首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 156 毫秒
1.
目的 为了克服母源性抗体对子代的免疫抑制作用,寻找避免母源性抗体干扰的流感疫苗免疫策略.方法 以小鼠为动物模型,接种流感灭活疫苗或DNA疫苗,并用致死量流感病毒感染.感染后检测小鼠的存活率、肺部病毒滴度、体内抗体滴度等指标,对疫苗的保护效果进行评价.结果 母代与子代免疫相同的疫苗,不论是灭活疫苗还是DNA疫苗,子代体内的母源性抗体都抑制了子代免疫后的自动免疫应答,表现为子鼠接种疫苗后不能抵御致死量流感病毒感染;母代免疫流感灭活疫苗,子代免疫神经氨酸酶DNA疫苗,子鼠能够克服母源性抗体干扰,抵御致死量流感病毒感染;母代和子代免疫不同的DNA疫苗,即母代免疫血凝素或神经氨酸酶DNA疫苗,子代免疫神经氨酸酶或血凝素DNA疫苗,也能达到克服母源性抗体干扰的目的 .结论 流感DNA疫苗免疫BALB/c小鼠能克服母源性抗体的干扰,这为临床新生儿抗母源性抗体干扰的研究提供了实验参考.  相似文献   

2.
目的 为了克服母源性抗体对子代的免疫抑制作用,寻找避免母源性抗体干扰的流感疫苗免疫策略.方法 以小鼠为动物模型,接种流感灭活疫苗或DNA疫苗,并用致死量流感病毒感染.感染后检测小鼠的存活率、肺部病毒滴度、体内抗体滴度等指标,对疫苗的保护效果进行评价.结果 母代与子代免疫相同的疫苗,不论是灭活疫苗还是DNA疫苗,子代体内的母源性抗体都抑制了子代免疫后的自动免疫应答,表现为子鼠接种疫苗后不能抵御致死量流感病毒感染;母代免疫流感灭活疫苗,子代免疫神经氨酸酶DNA疫苗,子鼠能够克服母源性抗体干扰,抵御致死量流感病毒感染;母代和子代免疫不同的DNA疫苗,即母代免疫血凝素或神经氨酸酶DNA疫苗,子代免疫神经氨酸酶或血凝素DNA疫苗,也能达到克服母源性抗体干扰的目的 .结论 流感DNA疫苗免疫BALB/c小鼠能克服母源性抗体的干扰,这为临床新生儿抗母源性抗体干扰的研究提供了实验参考.  相似文献   

3.
目的 为了克服母源性抗体对子代的免疫抑制作用,寻找避免母源性抗体干扰的流感疫苗免疫策略.方法 以小鼠为动物模型,接种流感灭活疫苗或DNA疫苗,并用致死量流感病毒感染.感染后检测小鼠的存活率、肺部病毒滴度、体内抗体滴度等指标,对疫苗的保护效果进行评价.结果 母代与子代免疫相同的疫苗,不论是灭活疫苗还是DNA疫苗,子代体内的母源性抗体都抑制了子代免疫后的自动免疫应答,表现为子鼠接种疫苗后不能抵御致死量流感病毒感染;母代免疫流感灭活疫苗,子代免疫神经氨酸酶DNA疫苗,子鼠能够克服母源性抗体干扰,抵御致死量流感病毒感染;母代和子代免疫不同的DNA疫苗,即母代免疫血凝素或神经氨酸酶DNA疫苗,子代免疫神经氨酸酶或血凝素DNA疫苗,也能达到克服母源性抗体干扰的目的 .结论 流感DNA疫苗免疫BALB/c小鼠能克服母源性抗体的干扰,这为临床新生儿抗母源性抗体干扰的研究提供了实验参考.  相似文献   

4.
目的 为了克服母源性抗体对子代的免疫抑制作用,寻找避免母源性抗体干扰的流感疫苗免疫策略.方法 以小鼠为动物模型,接种流感灭活疫苗或DNA疫苗,并用致死量流感病毒感染.感染后检测小鼠的存活率、肺部病毒滴度、体内抗体滴度等指标,对疫苗的保护效果进行评价.结果 母代与子代免疫相同的疫苗,不论是灭活疫苗还是DNA疫苗,子代体内的母源性抗体都抑制了子代免疫后的自动免疫应答,表现为子鼠接种疫苗后不能抵御致死量流感病毒感染;母代免疫流感灭活疫苗,子代免疫神经氨酸酶DNA疫苗,子鼠能够克服母源性抗体干扰,抵御致死量流感病毒感染;母代和子代免疫不同的DNA疫苗,即母代免疫血凝素或神经氨酸酶DNA疫苗,子代免疫神经氨酸酶或血凝素DNA疫苗,也能达到克服母源性抗体干扰的目的 .结论 流感DNA疫苗免疫BALB/c小鼠能克服母源性抗体的干扰,这为临床新生儿抗母源性抗体干扰的研究提供了实验参考.  相似文献   

5.
目的 为了克服母源性抗体对子代的免疫抑制作用,寻找避免母源性抗体干扰的流感疫苗免疫策略.方法 以小鼠为动物模型,接种流感灭活疫苗或DNA疫苗,并用致死量流感病毒感染.感染后检测小鼠的存活率、肺部病毒滴度、体内抗体滴度等指标,对疫苗的保护效果进行评价.结果 母代与子代免疫相同的疫苗,不论是灭活疫苗还是DNA疫苗,子代体内的母源性抗体都抑制了子代免疫后的自动免疫应答,表现为子鼠接种疫苗后不能抵御致死量流感病毒感染;母代免疫流感灭活疫苗,子代免疫神经氨酸酶DNA疫苗,子鼠能够克服母源性抗体干扰,抵御致死量流感病毒感染;母代和子代免疫不同的DNA疫苗,即母代免疫血凝素或神经氨酸酶DNA疫苗,子代免疫神经氨酸酶或血凝素DNA疫苗,也能达到克服母源性抗体干扰的目的 .结论 流感DNA疫苗免疫BALB/c小鼠能克服母源性抗体的干扰,这为临床新生儿抗母源性抗体干扰的研究提供了实验参考.  相似文献   

6.
目的 为了克服母源性抗体对子代的免疫抑制作用,寻找避免母源性抗体干扰的流感疫苗免疫策略.方法 以小鼠为动物模型,接种流感灭活疫苗或DNA疫苗,并用致死量流感病毒感染.感染后检测小鼠的存活率、肺部病毒滴度、体内抗体滴度等指标,对疫苗的保护效果进行评价.结果 母代与子代免疫相同的疫苗,不论是灭活疫苗还是DNA疫苗,子代体内的母源性抗体都抑制了子代免疫后的自动免疫应答,表现为子鼠接种疫苗后不能抵御致死量流感病毒感染;母代免疫流感灭活疫苗,子代免疫神经氨酸酶DNA疫苗,子鼠能够克服母源性抗体干扰,抵御致死量流感病毒感染;母代和子代免疫不同的DNA疫苗,即母代免疫血凝素或神经氨酸酶DNA疫苗,子代免疫神经氨酸酶或血凝素DNA疫苗,也能达到克服母源性抗体干扰的目的 .结论 流感DNA疫苗免疫BALB/c小鼠能克服母源性抗体的干扰,这为临床新生儿抗母源性抗体干扰的研究提供了实验参考.  相似文献   

7.
目的 为了克服母源性抗体对子代的免疫抑制作用,寻找避免母源性抗体干扰的流感疫苗免疫策略.方法 以小鼠为动物模型,接种流感灭活疫苗或DNA疫苗,并用致死量流感病毒感染.感染后检测小鼠的存活率、肺部病毒滴度、体内抗体滴度等指标,对疫苗的保护效果进行评价.结果 母代与子代免疫相同的疫苗,不论是灭活疫苗还是DNA疫苗,子代体内的母源性抗体都抑制了子代免疫后的自动免疫应答,表现为子鼠接种疫苗后不能抵御致死量流感病毒感染;母代免疫流感灭活疫苗,子代免疫神经氨酸酶DNA疫苗,子鼠能够克服母源性抗体干扰,抵御致死量流感病毒感染;母代和子代免疫不同的DNA疫苗,即母代免疫血凝素或神经氨酸酶DNA疫苗,子代免疫神经氨酸酶或血凝素DNA疫苗,也能达到克服母源性抗体干扰的目的 .结论 流感DNA疫苗免疫BALB/c小鼠能克服母源性抗体的干扰,这为临床新生儿抗母源性抗体干扰的研究提供了实验参考.  相似文献   

8.
目的 为了克服母源性抗体对子代的免疫抑制作用,寻找避免母源性抗体干扰的流感疫苗免疫策略.方法 以小鼠为动物模型,接种流感灭活疫苗或DNA疫苗,并用致死量流感病毒感染.感染后检测小鼠的存活率、肺部病毒滴度、体内抗体滴度等指标,对疫苗的保护效果进行评价.结果 母代与子代免疫相同的疫苗,不论是灭活疫苗还是DNA疫苗,子代体内的母源性抗体都抑制了子代免疫后的自动免疫应答,表现为子鼠接种疫苗后不能抵御致死量流感病毒感染;母代免疫流感灭活疫苗,子代免疫神经氨酸酶DNA疫苗,子鼠能够克服母源性抗体干扰,抵御致死量流感病毒感染;母代和子代免疫不同的DNA疫苗,即母代免疫血凝素或神经氨酸酶DNA疫苗,子代免疫神经氨酸酶或血凝素DNA疫苗,也能达到克服母源性抗体干扰的目的 .结论 流感DNA疫苗免疫BALB/c小鼠能克服母源性抗体的干扰,这为临床新生儿抗母源性抗体干扰的研究提供了实验参考.  相似文献   

9.
目的 为了克服母源性抗体对子代的免疫抑制作用,寻找避免母源性抗体干扰的流感疫苗免疫策略.方法 以小鼠为动物模型,接种流感灭活疫苗或DNA疫苗,并用致死量流感病毒感染.感染后检测小鼠的存活率、肺部病毒滴度、体内抗体滴度等指标,对疫苗的保护效果进行评价.结果 母代与子代免疫相同的疫苗,不论是灭活疫苗还是DNA疫苗,子代体内的母源性抗体都抑制了子代免疫后的自动免疫应答,表现为子鼠接种疫苗后不能抵御致死量流感病毒感染;母代免疫流感灭活疫苗,子代免疫神经氨酸酶DNA疫苗,子鼠能够克服母源性抗体干扰,抵御致死量流感病毒感染;母代和子代免疫不同的DNA疫苗,即母代免疫血凝素或神经氨酸酶DNA疫苗,子代免疫神经氨酸酶或血凝素DNA疫苗,也能达到克服母源性抗体干扰的目的 .结论 流感DNA疫苗免疫BALB/c小鼠能克服母源性抗体的干扰,这为临床新生儿抗母源性抗体干扰的研究提供了实验参考.  相似文献   

10.
目的 检测H9N2禽流感病毒血凝素(hemagglutinin,HA)和神经氨酸酶(neuraminidase,NA)DNA疫苗保护小鼠抵抗致死量同源病毒感染的能力.方法 通过小鼠肺对肺传代,建立禽流感病毒A/chicken/Jiangsu/07/2002(H9N2)小鼠适应株.同时,构建病毒HA和NA DNA疫苗,以不同剂量电击法免疫小鼠1或2次,在初次免疫后4周或加强免疫后1周用致死量(40 LD50)鼠适应型病毒攻击小鼠.通过测定小鼠血清抗体滴度、小鼠存活率和肺部病毒滴度来评价疫占的效果.结果 HA或NADNA 10μg免疫1次或3μg免疫2次均可保护小鼠抵抗致死昔H9N2病毒的感染.结论 低剂量HA或NA DNA可为抗H9N2禽流感病毒感染提供有效的免疫保护.  相似文献   

11.
Influenza B virus is an important cause of acute upper respiratory disease in humans. Vaccination is the primary method of control of influenza related disease, yet vaccine methodology and production technology have not changed in over 40 years. In this study, we compare the efficacy of recombinant baculovirus produced protein based neuraminidase containing influenza B vaccines with conventional inactivated influenza vaccine (CIV) and live-attenuated influenza vaccine (LAIV) in a murine model. All HA containing vaccines stimulated antibody and protected against an infectious challenge with homotypic virus (B/Harbin/7/94), only recombinant protein based (rHA + rNA and rNA) vaccines containing immunogenic amounts of influenza neuraminidase (NA) protected against challenge with a significantly antigenically different heterovariant virus (B/Beijing/243/1997), as measured by a reduction in mean pulmonary virus titers. This report demonstrates with influenza B virus, in a side-by-side comparison with CIV and LAIV in a murine model system the superiority of vaccines containing immunogenic NA over currently approved CIV and LAIV vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号