首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously characterized the patients with autosomal recessive hypercholesterolemia (ARH) as having severe hypercholesterolemia and retarded plasma low-density lipoprotein (LDL) clearance despite normal LDL receptor (LDLR) function in their cultured fibroblasts, and we identified a mutation in the ARH locus in these patients. ARH protein is an adaptor protein of the LDL and reportedly modulates its internalization. We developed ARH knockout mice (ARH-/-) to study the function of this protein. Plasma total cholesterol level was higher in ARH-/- mice than that in wild-type mice (ARH+/+), being attributed to a 6-fold increase of LDL, whereas plasma lipoprotein was normal in the heterozygotes (ARH+/-). Clearance of 125I-LDL from plasma was retarded in ARH-/- mice, as much as that found in LDLR-/- mice. Fluorescence activity of the intravenously injected 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-LDL was recovered in the cytosol of the hepatocytes of ARH+/+ mice, but not in those of ARH-/- or LDLR-/- mice. Also, less radioactivity was recovered in the liver of ARH-/- or LDLR-/- mice when [3H]cholesteryl oleyl ether (CE)-labeled LDL was injected. In contrast, uptakes of [3H]CE-labeled LDL, 125I-LDL, and DiI-LDL were all normal or slightly subnormal when the ARH-/- hepatocytes were cultured. We thus concluded that the function of the hepatic LDLR is impaired in the ARH-/- mice in vivo, despite its normal function in vitro. These findings were consistent with the observations with the ARH homozygous patients and suggested that certain cellular environmental factors modulate the requirement of ARH for the LDLR function.  相似文献   

2.
The differential effects of overexpression of human apolipoprotein (apo) E3 on plasma cholesterol and triglyceride metabolism were investigated in transgenic rabbits expressing low (<10 mg/dL), medium (10 to 20 mg/dL), or high (>20 mg/dL) levels of apoE3. Cholesterol levels increased progressively with increasing levels of apoE3, whereas triglyceride levels were not significantly affected at apoE3 levels up to 20 mg/dL but were markedly increased at levels of apoE3 >20 mg/dL. The medium expressers had marked hypercholesterolemia (up to 3- to 4-fold over nontransgenics), characterized by an increase in low density lipoprotein (LDL) cholesterol, while the low expressers had only slightly increased plasma cholesterol levels. The medium expressers displayed an 18-fold increase in LDL but also had a 2-fold increase in hepatic very low density lipoprotein (VLDL) triglyceride production, an 8-fold increase in VLDL apoB, and a moderate decrease in the ability of the VLDL to be lipolyzed. However, plasma clearance of VLDL was increased, likely because of the increased apoE3 content. The increase in LDL appears to be due to an enhanced competition of VLDL for LDL receptor binding and uptake, resulting in the accumulation of LDL. The combined hyperlipidemia of the apoE3 high expressers (>20 mg/dL) was characterized by a 19-fold increase in LDL cholesterol but also a 4-fold increase in hepatic VLDL triglyceride production associated with a marked elevation of plasma VLDL triglycerides, cholesterol, and apoB100 (4-, 9-, and 25-fold over nontransgenics, respectively). The VLDL from the high expressers was much more enriched in apoE3 and markedly depleted in apoC-II, which contributed to a >60% inhibition of VLDL lipolysis. The combined effects of stimulated VLDL production and impaired VLDL lipolysis accounted for the increases in plasma triglyceride and VLDL concentrations in the apoE3 high expressers. The hyperlipidemic apoE3 rabbits have phenotypes similar to those of familial combined hyperlipidemia, in which VLDL overproduction is a major biochemical feature. Overall, elevated expression of apoE3 appears to determine plasma lipid levels by stimulating hepatic VLDL production, enhancing VLDL clearance, and inhibiting VLDL lipolysis. Thus, the differential expression of apoE may, within a rather narrow range of concentrations, play a critical role in modulating plasma cholesterol and triglyceride levels and may represent an important determinant of specific types of hyperlipoproteinemia.  相似文献   

3.
The effects of liver X receptor (LXR) agonists on plasma lipid homeostasis, especially triglyceride metabolism are controversial. Here we examined the effect of long-term activation of LXR on plasma lipid homeostasis in wild-type C57BL/6 and LDL receptor deficient (LDLR?/?) mice given the LXR agonist T0901317 for 4 weeks. LXR agonist treatment of wild-type mice decreased plasma total triglycerides by 35% due to a significant reduction of plasma VLDL triglycerides. In contrast, in LDLR?/? mice T0901317 treatment increased plasma total cholesterol and triglycerides. An increase in the level of smaller VLDL particles was also observed in T0901317-treated LDLR?/? mice. The changes in circulating lipoprotein profiles in response to T0901317 treatment in these two animal models reflect the balance between synthesis and secretion on the one hand and lipolysis and clearance on the other. In both models there was both an increase in VLDL production and secretion and in an increase in LPL production and activity in T0901317-treated animals. In wild-type mice lipolysis and clearance predominates, while in the absence of the LDLR, which plays a major role in the clearance of apoB-containing lipoproteins, the increased output predominates. The generation of elevated levels of small VLDL particles due to increased lipolysis may represent an additional risk factor for atherosclerosis.  相似文献   

4.
Cafestol, a diterpene present in unfiltered coffee, potently increases serum cholesterol levels in humans. So far, no suitable animal model has been found to study the biochemical background of this effect. We determined the effect of cafestol on serum cholesterol and triglycerides in different mouse strains and subsequently studied its mechanism of action in apolipoprotein (apo) E*3-Leiden transgenic mice. ApoE*3-Leiden, heterozygous low density lipoprotein-receptor (LDLR+/-) knockout, or wild-type (WT) C57BL/6 mice were fed a high- (0.05% wt/wt) or a low- (0.01% wt/wt) cafestol diet or a placebo diet for 8 weeks. Standardized to energy intake, these amounts are equal to 40, 8, or 0 cups of unfiltered coffee per 10 MJ per day in humans. In apoE*3-Leiden mice, serum cholesterol was statistically significantly increased by 33% on the low- and by 61% on the high-cafestol diet. In LDLR+/- and WT mice, the increases were 20% and 24%, respectively, on the low-cafestol diet and 55% and 46%, respectively, on the high-cafestol diet. These increases were mainly due to a rise in very low density lipoprotein (VLDL) and intermediate density lipoprotein cholesterol in all 3 mouse strains. To investigate the mechanism of this effect, apoE*3-Leiden mice were fed a high-cafestol or a placebo diet for 3 weeks. Cafestol suppressed enzyme activity and mRNA levels of cholesterol 7alpha-hydroxylase by 57% and 58%, respectively. mRNA levels of enzymes involved in the alternate pathway of bile acid synthesis, ie, sterol 27-hydroxylase and oxysterol 7alpha-hydroxylase, were reduced by 32% and 48%, respectively. The total fecal bile acid output was decreased by 41%. Cafestol did not affect hepatic free and esterified cholesterol, but it decreased LDLR mRNA levels by 37%. The VLDL apoB and triglyceride production rates, as measured after Triton injection, were 2-fold decreased by cafestol, indicating that the number of particles secreted had declined and that there was no change in the amount of triglycerides present in the VLDL particle during cafestol treatment. However, the VLDL particles contained a 4-times higher amount of cholesteryl esters, resulting in a net 2-fold increased secretion of cholesteryl esters. The decrease in triglyceride production was the result of a reduction in hepatic triglyceride content by 52%. In conclusion, cafestol increases serum cholesterol levels in apoE*3-Leiden mice by suppression of the major regulatory enzymes in the bile acid synthesis pathways, leading to decreased LDLR mRNA levels and increased secretion of hepatic cholesterol esters. We suggest that suppression of bile acid synthesis may provide an explanation for the cholesterol-raising effect of cafestol in humans.  相似文献   

5.
It has been postulated that the rate of hepatic very low density lipoprotein (VLDL) apolipoprotein (apo) B secretion is dependent upon the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. To test this hypothesis in vivo, apoB kinetic studies were carried out in miniature pigs before and after 21 days treatment with high-dose (10 mg/kg/day), atorvastatin (A) or simvastatin (S) (n = 5). Pigs were fed a diet containing fat (34% of calories) and cholesterol (400 mg/day; 0.1%). Statin treatment decreased plasma total cholesterol [31 (A) vs. 20% (S)] and low density lipoprotein (LDL) cholesterol concentrations [42 (A) vs. 24% (S)]. Significant reductions in plasma total triglyceride (46%) and VLDL triglyceride (50%) concentrations were only observed with (A). Autologous [131I]VLDL, [125I]LDL, and [3H]leucine were injected simultaneously, and apoB kinetic parameters were determined by triple-isotope multicompartmental analysis using SAAM II. Statin treatment decreased the VLDL apoB pool size [49 (A) vs. 24% (S)] and the hepatic VLDL apoB secretion rate [50 (A) vs. 33% (S)], with no change in the fractional catabolic rate (FCR). LDL apoB pool size decreased [39 (A) vs. 26% (S)], due to reductions in both the total LDL apoB production rate [30 (A) vs. 21% (S)] and LDL direct synthesis [32 (A) vs. 23% (S)]. A significant increase in the LDL apoB FCR (15%) was only seen with (A). Neither plasma VLDL nor LDL lipoprotein compositions were significantly altered. Hepatic HMG-CoA reductase was inhibited to a greater extent with (A), when compared with (S), as evidenced by 1) a greater induction in hepatic mRNA abundances for HMG-CoA reductase (105%) and the LDL receptor (40%) (both P < 0.05); and 2) a greater decrease in hepatic free (9%) and esterified cholesterol (25%) (both P < 0.05). We conclude that both (A) and (S) decrease hepatic VLDL apoB secretion, in vivo, but that the magnitude is determined by the extent of HMG-CoA reductase inhibition.  相似文献   

6.
The hypolipidemic effect of NK-104 and its mechanisms of action (effects on hepatic sterol synthesis, low density lipoprotein (LDL)-receptor expression and very low density lipoprotein (VLDL) secretion) were studied in guinea pigs using simvastatin as a reference substance. There was a dose-dependent and significant reduction of both plasma total cholesterol (17.4, 24.5 and 45.3% at 0.3, 1 and 3 mg/kg, respectively) and triglycerides (21.1 and 32.2% at 1 and 3 mg/kg, respectively) after 14-day administration of NK-104. Simvastatin at 30 mg/kg lowered plasma total cholesterol (25.0%) but not triglyceride levels. NK-104 (3 mg/kg) and simvastatin (30 mg/kg) inhibited hepatic sterol synthesis by approximately 80%, 3 h after dosing, and enhanced LDL receptor binding-capacity of liver membranes 1.5-fold after 14-day dosing. The former group accelerated LDL clearance somewhat more markedly than the latter, and increased fractional catabolic rate 1.8-fold (vs. 1.4-fold). Furthermore, only the NK-104 (3 mg/kg) suppressed VLDL secretion into the liver perfusate (triglyceride. 19.9%; apoB, 24.2%) with extensive reduction of hepatic sterol synthesis caused by prolonged action. These results indicate that NK-104 and simvastatin at 10 times the dosage of the former, similarly enhances hepatic LDL receptor; however, only NK-104 with prolonged action suppresses VLDL secretion to show higher cholesterol-lowering potency and triglyceride-reducing effect.  相似文献   

7.
The metabolisms of VLDL, IDL, and LDL and their interconversions have been studied in ten obese untreated male Pima Indian diabetics compared to 16 age-, sex-, and weight-matched nondiabetics. VLDL was elevated in the diabetics and had abnormal composition, as indicated by a significantly higher ratio of triglyceride/apo B. Fractional catabolic rates for both VLDL apoB and VLDL triglyceride were lower in diabetics, and diabetics had increased production of VLDL triglyceride but not VLDL apoB compared to obese nondiabetics. A higher proportion of VLDL apoB was removed without conversion to LDL in diabetics. LDL cholesterol and apoB were higher in diabetics, but production of LDL apoB was not different from nondiabetics. Fractional catabolic rate for LDL apoB, however, was significantly lower in the diabetics. The data indicate that the triglyceride-rich VLDL in non-insulin-dependent diabetics are less readily converted to LDL, whereas the elevated LDL in this group of diabetics is due to impaired clearance. Thus, decreased conversion of VLDL to LDL and impaired LDL clearance are two opposing phenomena which may influence the LDL concentration of diabetics in either direction. Thus, despite minimal changes in LDL concentration, there are multiple defects in the metabolism of LDL in non-insulin dependent diabetes which may contribute to the increased atherogenesis in this disorder.  相似文献   

8.
Despite a clear association between obesity, insulin resistance and atherosclerosis in humans, to date, no animal models have been described in which insulin resistance is associated with atherosclerotic lesion burden. Using two mouse models of obesity-induced hyperlipidemia:leptin deficient (ob/ob) mice on an apolipoprotein E deficient (apoE-/-) or low density lipoprotein receptor deficient (LDLR-/-) background, we sought to determine metabolic parameters most closely associated with atherosclerotic lesion burden. Total plasma cholesterol (TC) levels in ob/ob;apoE-/- mice and ob/ob;LDLR-/- mice were indistinguishable (682+/-48 versus 663+/-16, respectively). Analysis of lipoprotein profiles showed that cholesterol was carried primarily on VLDL in the ob/ob;apoE-/- mice and on LDL in the ob/ob;LDLR-/- mice. Plasma triglycerides (TG) were 55% lower (P<0.001), non-esterified fatty acids (NEFA) were 1.5-fold higher (P<0.01), and insulin levels were 1.7-fold higher (NS) in ob/ob;apoE-/- mice compared to ob/ob;LDLR-/- mice. Other parameters such as body weight, fat pad weight, and glucose levels were not different between the groups. Aortic sinus lesion area of ob/ob;apoE-/- mice was increased 3.2-fold above ob/ob;LDLR-/- mice (102,455+/-8565 microm2/section versus 31,750+/-4478 microm2/section, P<0.001). Lesions in ob/ob;apoE-/- mice were also more complex as evidenced by a 7.7-fold increase in collagen content (P<0.001). Atherosclerotic lesion area was positively correlated with body weight (P<0.005), NEFA (P=0.007), and insulin (P=0.002) levels in the ob/ob;LDLR-/- mice and with insulin (P=0.014) in the ob/ob;apoE-/- mice. In contrast, lesion burden was neither associated with TC and TG, nor with individual lipoprotein pools, in either animal model. These data provide a direct demonstration of the pathophysiologic relevance of hyperinsulinemia, NEFA, and increased body weight to atherosclerotic lesion formation.  相似文献   

9.
To further explore the physiology of very-low-density lipoprotein (VLDL) apolipoprotein B-100 (apoB), we performed a pooled analysis of 21 reports based on the intravenous administration of stable isotope-labeled amino acids in a total of 154 healthy normolipidemic subjects. Prandial status was the most significant independent predictor (P < .001) of the hepatic secretion of apoB, which was higher in the fed state compared with the fasted state (1,819 +/- 188 v 1,046 +/- 61 mg/d, P < .001). In the fed state, apoB secretion increased with age (P = .003) and tended to be higher in men compared with women (P = .0065). The fractional catabolism of VLDL apoB decreased with weight (P = .0038) and was lower in men versus women (8.38 +/- 0.55 v 12.59 +/- 1.65 pools/d, P = .007), as well as patients that were carriers of the E4 allele compared with those who were not carriers of this allele (5.52 +/- 0.49 v 9.58 +/- 0.87 pools/d, P < .001). The VLDL apoB concentration in both the fed and fasted states was dependent on both the rate of hepatic production and fractional clearance of apoB. Plasma cholesterol, triglyceride, low-density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) cholesterol concentrations in the fasted state were principally determined by the fractional catabolism of VLDL apoB (P< .005). These findings suggest that under physiologic conditions in healthy individuals, the transport of VLDL apoB in plasma is predominantly determined by age, sex, body weight, apoE genotype, and prandial status.  相似文献   

10.
In this study, we concurrently examined the effects of 8 and 40 weeks of growth hormone replacement (GHR) on lipids, lipoprotein composition, low-density lipoprotein (LDL) size, very-low-density lipoprotein (VLDL) apolipoprotein (apo)B kinetics and LDL apoB kinetics. Eight weeks of GHR did not alter lipid profiles. Forty weeks of GHR increased high-density lipoprotein-cholesterol (HDL-C) concentration (P =.01), nonsignificantly reduced LDL-C (P =.06), and reduced the HDL/LDL-C ratio (P =.04). Forty weeks of GHR increased HDL free cholesterol (P =.03), total cholesterol (P =.01), and cholesterol ester (P <.01) concentrations. No other significant changes in VLDL, LDL, or HDL composition or LDL size were noted at any time. Eight weeks of GHR reduced VLDL apoB absolute secretion rate (ASR, P =.03), with nonsignificant reductions in fractional secretion rate (FSR, P =.09) and pool size (P =.09). After 40 weeks of GHR, the VLDL apoB ASR, FSR, and pool size were not significantly different from baseline. Forty weeks of GHR increased both LDL apoB FSR (P =.02) and LDL apoB ASR (P =.04), with a small decrease in pool size. Thus, GHR may have important antiatherogenic effects; HDL-C increased, LDL-C was nonsignificantly reduced, the total/HDL-C ratio was reduced, VLDL apoB production was reduced, and LDL apoB turnover was increased.  相似文献   

11.
An ovulatory hCG stimulus to rhesus macaques undergoing controlled ovarian stimulation protocols results in a rapid and sustained increase in progesterone synthesis. The use of lipoproteins as a substrate for progesterone synthesis remains unclear, and the expression of lipoprotein receptors [very-low-density lipoprotein receptor (VLDLR), low-density lipoprotein receptor (LDLR), and scavenger receptor-BI (SR-BI)] soon after human chorionic gonadotropin (hCG) (<12 h) has not been characterized. This study investigated lipoprotein receptor expression and lipoprotein (VLDL, LDL, and HDL) support of steroidogenesis during luteinization of macaque granulosa cells. Granulosa cells were aspirated from rhesus monkeys undergoing controlled ovarian stimulation before or up to 24 h after an ovulatory hCG stimulus. The expression of VLDLR decreased within 3 h of hCG, whereas LDLR and SR-BI increased at 3 and 12 h, respectively. Granulosa cells isolated before hCG were cultured for 24 h in the presence of FSH or FSH plus hCG with or without VLDL, LDL, or HDL. Progesterone levels increased in the presence of hCG regardless of lipoprotein addition, although LDL, but not HDL, further augmented hCG-induced progesterone. Other cells were cultured with FSH or FSH plus hCG without an exogenous source of lipoprotein for 24 h, followed by an additional 24 h culture with or without lipoproteins. Cells treated with hCG in the absence of any lipoprotein were unable to maintain progesterone levels through 48 h, whereas LDL (but not HDL) sustained progesterone synthesis. These data suggest that an ovulatory stimulus rapidly mobilizes stored cholesterol esters for use as a progesterone substrate and that as these are depleted, new cholesterol esters are obtained through an LDLR- and/or SR-BI-mediated mechanism.  相似文献   

12.
Mutations in the low density lipoprotein (LDL) receptor (LDLR) cause hypercholesterolemia because of inefficient LDL clearance from the circulation. In addition, there is a paradoxical oversecretion of the metabolic precursor of LDL, very low density lipoprotein (VLDL). We recently demonstrated that the LDLR mediates pre-secretory degradation of the major VLDL protein, apolipoprotein B (apoB). Kinetic studies suggested that the degradation process is initiated in the secretory pathway. Here, we evaluated the ability of several LDLR variants that are stalled within the secretory pathway to regulate apoB secretion. Both a naturally occurring mutant LDLR and an LDLR consisting of only the ligand-binding domains and a C-terminal endoplasmic reticulum (ER) retention sequence were localized to the ER and not at the cell surface. In the presence of either of the ER-localized LDLRs, apoB secretion was essentially abolished. When the ligand-binding domain of the truncated receptor was mutated the receptor was unable to block apoB secretion, indicating that the inhibition of apoB secretion depends on the ability of the LDLR to bind to its ligand. These findings establish LDLR-mediated pre-secretory apoB degradation as a pathway distinct from reuptake of nascent lipoproteins at the cell surface. The LDLR provides an example of a receptor that modulates export of its ligand from the ER.  相似文献   

13.
Apolipoprotein E (apoE) has a high affinity to cell-surface low density lipoprotein (LDL) receptor. To determine the role of apoE in plasma lipoprotein metabolism, transgenic mouse lines with integrated rat apoE gene under the control of the metallothionein promoter were established. We found that a high expressor line produced rat apoE mainly in the liver, and the gene product was almost entirely associated with plasma lipoproteins. The plasma level of rat apoE in homozygotes for the transgene was 17.4 mg/dl after zinc induction (vs. 4.56 mg/dl of mouse apoE in controls). In this group, plasma cholesterol and triglyceride levels were 43% and 68% reduced as compared with controls, respectively. Heterozygotes showed decreases in both lipids to a lesser extent. Gel filtration chromatography showed that lipid reduction was mainly due to decreased very low density lipoproteins (VLDL) and LDL. Especially in zinc-treated homozygotes, VLDL had almost disappeared, and a remarkable decrease in LDL and a slight decrease in high density lipoprotein were also observed. Consistently, the plasma level of apoB, a structural protein of VLDL and LDL, was 78% lower than that of controls, indicating a marked reduction in lipoproteins containing apoB. Furthermore, the transgenic mice, in contrast to controls, did not develop hypercholesterolemia when fed a high cholesterol diet. These results demonstrated that overexpression of apoE reduces plasma cholesterol and triglyceride levels and prevents diet-induced hypercholesterolemia. From dramatic and dose-related decreases in plasma lipoproteins in transgenic mice, we conclude that apoE plays a key role in plasma lipoprotein metabolism.  相似文献   

14.
Preparative ultracentrifugal and electrophoretic analysis of serum lipoproteins was performed in 30-70-year-old healthy, fasting males (N = 80) and females (N = 77), randomly selected from the Uppsala region, Sweden. The concentrations of cholesterol and triglycerides in total serum and in VLDL,LDL and HDL lipoprotein classes are reported. Total serum, VLDL and LDL triglycerides and cholesterol concentrations increased with age, while HDL cholesterol and triglyceride concentrations did not vary with age. Overweight persons had higher total serum triglyceride, higher VLDL cholesterol and triglyceride and lower HDL cholesterol levels. The upper 90% population limit values for non-overweight males/females were: total triglycerides (mmol/l) 2.5/2.0, total cholesterol (mg/100 ml) 298/300, VLDL triglyceride 1.80/1.05, VLDL-cholesterol 32/33, LDL triglyceride 0.69/0.69, LDL cholesterol 210/218, HDL triglyceride 0.32/0.34 and HDL-cholesterol 69/93. The 2 major differences between males and females were that females had lower VLDL but higher HDL concentrations. For VLDL there was a very strong and for LDL a moderately strong positive correlation between cholesterol and triglyceride contents. In HDL however, the mearsured amounts of cholesterol and triglycerides did not correlate at all. Sinking pre-beta lipoproteins was found in about 25% of cases and a second pre-beta band floating at d 1.006, late pre-beta, was found in 35% of male and 25% of female subjects. Subjects with sinking pre-beta lipoprotein did not differ from other subjects with regard to the concentration of cholesterol and triglycerides in the 3 lipoprotein classes. Males, but not females, with the late pre-beta (LPB), had an increased amount of cholesterol in VLDL and a raised cholesterol-triglyceride ratio in this lipoprotein class. Also the LDL triglyceride level was increased in males with the late pre-beta lipoprotein.  相似文献   

15.
16.
Subjects with moderate combined hyperlipidemia (n=11) were assessed in an investigation of the effects of atorvastatin and simvastatin (both 40 mg per day) on apolipoprotein B (apoB) metabolism. The objective of the study was to examine the mechanism by which statins lower plasma triglyceride levels. Patients were studied on three occasions, in the basal state, after 8 weeks on atorvastatin or simvastatin and then again on the alternate treatment. Atorvastatin produced significantly greater reductions than simvastatin in low density lipoprotein (LDL) cholesterol (49.7 vs. 44.1% decrease on simvastatin) and plasma triglyceride (46.4 vs. 39.4% decrease on simvastatin). ApoB metabolism was followed using a tracer of deuterated leucine. Both drugs stimulated direct catabolism of large very low density lipoprotein (VLDL(1)) apoB (4.52+/-3.06 pools per day on atorvastatin; 5.48+/-4.76 pools per day on simvastatin versus 2.26+/-1.65 pools per day at baseline (both P<0.05)) and this was the basis of the 50% reduction in plasma VLDL(1) concentration; apoB production in this fraction was not significantly altered. On atorvastatin and simvastatin the fractional transfer rates (FTR) of VLDL(1) to VLDL(2) and of VLDL(2) to intermediate density lipoprotein (IDL) were increased significantly, in the latter instance nearly twofold. IDL apoB direct catabolism rose from 0.54+/-0.30 pools per day at baseline to 1.17+/-0.87 pools per day on atorvastatin and to 0.95+/-0.43 pools per day on simvastatin (both P<0.05). Similarly the fractional transfer rate for IDL to LDL conversion was enhanced 58-84% by statin treatment (P<0.01) LDL apoB fractional catabolic rate (FCR) which was low at baseline in these subjects (0.22+/-0.04 pools per day) increased to 0.44+/-0.11 pools per day on atorvastatin and 0.38+/-0.11 pools per day on simvastatin (both P<0.01). ApoB-containing lipoproteins were more triglyceride-rich and contained less free cholesterol and cholesteryl ester on statin therapy. Further, patients on both treatments showed marked decreases in all LDL subfractions. In particular the concentration of small dense LDL (LDL-III) fell 64% on atorvastatin and 45% on simvastatin. We conclude that in patients with moderate combined hyperlipidemia who initially have a low FCR for VLDL and LDL apoB, the principal action of atorvastatin and simvastatin is to stimulate receptor-mediated catabolism across the spectrum of apoB-containing lipoproteins. This leads to a substantial, and approximately equivalent, percentage reduction in plasma triglyceride and LDL cholesterol.  相似文献   

17.
The acute reduction of low-density lipoprotein (LDL) cholesterol obtained by LDL-apheresis allows the role of the high level of circulating LDL on lipoprotein metabolism in heterozygous familial hypercholesterolemia (heterozygous FH) to be addressed. We studied apolipoprotein B (apoB) kinetics in five heterozygous FH patients before and the day after an apheresis treatment using endogenous labeling with [(2)H(3)]leucine. Compared with younger control subjects, heterozygous FH patients before apheresis showed a significant decrease in the fractional catabolic rate of LDL (0.24 +/- 0.08 vs. 0.65 +/- 0.22 day(-1); P < 0.01), and LDL production was increased in heterozygous FH patients (18.9 +/- 7.0 vs. 9.9 +/- 4.2 mg/kg.day; P < 0.05). The modeling of postapheresis apoB kinetics was performed using a nonsteady state condition, taking into account the changing pool size of very low density lipoprotein (VLDL), intermediate density lipoprotein, and LDL apoB. The postapheresis kinetic parameters did not show statistical differences compared with preapheresis parameters in heterozygous FH patients; however, a trend for increases in fractional catabolic rate of LDL (0.24 +/- 0.08 vs. 0.35 +/- 0.09 day(-1); P = 0.067) and the production of VLDL (13.7 +/- 8.3 vs. 21.9 +/- 1.6 mg/kg.day; P = 0.076) was observed. These results suggested that the marked decrease in plasma LDL obtained a short time after LDL-apheresis is able to stimulate LDL receptor activity and VLDL production in heterozygous FH.  相似文献   

18.
In a randomized, double-blind, crossover trial of 5-week treatment period with placebo or rosuvastatin (10 or 40 mg/day) with 2-week placebo wash-outs between treatments, the dose-dependent effect of rosuvastatin on apolipoprotein (apo) B-100 kinetics in metabolic syndrome subjects were studied. Compared with placebo, there was a significant dose-dependent decrease with rosuvastatin in plasma cholesterol, triglycerides, LDL cholesterol, apoB and apoC-III concentrations and in the apoB/apoA-I ratio, lathosterol:cholesterol ratio, HDL cholesterol concentration and campesterol:cholesterol ratio also increased significantly. Rosuvastatin significantly increased the fractional catabolic rates (FCR) of very-low density lipoprotein (VLDL), intermediate density lipoprotein (IDL) and LDL-apoB and decreased the corresponding pool sizes, with evidence of a dose-related effect. LDL apoB production rate (PR) fell significantly with rosuvastatin 40 mg/day with no change in VLDL and IDL-apoB PR. Changes in triglycerides were significantly correlated with changes in VLDL apoB FCR and apoC-III concentration, and changes in lathosterol:cholesterol ratio were correlated with changes in LDL apoB FCR, the associations being more significant with the higher dose of rosuvastatin. In the metabolic syndrome, rosuvastatin decreases the plasma concentration of apoB-containing lipoproteins by a dose-dependent mechanism that increases their rates of catabolism. Higher dose rosuvastatin may also decrease LDL apoB production. The findings provide a dose-related mechanism for the benefits of rosuvastatin on cardiovascular disease in the metabolic syndrome.  相似文献   

19.
Aims Previous studies have suggested that plasma lipids are affected differently by the peroxisome proliferators‐activated receptor (PPAR)‐γ agonists pioglitazone and rosiglitazone. The aim of this study was to perform a quantitative lipoprotein turnover study to determine the effects of PPAR‐γ agonists on lipoprotein metabolism. Methods Twenty‐four subjects with Type 2 diabetes treated with diet and/or metformin were randomized in a double‐blind study to receive 30 mg pioglitazone, 8 mg rosiglitazone or placebo once daily for 3 months. Before and after treatment, absolute secretion rate (ASR) and fractional catabolic rate (FCR) of very low‐density lipoprotein (VLDL), intermediate‐density lipoprotein (IDL) and low‐density lipoprotein (LDL) apolipoprotein B100 were measured with a 10‐h infusion of 1‐13C leucine. Results There was a significant decrease in glycated haemoglobin (HbA1c) and non‐esterified fatty acids with pioglitazone (P = 0.01; P = 0.02) and rosiglitazone (P = 0.04; P = 0.003), respectively, but no change in plasma triglyceride or high‐density lipoprotein (HDL) cholesterol. Following rosiglitazone, there was a significant reduction in VLDL apolipoprotein B100 (apoB) ASR (P = 0.01) compared with baseline, a decrease in VLDL triglyceride/apoB (P = 0.01), an increase in LDL2 cholesterol (P = 0.02) and a decrease in LDL3 cholesterol (P = 0.02). There was a decrease in VLDL triglyceride/apoB (P = 0.04) in the pioglitazone group. There was no significant difference in change in VLDL ASR or FCR among the three groups. Conclusions In patients with Type 2 diabetes and normal lipids, treatment with rosiglitazone or pioglitazone had no significant effect on lipoprotein metabolism compared with placebo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号