首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Common fragile sites are unstable chromosomal regions that predispose chromosomes to breakage and rearrangements. Recombinogenic DNA sequences encompassing these sites may contribute to both germinal and somatic genomic mutations, and the genomic instability at these regions might cause severe inherited disorders or predispose to cancer. In this review, we discuss the characterization of common fragile site FRA13A within the neurobeachin gene, which is involved in development and function of the central nervous system. We raise the possibility of an implication of common fragile sites in neuropsychiatric disorders and overview previous and recent reports concerning individual variability of expression of common fragile sites in human populations.  相似文献   

2.
Specific patterns of genomic aberrations have been associated with different types of malignancies. In colorectal cancer, losses of chromosome arm 8p and gains of chromosome arm 8q are among the most common chromosomal rearrangements, suggesting that the centromeric portion of chromosome 8 is particularly sensitive to breakage. Genomic alterations frequently occur in the early stages of tumorigenesis at specific genomic regions known as common fragile sites (cFSs). CFSs represent parts of the normal chromosome structure that are prone to breakage under replication stress. In this study, we identified the genomic location of FRA8I, spanning 530 kb at 8q11.21 and assessed the composition of the fragile DNA sequence. FRA8I encompasses KIAA0146, a large protein-coding gene with yet unknown function, as well as CEBPD and part of PRKDC, two genes encoding proteins involved in tumorigenesis in a variety of cancers. We show that FRA8I is unstable in lymphocytes and epithelial cells, displaying similar expression rates. We examined copy number alteration patterns within FRA8I in a panel of 25 colorectal cancer cell lines and surveyed publically available profiles of 56 additional colorectal cancer cell lines. Combining these data shows that focal recombination events disrupt the genomic integrity of KIAA0146 and neighboring cFS genes in 12.3% of colorectal cancer cell lines. Moreover, data analysis revealed evidence that KIAA0146 is a translocation partner of the immunoglobulin heavy chain gene in recurrent t(8;14)(q11;q32) translocations in a subset of patients with B-cell precursor acute lymphoblastic leukemia. Our data molecularly describe a region of enhanced chromosomal instability in the human genome and point to a role of the KIAA0146 gene in tumorigenesis.  相似文献   

3.
Common fragile sites represent components of normal chromosome structure that are particularly prone to breakage under replication stress. Although the cytogenetic locations of 88 common fragile sites are listed in the Genome database, the DNA at only 14 of them has been defined and characterized at the molecular level. Here, we identify the precise genomic position of the common fragile site FRA1E, mapped to the chromosomal band 1p21.2, and characterize the genetic complexity of the fragile DNA sequence. We show that FRA1E extends over 370kb within the dihydropyrimidine dehydrogenase (DPYD) gene, which genomically spans approximately 840kb. The 185kb region of the highest fragility, which accounts for 86% of all observed breaks at FRA1E, encompasses the central part of DPYD including exons 13-16. DPYD encodes dihydropyrimidine dehydrogenase (DPD), which is the first and rate-limiting enzyme in a three-step metabolic pathway involved in degradation of the pyrimidine bases uracil and thymine. Deficiency in human DPD is associated with autosomal recessive disease, thymine-uraciluria, and with severe 5-fluorouracil toxicity in cancer patients. To which extent the disruption of the DPYD gene by the fragile site break is only transient, followed by DNA repair to restore the original structure, or occasionally may result in genomic damage associated with human disease remains to be determined.  相似文献   

4.
5.
Common chromosomal fragile sites are unstable genomic loci susceptible to breakage, rearrangement, and are highly recombinogenic. Frequent alterations at these loci in tumor cells led to the hypothesis that they may contribute to cancer development. The two most common chromosomal fragile sites FRA16D and FRA3B which harbor WWOX and FHIT genes, respectively, are frequently altered in human cancers. Here we report that environmental carcinogens, ultraviolet (UV) light, and Benzo[a]pyrene diol epoxide (BPDE), significantly downregulate expression of both genes. On the other hand, we observe that ionizing radiation (IR) does not affect expression of these genes, suggesting that the effect of repression exerted by UV and BPDE is not just a consequence of DNA damage but may be a result of different signaling pathways triggered by specific DNA lesions. Such downregulation correlates with an induction of an S-phase delay in the cell cycle. Treatment of UV-irradiated cells with caffeine abrogates the S-phase delay while concomitantly overcoming the repression phenomenon. This suggests the involvement of unique cell cycle checkpoint mechanisms in the observed repression. Therefore, it is hypothesized that protracted downregulation of the putative tumor suppressor genes WWOX and FHIT by environmental carcinogens may constitute an additional mechanism of relevance in the initiation of tumorigenesis.  相似文献   

6.
Common fragile sites are non-randomly distributed unstable chromosomal regions thought to be hot spots for recombination. They appear as gaps, breaks and triradial figures when cells are cultured under conditions that inhibit replication or repair of DNA. The removal of replication-inhibitory challenges is followed by repair activation to restore the DNA damage at the fragile site. The breast cancer cell line MDA-MB-436 has a spontaneous and non-random expression pattern of fragile sites that appear to be related to the complex pattern of chromosomal rearrangements. The high frequency of which fragile sites are spontaneously activated should make MDA-MB-436 cells a powerful tool to study in greater detail the DNA sequences of a multiplicity of fragile sites. Here, we have explored if the DNA at spontaneously activated fragile sites in MDA-MB-436 cells can be genetically tagged by the repair-mediated insertion of an exogenously supplied drug resistance gene. The cells were transfected with pSV2Neo, stably transfected clones were selected with neomycin, and the sites of pSV2Neo integration were determined by fluorescent in situ hybridization. Eighty-eight of 100 isolated clones had a non-random distribution of a total of 112 pSV2Neo integrations. Of these, 95 integrations (85%) coincide with the position at which non-random gaps and breaks appear in the MDA-MB-436 cells. Forty-nine (44%) of the 112 integrations appeared to be at position of known fragile sites, 46 (41%) were at the non-random chromosomal sites not previously described as "true" fragile sites. It is possible, however, that these non-random instabilities signal of genomic regions equivalent to fragile sites, that either have not previously been detected due to low level expression or that are activated in a tissue- or cell-type-specific manner. Collectively, our results show a preferential integration of exogenous DNA into fragile sites and other non-random regions of high genomic instability in MDA-MB-436 cells. This approach has provided a platform for the efficient targeted cloning and characterization of a substantial number of both common fragile sites and other non-random instability regions possibly related to breast cancer, and possibly also to other types of cancer.  相似文献   

7.
Common fragile sites (CFSs) are regions of profound genomic instability that have been hypothesized to play a role in cancer. The major aim of this study was to locate a fragile region associated with ovarian cancer. Differential display (DD)-PCR analysis comparing normal ovarian epithelial cultures and ovarian cancer cell lines identified pregnancy-associated plasma protein-A (PAPPA) because of its frequent loss of expression (LOE) in ovarian cancer cell lines. PAPPA is localized to human chromosome 9q32-33.1, a region associated with significant loss of heterozygosity (LOH) in ovarian tumors (>50%) and in close proximity to the FRA9E CFS. FISH analysis determined that PAPPA was contained within the distal end of FRA9E. Characterization of FRA9E determined that aphidicolin-induced instability extended over 9 Mb, identifying FRA9E as the largest CFS characterized to date. Comprehensive LOH analysis revealed several distinct peaks of LOH within FRA9E. Semiquantitative RT-PCR analysis of 16 genes contained within FRA9E indicated that genes showing LOE in ovarian tumors coincided with regions of high LOH. PAPPA displayed the most significant loss (72%). This study provides evidence to suggest that instability within FRA9E may play an important role in the development of ovarian cancer and lends further support for the hypothesis that CFSs may be causally related to cancer.  相似文献   

8.
Chromosomal fragile site FRA16D and DNA instability in cancer   总被引:12,自引:0,他引:12  
It has been proposed that common aphidicolin-inducible fragile sites, in general, predispose to specific chromosomal breakage associated with deletion, amplification, and/or translocation in certain forms of cancer. Although this appears to be the case for the fragile site FRA3B and may be the case for FRA7G, it is not yet clear whether this association is a general property of this class of fragile site. The major aim of the present study was to determine whether the FRA16D chromosomal fragile site locus has a role to play in predisposing DNA sequences within and adjacent to the fragile site to DNA instability (such as deletion or translocation), which could lead to or be associated with neoplasia. We report the localization of FRA16D within a contig of cloned DNA and demonstrate that this fragile site coincides with a region of homozygous deletion in a gastric adenocarcinoma cell line and is bracketed by translocation breakpoints in multiple myeloma, as reported previously (Chesi, M., et al., Blood, 91: 4457-4463, 1998). Therefore, given similar findings at the FRA3B and FRA7G fragile sites, it is likely that common aphidicolin-inducible fragile sites exhibit the general property of localized DNA instability in cancer cells.  相似文献   

9.
Evidence that instability within the FRA3B region extends four megabases   总被引:10,自引:0,他引:10  
FRA3B is the most frequently expressed common fragile site localized within human chromosomal band 3p14.2, which is frequently deleted in many different cancers, including cervical cancer. Previous reports indicate aphidicolin-induced FRA3B instability occurs over approximately 500 kb which is spanned by the 1.5 Mb fragile histidine triad (FHIT) gene. Recently an HPV16 cervical tumor integration, 2 Mb centromeric to the published FRA3B region, has been identified. FISH-based analysis with a BAC spanning the integration has demonstrated this integration occurs within the FRA3B region of instability. These data suggest that the unstable FRA3B region is much larger than previously reported. FISH-based analysis of aphidicolin-induced metaphase chromosomes allowed for a complete characterization of instability associated with FRA3B. This analysis indicates that fragility extends for 4 Mb. Within this region are a total of five genes, including FHIT. FRA3B gene expression analysis on a panel of cervical tumor-derived cell lines revealed that three of the five genes within FRA3B were aberrantly regulated. A similar analysis of genes outside of FRA3B indicated that the surrounding genes were not aberrantly expressed. These data provide additional support that regions of instability associated with CFSs and the genes contained within them, may play an important role in cancer development.  相似文献   

10.
Large common fragile site genes and cancer   总被引:2,自引:0,他引:2  
The common fragile sites are large regions of genomic instability that are found in all individuals and are hot spots for chromosomal rearrangements and deletions. A number of the common fragile sites have been found to span genes that are encoded by very large genomic regions. Two of these genes, FHIT and WWOX, have already been demonstrated to function as tumor suppressors. In this review we will discuss the large common fragile site genes that have been identified to date, and the role that these genes appear to play both in cellular responses to stress and in the development of cancer.  相似文献   

11.
Zhu Y  McAvoy S  Kuhn R  Smith DI 《Oncogene》2006,25(20):2901-2908
Common fragile sites (CFSs) are large genomic regions present in all individuals that are highly unstable and prone to breakage and rearrangement, especially in cancer cells with genomic instability. Eight of the 90 known CFSs have been precisely defined and five of these span genes that extend from 700 kb to over 1.5 Mb of genomic sequence. Although these genes reside within some of the most unstable chromosomal regions in the human genome, they are highly conserved evolutionarily. These genes are targets for large chromosomal deletions and rearrangements in cancer and are frequently inactivated in multiple tumor types. There is also an association between these genes and cellular responses to stress. Based upon the association between large genes and CFSs, we began to systematically test other large genes derived from chromosomal regions that were known to contain a CFS. In this study, we demonstrate that the 730 kb retinoic acid receptor-related orphan receptor alpha (RORA) gene is derived from the middle of the FRA15A (15q22.2) CFS. Although this gene is expressed in normal breast, prostate and ovarian epithelium, it is frequently inactivated in cancers that arise from these organs. RORA was previously shown to be involved in the cellular response to hypoxia and here we demonstrate changes in the amount of RORA message produced in cells exposed to a variety of different cellular stresses. Our results demonstrate that RORA is another very large CFS gene that is inactivated in multiple tumors. In addition, RORA appears to play a critical role in responses to cellular stress, lending further support to the idea that the large CFS genes function as part of a highly conserved stress response network that is uniquely susceptible to genomic instability in cancer cells.  相似文献   

12.
Common chromosomal fragile sites and cancer: focus on FRA16D   总被引:5,自引:0,他引:5  
A growing body of experimental evidence supports the view that certain human chromosomal fragile sites have roles to play in cancer. The principle lines of evidence are at the level of mutation mechanism and gene function. Most research in this area has previously focussed on the FRA3B common fragile site and the FHIT gene that spans this site. Here we review recent progress in characterising the second most readily observed common fragile site, FRA16D, and the WWOX gene that spans it. Comparative analyses of FRA3B/FHIT and FRA16D/WWOX reveal some striking similarities suggesting that these sites and their associated genes may play a part in a normal protective response of cells to environmental stress.  相似文献   

13.
The FRA3B, at 3p14.2, lies within the fragile histidine triad (FHIT) gene and is the most highly expressed of the common fragile sites observed when DNA replication is perturbed by aphidicolin. Common fragile sites are highly unstable regions of the genome. Large intragenic deletions within FHIT, localized within the FRA3B sequences, have been identified in a variety of tumor cells. To characterize the FRA3B deletions in tumor cells and identify FRA3B sequences that are required for fragile site induction, we used microcell-mediated chromosome transfer to isolate hybrid cell clones that retain chromosome 3 homologues with various deletions within FRA3B. Detailed molecular mapping of the FHIT/FRA3B locus in the resultant hybrid cells revealed a complex pattern of instability within FRA3B. Each tumor cell line contained multiple chromosome 3 homologues with variable deletion patterns, often with discontinuous deletions, suggesting that the process of breakage and repair within FRA3B is an ongoing one. By comparing the approximate location of the breakpoints in the hybrid clones, we identified 11 recurring breakpoint/repair regions within the FRA3B. A comparison of the frequency of breaks/gaps within FRA3B in the hybrid clones with various deletions of FRA3B sequences revealed that the loss of FRA3B sequences does not reduce the overall rate of breakage and instability within the remaining FRA3B sequences. The majority of breaks occurred in the proximal portion of the FRA3B, in a 300-kb interval between exon 4 and the proximal 50 kb of intron 5. Our observations suggest that there is no single sequence within the FRA3B that influences breakage or recombination within this region; however, we cannot rule out the presence of multiple "hot spots" within the FHIT/FRA3B locus. Together, the results suggest that factors other than the DNA sequence per se are responsible for the formation of DNA breaks/gaps.  相似文献   

14.
Common fragile sites, extremely large genes, neural development and cancer   总被引:5,自引:0,他引:5  
Smith DI  Zhu Y  McAvoy S  Kuhn R 《Cancer letters》2006,232(1):48-57
  相似文献   

15.
Thorland EC  Myers SL  Gostout BS  Smith DI 《Oncogene》2003,22(8):1225-1237
The development of cervical cancer is highly associated with human papillomavirus (HPV) infection. HPV integration into the genome of infected cervical cells is temporally associated with the acquisition of the malignant phenotype. A relationship between the sites of HPV integration in cervical cancer and the position of the common fragile sites (CFSs) has been observed at both the cytogenetic and molecular levels. To further explore this relationship at the molecular level, we used RS-PCR to rapidly isolate cellular sequences flanking the sites of HPV16 integration in 26 primary cervical tumors. Human bacterial artificial chromosome clones were isolated based on these flanking sequences and used as probes for fluorescence in situ hybridization on aphidicolin-stimulated metaphases. Our data demonstrate that 11/23 HPV16 integrations in cervical tumors occurred within CFSs (P&<0.001). In addition, we show that deletions and complex rearrangements frequently occur in the cellular sequences targeted by the integrations and that integrations cluster in FRA13C (13q22), FRA3B (3p14.2), and FRA17B (17q23). Finally, our data suggest that cellular genes, such as Notch 1, are disrupted by the HPV16 integrations, which may contribute to the malignant phenotype.  相似文献   

16.
Common fragile sites   总被引:1,自引:0,他引:1  
Common fragile sites are regions showing site-specific gaps and breaks on metaphase chromosomes after partial inhibition of DNA synthesis. Common fragile sites are normally stable in somatic cells. However, following treatment of cultured cells with replication inhibitors, fragile sites display gaps, breaks, rearrangements and other features of unstable DNA. Studies showing that fragile sites and associated genes are frequently deleted or rearranged in many cancer cells have clearly demonstrated their importance in genome instability in cancer. Until recently, little was known about the molecular nature and mechanisms involved in fragile site instability. From studies conducted in many laboratories, it is now known that fragile sites extend over large regions, are associated with genes, exhibit delayed replication, and contain regions of high DNA flexibility. Recent findings from our laboratory showing that the key cell cycle checkpoint genes are important for genome stability at fragile sties have shed new light on these mechanisms and on the significance of these sites in cancer and normal chromosome structure. Since their discovery over two decades ago, much has been learned regarding their significance in chromosome structure and instability in cancer, but a number of key questions remain, including why these sites are 'fragile' and the impact of this instability on associated genes in cancer cells. These and other questions have been addressed by participants of this meeting, which highlighted instability at common fragile sites. This brief review is intended to provide background on common fragile sites that has led up to many of the studies presented in the accompanying reports in this volume and not to summarize the findings presented therein. Some aspects of this review were taken from Glover et al. (T.W. Glover, M.F. Arlt, A.M. Casper, S.G. Durkin, Mechanisms of common fragile site instability, Hum. Molec. Genet. 14 (in press). [1]).  相似文献   

17.
Common fragile sites (CFSs) are expressed as chromosome gaps in cells of different species including human and mouse as a result of the inhibition of DNA replication. They may serve as hot spots for DNA breakage in processes such as tumorigenesis and chromosome evolution. Using multicolor fluorescence in situ hybridization mapping, the authors describe here human CFS FRA7K on chromosome band 7q31.1 and its murine homolog Fra12C1. Within the syntenic FRA7K/Fra12C1 region lies the IMMP2L/Immp2l gene with a size of 899/983 kb. The authors further mapped 2 amplification breakpoints of the breast cancer cell line SKBR3 to the CFSs FRA7G and FRA7H. The 5 molecularly defined CFSs on chromosome 7 do not preferentially colocalize with synteny breaks between the human and mouse genomes and with intragenomic duplications that have occurred during chromosome evolution. In addition, in contrast to all currently reported data, CFSs in chromosome band 7q31 do not show increased DNA helix flexibility in comparison with control regions without CFS expression.  相似文献   

18.
Roles of FHIT and WWOX fragile genes in cancer   总被引:4,自引:0,他引:4  
It was hypothesized as early as 1986, that the recently discovered common fragile sites could facilitate recombination events, such as deletions and translocations, that result in clonally expanded cancer cell populations with specific chromosome alterations in specific cancer types. A natural extension of this hypothesis is that the clonal expansion must be driven by alteration of genes at recombination breakpoints whose altered functions actually drive clonal expansion. Nevertheless, when the FHIT gene was discovered at FRA3B, the most active common chromosome fragile region, and proposed as an example of a tumor suppressor gene altered by chromosome translocations and deletions, a wave of reports suggested that the FHIT gene was altered in cancer simply because it was in a fragile region and not because it had contributed to the clonal expansion, thus turning the original hypothesis upside down. Now, after nearly ten years and more than 500 FHIT reports, it is apparent that FHIT is an important tumor suppressor gene and that there are genes at other fragile regions that contribute significantly to development of cancer. A second fragile gene with a demonstrated role in cancer development is the WWOX gene on chromosome 16q; alterations to the WWOX gene contribute to development of hormone responsive and other cancers. Results of our recent studies of these two fragile tumor suppressor genes were summarized at the first Fragilome meeting in Heidelberg, Feb. 2005.  相似文献   

19.
In various studies of sporadic breast cancers, 40-70% were strongly positive for fragile histidine triad (Fhit) protein expression, whereas only 18% of BRCA2 mutant breast cancers demonstrated strong Fhit expression, suggesting that the BRCA2 repair function may be necessary to retain intact fragile common chromosome fragile site 3B(FRA3B)/FHITloci. In the current study, 22 breast tumors with deleterious BRCA1 mutations were analyzed for Fhit expression by immunohistochemistry in a case-control matched pair analysis. Loss of Fhit expression was significantly more frequent in the BRCA1 cancers compared with sporadic breast tumors (9% Fhit positive versus 68% Fhit positive), suggesting that the BRCA1 pathway is also important in protecting the FRA3B/FHIT locus from damage. To investigate the relationship between repair gene deficiencies and induction of chromosome fragile sites in vitro, we have analyzed the frequency of aphidicolin induction of chromosome gaps and breaks in PMS2-, BRCA1-, MSH2-, MLH1-, FHIT-, and TP53-deficient cell lines. Each of the repair-deficient cell lines showed elevated expression of chromosome gaps and breaks, consistent with the proposal that proteins involved in mismatch and double-strand break repair are important in maintaining the integrity of common fragile regions. Correspondingly, genes at common fragile sites may sustain elevated levels of DNA damage in cells with deficient DNA repair proteins such as those mutated in several familial cancer syndromes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号