lines that correspond to different stages of neural development. Sonic hedgehog increased the tyrosine hydroxylase gene expression in pluripotent P19 cells but repressed it in tyrosine hydroxylase-producing PC12 cells. Promoter analysis in mouse neural stem cells indicated that the N-terminal of sonic hedgehog repressed both the basal and cAMP-dependent protein kinase A-mediated tyrosine hydroxylase activity. These results suggest that the N-terminal of sonic hedgehog increases tyrosine hydroxylase gene expression in cells to acquire dopaminergic phenotypes, but decreases expression in late born neurons by antagonizing the protein kinase A cAMP-responsive element binding protein pathway.  相似文献   

16.
Sonic hedgehog (Shh), a member of hedgehog (hh) family of signaling molecules, is necessary for normal axial patterning and cellular differentiation in the developing central nervous system. Shh also promotes the survival of fetal dopaminergic neurons and protects cultures of fetal midbrain dopaminergic neurons from the toxic effects of N-methyl-4-phenylpyridinium (MPP(+)), a neurotoxin that selectively injures nigral dopaminergic neurons. The mRNA expression of Shh and its putative receptor in the adult brain indicates an important role of Shh in the mature nervous system in addition to its roles during embryogenesis. In this study we examined the behavioral and anatomical effects of intrastriatal injection of singly myristoylated wild-type human Sonic hedgehog N-terminal fragment (Shh-M) in a rat model of Parkinson's disease (PD). Five groups of rats received a series of four intrastriatal injections of Shh-M (180 ng, 540 ng, or 4.275 microg per injection), glial cell line-derived neurotrophic factor (GDNF) (1 microg/injection), or vehicle on days 1, 3, 5, and 8. On day 4, the animals received an intrastriatal injection of 15 microg 6-hydroxydopamine (6-OHDA) free base. Intrastriatal administration of Shh (180 ng/injection) twice before and after a single intrastriatal injection of 6-OHDA reduced apomorphine- and amphetamine-induced rotation and forelimb akinesia and partially preserved dopaminergic axons in the striatum. This is the first demonstration in vivo that Shh reduces behavioral deficits induced by intrastriatal 6-OHDA lesion and suggests that Shh may be useful in the treatment of disorders that affect the nigrostriatal system, such as PD.  相似文献   

17.
18.
Proliferation of neural stem cells is regulated by the secreted signaling molecule sonic hedgehog. In this study, neural stem cells were infected with recombinant adeno-associated virus expressing sonic hedgehog-N-enhanced green fluorescent protein. The results showed that over expression of sonic hedgehog in neural stem cells induced the increased expression of Gli1 and N-myc, a target gene of sonic hedgehog. These findings suggest that N-myc is a direct downstream target of the sonic hedgehog signal pathway in neural stem cells. Sonic hedgehog and N-myc are important mediators of sonic hedgehog-induced proliferation of neural stem cells.  相似文献   

19.
Sonic hedgehog (Shh) is strongly implicated in the development of ventral structures in the nervous system. Addition of Sonic hedgehog protein to chick spinal cord explants induces floor plate and motoneuron development. Whether Shh acts directly to induce these cell types or whether their induction is mediated by additional factors is unknown. To further investigate the role of Shh in spinal neuron development, we have used low-density cultures of murine spinal cord precursor cells. Shh stimulated neuronal differentiation; however, it did not increase the proportion of neurons expressing the first postmitotic motoneuron marker Islet-1. Moreover, Shh did induce Islet-1 expression in neural tube explants, suggesting that it acts in combination with neural tube factors to induce motoneurons. Another factor implicated in motoneuron development is neurotrophin 3 (NT3), and when assayed in isolated precursor cultures, it had no effect on Islet-1 expression. However, the combination of N-terminal Shh and NT3 induced Islet-1 expression in the majority of neurons in low-density cultures of caudal intermediate neural plate. Furthermore, in explant cultures, Shh-mediated Islet-1 expression was blocked by an anti-NT3 antibody. Previous studies have shown expression of NT3 in the region of motoneuron differentiation and that spinal fusimotor neurons are lost in NT3 knock-out animals. Taken together, these findings suggest that Shh can act directly on spinal cord precursors to promote neuronal differentiation, but induction of Islet-1 expression is regulated by factors additional to Shh, including NT3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号