首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background:

α-Tocopherol ether-linked acetic acid (α-TEA) is a promising agent for cancer prevention/therapy based on its antitumour actions in a variety of cancers.

Methods:

Human breast cancer cells, MCF-7 and HCC-1954, were used to study the effect of α-TEA using Annexin V/PI staining, western blot analyses, and siRNA knockdown techniques.

Results:

α-Tocopherol ether-linked acetic acid suppressed constitutively active basal levels of pAKT, pERK, pmTOR, and their downstream targets, as well as induced both cell types to undergo apoptosis. Phosphoinositide 3-kinase (PI3K) inhibitor wortmannin suppressed pAKT, pERK, pmTOR, and their downstream targets, indicating PI3K to be a common upstream mediator. In addition, α-TEA induced increased levels of pIRS-1 (Ser-307), a phosphorylation site correlated with insulin receptor substrate-1 (IRS-1) inactivation, and decreased levels of total IRS-1. Small interfering RNA (siRNA) knockdown of JNK blocked the impact of α-TEA on pIRS-1 and total IRS-1 and impeded its ability to downregulate the phosphorylated status of AKT, ERK, and mTOR. Combinations of α-TEA+MEK or mTOR inhibitor acted cooperatively to induce apoptosis and reduce basal levels of pERK and pmTOR. Importantly, inhibition of MEK and mTOR resulted in increased levels of pAKT and IRS-1, and α-TEA blocked them.

Conclusions:

Downregulation of IRS-1/PI3K pathways via JNK are critical for α-TEA and α-TEA+MEK or mTOR inhibitor-induced apoptosis in human MCF-7 and HCC-1954 breast cancer cells.  相似文献   

2.

Background:

The discovery of ERG/ETV1 gene rearrangements and PTEN gene loss warrants investigation in a mechanism-based prognostic classification of prostate cancer (PCa). The study objective was to evaluate the potential clinical significance and natural history of different disease categories by combining ERG/ETV1 gene rearrangements and PTEN gene loss status.

Methods:

We utilised fluorescence in situ hybridisation (FISH) assays to detect PTEN gene loss and ERG/ETV1 gene rearrangements in 308 conservatively managed PCa patients with survival outcome data.

Results:

ERG/ETV1 gene rearrangements alone and PTEN gene loss alone both failed to show a link to survival in multivariate analyses. However, there was a strong interaction between ERG/ETV1 gene rearrangements and PTEN gene loss (P<0.001). The largest subgroup of patients (54%), lacking both PTEN gene loss and ERG/ETV1 gene rearrangements comprised a ‘good prognosis'' population exhibiting favourable cancer-specific survival (85.5% alive at 11 years). The presence of PTEN gene loss in the absence of ERG/ETV1 gene rearrangements identified a patient population (6%) with poorer cancer-specific survival that was highly significant (HR=4.87, P<0.001 in multivariate analysis, 13.7% survival at 11 years) when compared with the ‘good prognosis'' group. ERG/ETV1 gene rearrangements and PTEN gene loss status should now prospectively be incorporated into a predictive model to establish whether predictive performance is improved.

Conclusions:

Our data suggest that FISH studies of PTEN gene loss and ERG/ETV1 gene rearrangements could be pursued for patient stratification, selection and hypothesis-generating subgroup analyses in future PCa clinical trials and potentially in patient management.  相似文献   

3.

Background:

Naturally oncolytic reovirus preferentially kills cancer cells, making it a promising cancer therapeutic. Mutations in tumour suppressor p53 are prevalent in cancers, yet the role of p53 in reovirus oncolysis is relatively unexplored.

Methods:

Human cancer cell lines were exposed to Nutlin-3a, reovirus or a combination of the two and cells were processed for reovirus titration, western blot, real-time PCR and apoptosis assay using Annexin V and 7-AAD staining. Confocal microscopy was used to determine translocation of the NF-κB p65 subunit.

Results:

We show that despite similar reovirus replication in p53+/+ and p53−/− cells, stabilisation of p53 by Nutlin-3a significantly enhanced reovirus-induced apoptosis and hence virus release and dissemination while having no direct effect on virus replication. Enhanced apoptosis by Nutlin-3a was not observed in p53−/− or p53 knockdown cells; however, increased expression of Bax and p21 are required. Moreover, elevated NF-κB activation in reovirus-infected cells following Nutlin-3a treatment was necessary for enhanced reovirus-induced apoptosis, as synergistic cytotoxicity was overcome by specific NF-κB inhibitors.

Conclusion:

Nutlin-3a treatment enhances reovirus-induced apoptosis and virus spread through p53-dependent NF-κB activation, and combination of reovirus and Nutlin-3a might represent an improved therapy against cancers harbouring wild-type p53.  相似文献   

4.

Background:

Colorectal cancers are often chemoresistant toward antitumour drugs that are substrates for ABCB1-mediated multidrug resistance (MDR). Activation of the Wnt/β-catenin pathway is frequently observed in colorectal cancers. This study investigates the impact of activated, gain-of-function β-catenin on the chemoresistant phenotype.

Methods:

The effect of mutant (mut) β-catenin on ABCB1 expression and promoter activity was examined using HCT116 human colon cancer cells and isogenic sublines harbouring gain-of-function or wild-type β-catenin, and patients'' tumours. Chemosensitivity towards 24 anticancer drugs was determined by high throughput screening.

Results:

Cell lines with mut β-catenin showed high ABCB1 promoter activity and expression. Transfection and siRNA studies demonstrated a dominant role for the mutant allele in activating ABCB1 expression. Patients'' primary colon cancer tumours shown to express the same mut β-catenin allele also expressed high ABCB1 levels. However, cell line chemosensitivities towards 24 MDR-related and non-related antitumour drugs did not differ despite different β-catenin genotypes.

Conclusion:

Although ABCB1 is dominantly regulated by mut β-catenin, this did not lead to drug resistance in the isogenic cell line model studied. In patient samples, the same β-catenin mutation was detected. The functional significance of the mutation for predicting patients'' therapy response or for individualisation of chemotherapy regimens remains to be established.  相似文献   

5.

Background:

Oestrogen receptor-alpha (ERα) is highly expressed in diffuse-type gastric cancer and oestrogen increases the proliferation of ERα-positive gastric cancer. However, a detailed mechanism by which oestrogen increases the proliferation of these cells is still unclear.

Methods:

We used 17-β-oestradiol (E2) as a stimulator against the ERα pathway. Pure anti-oestrogen drug ICI 182 780 (ICI) and small interfering RNA against ERα (ERα siRNA) were used as inhibitors. Cyclopamine (Cyc) was used as the hedgehog (Hh) pathway inhibitor. Two human ERα-positive gastric cancer cells were used as target cells. Effects of the stimulator and inhibitor on E2-induced cell proliferation were also examined.

Results:

In ERα-positive cells, E2 increased not only cell proliferation but also one of the ligands of the Hh pathway, Shh expression. 17-β-Oestradiol-induced cell proliferation was suppressed by ICI, ERα siRNA or Cyc. The increased expression of Shh induced by E2 was suppressed by ICI and ERα siRNA but not by Cyc. Furthermore, recombinant Shh activated the Hh pathway and increased cell proliferation, whereas anti-Shh antibody suppressed E2-induced cell proliferation. When a relationship between ERα and Shh expressions was analysed using surgically resected gastric cancer specimens, a positive correlation was found, suggesting a linkage between the ERα and Hh pathways.

Conclusion:

Our data indicate that activation of the ERα pathway promotes cell proliferation by activating the Hh pathway in a ligand-dependent manner through Shh induction of ERα-positive gastric cancer.  相似文献   

6.

Background:

Interferon-λs (IFN-λs) are novel cytokines with multiple functions, like IFN-α and -β. We examined possible anti-tumour effects produced by adenoviruses bearing the IFN-λ1 or -λ2 gene (Ad/IFN-λ) with the type-35 fibre-knob structure.

Methods:

Proliferation of oesophageal carcinoma cells transduced with Ad/IFN-λ and mechanisms of the inhibited growth were investigated.

Results:

Transduction with Ad/IFN-λ upregulated the expression of the class I antigens of the major histocompatibility complexes and induced the growth suppression. Increased sub-G1 populations and the cleavage of caspase-3 and poly (ADP-ribose) polymerase were detected in IFN-λ-sensitive YES-2 and T.Tn cells. The cell death was accompanied by cytoplasmic cytochrome C and increased cleaved caspase-9 and Bax expression, suggesting mitochondria-mediated apoptosis. Adenovirus/IFN-λ-infected YES-2 cells subsequently reduced the tumourigenicity. Adenovirus/IFN-λ-infected fibroblasts, negative for the IFN-λ receptors, induced death of YES-2 or T.Tn cells that were co-cultured. Inoculation of YES-2 cells in nude mice, when mixed with the Ad/IFN-λ-infected fibroblasts, resulted in retardation of the tumour growth. The growth suppression was not linked with upregulated CD69 expression on natural killer cells or increased numbers of CD31-positive cells.

Conclusion:

Adenovirus/IFN-λ induced apoptosis, and fibroblast-mediated delivery of IFN-λs is a potential cancer treatment by inducing direct cell death of the target carcinoma.  相似文献   

7.

Background:

Trastuzumab resistance hampers its well-known efficacy to control HER2-positive breast cancer. The involvement of PI3K/Akt pathway in this mechanism is still not definitively confirmed.

Methods:

We selected 155 patients treated with trastuzumab after development of metastasis or as adjuvant/neoadjuvant therapy. We performed immunohistochemistry for HER2, ER/PR, epidermal growth factor 1-receptor (EGFR), α-insulin-like growth factor 1-receptor (IGF1R), phosphatase and tensin homologue (PTEN), p110α, pAkt, pBad, pmTOR, pMAPK, MUC1, Ki67, p53 and p27; mutational analysis of PIK3CA and PTEN, and PTEN promoter hypermethylation.

Results:

We found 46% ER/PR-positive tumours, overexpression of EGFR (15%), α-IGF1R (25%), p110α (19%), pAkt (28%), pBad (22%), pmTOR (23%), pMAPK (24%), MUC1 (80%), PTEN loss (20%), and PTEN promoter hypermethylation (20%). PIK3CA and PTEN mutations were detected in 17% and 26% tumours, respectively. Patients receiving adjuvant trastuzumab with α-IGF1R or pBad overexpressing tumours presented shorter progression-free survival (PFS) (all P⩽0.043). Also, p110α and mTOR overexpression, liver and brain relapses implied poor overall survival (OS) (all P⩽0.041). In patients with metastatic disease, decreased PFS correlated with p110α expression (P=0.024), whereas for OS were the presence of vascular invasion and EGFR expression (P⩽0.019; Cox analysis).

Conclusion:

Our results support that trastuzumab resistance mechanisms are related with deregulation of PTEN/PI3K/Akt/mTOR pathway, and/or EGFR and IGF1R overexpression in a subset of HER2-positive breast carcinomas.  相似文献   

8.

Background:

Myofibroblasts in the cancer microenvironment have recently been implicated in tumour growth and metastasis of gastric cancer. However, the mechanisms responsible for the regulation of myofibroblasts in cancer-associated fibroblasts (CAFs) remain unclear. This study was performed to clarify the mechanisms for regulation of myofibroblasts in gastric cancer microenvironment.

Methods:

Two CAFs (CaF-29 and CaF-33) from the tumoural gastric wall and a normal fibroblast (NF-29) from the nontumoural gastric wall, 4 human gastric cancer cell lines from scirrhous gastric cancer (OCUM-2MD3 and OCUM-12), and non-scirrhous gastric cancer (MKN-45 and MKN-74) were used. Immunofluorescence microscopy by triple-immunofluorescence labelling (α-SMA, vimentin, and DAPI) was performed to determine the presence of α-SMA-positive myofibroblasts. Real-time RT–PCR was performed to examine α-SMA mRNA expression.

Results:

Immunofluorescence microscopy showed that the frequency of myofibroblasts in CaF-29 was greater than that in NF-29. The number of myofibroblasts in gastric fibroblasts gradually decreased with serial passages. Transforming growth factor-β (TGF-β) significantly increased the α-SMA expression level of CAFs. Conditioned medium from OCUM-2MD3 or OCUM-12 cells upregulated the α-SMA expression level of CAFs, but that from MKN-45 or MKN-74 cells did not. The α-SMA upregulation effect of conditioned medium from OCUM-2MD3 or OCUM-12 cells was significantly decreased by an anti-TGF-β antibody or Smad2 siRNA.

Conclusion:

Transforming growth factor-β from scirrhous gastric carcinoma cells upregulates the number of myofibroblasts in CAFs.  相似文献   

9.

Background:

Clear cell renal cell carcinoma (CCRCC) is the commonest form of kidney cancer. Up to 91% have biallelic inactivation of VHL, resulting in stabilisation of HIF-α subunits. Factor inhibiting HIF-1 is an enzyme that hydroxylates HIF-α subunits and prevents recruitment of the co-activator CBP/P300. An important question is whether FIH-1 controls HIF activity in CCRCC.

Methods:

Human VHL defective CCRCC lines RCC10, RCC4 and 786–O were used to determine the role of FIH-1 in modulating HIF activity, using small interfering RNA knockdown, retroviral gene expression, quantitative RT–PCR, western blot analysis, Annexin V and propidium iodide labelling.

Results:

Although it was previously suggested that FIH-1 is suppressed in CCRCC, we found that FIH-1 mRNA and protein are actually present at similar levels in CCRCC and normal kidney. The FIH-1 inhibition or knockdown in the VHL defective CCRCC lines RCC10 and RCC4 (which express both HIF-1α and HIF-2α) resulted in increased expression of HIF target genes. In the 786-O CCRCC cell line, which expresses only HIF-2α, FIH-1 attenuation showed no significant effect on expression of these genes; introduction of HIF-1α resulted in sensitivity of HIF targets to FIH-1 knockdown. In RCC4 and RCC10, knockdown of FIH-1 increased apoptosis. Suppressing HIF-1α expression in RCC10 prevented FIH-1 knockdown from increasing apoptosis.

Conclusion:

Our results support a unifying model in which HIF-1α has a tumour suppressor action in CCRCC, held in check by FIH-1. Inhibiting FIH-1 in CCRCC could be used to bias the HIF response towards HIF-1α and decrease tumour cell viability.  相似文献   

10.

Background:

Hypoxia-inducible factor 1 (HIF1) has been implicated in regulating many of the genes responsible for angiogenesis, erythropoiesis, glucose metabolism and cancer pathogenesis. In this study, we demonstrate that exposure of human breast cancer lines to 17β-oestradiol (E2) rapidly induced the expression of HIF-1α, the regulated subunit of HIF1, in normoxic condition. Hypoxia-inducible factor-1α is normally degraded in normoxia through ubiquitination-mediated proteolysis, whereas hypoxia modulates HIF-1α level by inhibiting ubiquitination-mediated degradation.

Methods:

Oestradiol-induced accumulation of HIF-1α in breast cancer lines was detected by western blot analysis and its promoter activity was measured by HIF1 reporter assay. Molecular signalling of oestradiol-mediated HIF-1α expression was studied using specific pharmacological inhibitors and small interference RNA by co-immunoprecipitation and western blotting analysis.

Results:

Oestradiol has been observed to rapidly activate the nongenomic signalling cascade leading to HIF-1α protein synthesis. The results define a signalling pathway in breast cancer cells whereby oestradiol induces a rapid protein–protein interaction of ERα-c-Src-PI3K, resulting in the activation of PI3K/AKT pathway leading to mammalian target of rapamycin (mTOR) phosphorylation. The mTOR then stimulates translation by phosphorylating p70 S6 kinase and 4EB-P1, modulating HIF-1α protein synthesis. Oestradiol-stimulated HIF-1α activity was inhibited by either siRNA or pharmacological inhibitors to ERα, c-Src, PI3K and mTOR, providing a mechanism for the modulation of HIF-1α protein synthesis.

Conclusion:

These results show oestradiol-induced expression of HIF-1α, downstream of the ERα/c-Src/PI3K/AKT/mTOR pathway in human breast cancer cells.  相似文献   

11.

Background:

Despite therapeutic advances, the prognosis of patients with metastatic soft tissue sarcoma (STS) remains extremely poor. The results of a recent clinical phase II study, evaluating the protective effects of the semisynthetic flavonoid 7-mono-O-(β-hydroxyethyl)-rutoside (monoHER) on doxorubicin-induced cardiotoxicity, suggest that monoHER enhances the antitumour activity of doxorubicin in STSs.

Methods:

To molecularly explain this unexpected finding, we investigated the effect of monoHER on the cytotoxicity of doxorubicin, and the potential involvement of glutathione (GSH) depletion and nuclear factor-κB (NF-κB) inactivation in the chemosensitising effect of monoHER.

Results:

MonoHER potentiated the antitumour activity of doxorubicin in the human liposarcoma cell line WLS-160. Moreover, the combination of monoHER with doxorubicin induced more apoptosis in WLS-160 cells compared with doxorubicin alone. MonoHER did not reduce intracellular GSH levels. On the other hand, monoHER pretreatment significantly reduced doxorubicin-induced NF-κB activation.

Conclusion:

These results suggest that reduction of doxorubicin-induced NF-κB activation by monoHER, which sensitises cancer cells to apoptosis, is involved in the chemosensitising effect of monoHER in human liposarcoma cells.  相似文献   

12.

Background:

Angiogenesis and haemostasis are closely linked within tumours with many haemostatic proteins regulating tumour angiogenesis. Indeed we previously identified a fragment of human fibrinogen, fibrinogen E-fragment (FgnE) with potent anti-angiogenic properties in vitro and cytotoxic effects on tumour vessels in vivo. We therefore investigated which region of FgnE was mediating vessel cytotoxicity.

Methods:

Human dermal microvascular endothelial cells (ECs) were used to test the efficacy of peptides derived from FgnE on proliferation, migration, differentiation, apoptosis and adhesion before testing the efficacy of an active peptide on tumour vasculature in vivo.

Results:

We identified a 20-amino-acid peptide derived from the β chain of FgnE, β43–63, which had no effect on EC proliferation or migration but markedly inhibited the ability of activated ECs to form tubules or to adhere to various constituents of the extracellular matrix – collagen IV, fibronectin and vitronectin. Furthermore, our data show that β43–63 interacts with ECs, in part, by binding to αvβ3, so soluble αvβ3 abrogated β43–63 inhibition of tubule formation by activated ECs. Finally, when injected into mice bearing tumour xenografts, β43–63 inhibited tumour vascularisation and induced formation of significant tumour necrosis.

Conclusions:

Taken together, these data suggest that β43–63 is a novel anti-tumour peptide whose anti-angiogenic effects are mediated by αvβ3.  相似文献   

13.

Background:

Notch receptor has an important role in both development and cancer. We previously reported that inhibition of the Notch3 by γ-secretase inhibitor (GSI) induces apoptosis and suppresses tumour proliferation in non-small-cell lung cancer. Although radiation is reported to induce Notch activation, little is known about the relationship between radiation and Notch pathway.

Methods:

We examined the effect of combining GSI and radiation at different dosing in three Notch expressing lung cancer cell lines. The cytotoxic effect of GSI and radiation was evaluated using MTT assay and clonogenic assay in vitro and xenograft models. Expressions of Notch pathway, mitogen-activated protein kinase (MAPK) pathway and Bcl-2 family proteins were investigated using western blot analysis.

Results:

We discovered that the antitumour effect of combining GSI and radiation was dependent on treatment schedule. γ-Secretase inhibitor administration after radiation had the greatest growth inhibition of lung cancer in vitro and in vivo. We showed that the combination induced apoptosis of lung cancer cell lines through the regulation of MAPK and Bcl-2 family proteins. Furthermore, activation of Notch after radiation was ameliorated by GSI administration, suggesting that treatment with GSI prevents Notch-induced radiation resistance.

Conclusion:

Notch has an important role in lung cancer. Treatment with GSI after radiation can significantly enhance radiation-mediated tumour cytotoxicity.  相似文献   

14.
15.

Background:

The development of androgen independence, chemo-, and radioresistance are critical markers of prostate cancer progression and the predominant reasons for its high mortality. Understanding the resistance to therapy could aid the development of more effective treatments.

Aim:

The aim of this study is to investigate the effects of insulin-like growth factor-binding protein-2 (IGFBP-2) on prostate cancer cell proliferation and its effects on the response to docetaxel.

Methods:

DU145 and PC3 cells were treated with IGFBP-2, insulin-like growth factor I (IGF-I) alone or in combination with blockade of the IGF-I receptor or integrin receptors. Cells were also treated with IGFBP-2 short interfering ribonucleic acid with or without a PTEN (phosphatase and tensin homologue deleted on chromosome 10) inhibitor or docetaxel. Tritiated thymidine incorporation was used to measure cell proliferation and Trypan blue cell counting for cell death. Levels of IGFBP-2 mRNA were measured using RT–PCR. Abundance and phosphorylation of proteins were assessed using western immunoblotting.

Results:

The IGFBP-2 promoted cell growth in both cell lines but with PC3 cells this was in an IGF-dependent manner, whereas with DU145 cells the effect was independent of IGF receptor activation. This IGF-independent effect of IGFBP-2 was mediated by interaction with β-1-containing integrins and a consequent increase in PTEN phosphorylation. We also determined that silencing IGFBP-2 in both cell lines increased the sensitivity of the cells to docetaxel.

Conclusion:

The IGFBP-2 has a key role in the growth of prostate cancer cells, and silencing IGFBP-2 expression reduced the resistance of these cells to docetaxel. Targeting IGFBP-2 may increase the efficacy of docetaxel.  相似文献   

16.

Background:

The phosphatidylinositol 3′-kinase (PI3K)–AKT pathway is activated in many human cancers and plays a key role in cell proliferation and survival. A mutation (E17K) in the pleckstrin homology domain of the AKT1 results in constitutive AKT1 activation by means of localisation to the plasma membrane. The AKT1 (E17K) mutation has been reported in some tumour types (breast, colorectal, ovarian and lung cancers), and it is of interest which tumour types other than those possess the E17K mutation.

Methods:

We analysed the presence of the AKT1 (E17K) mutation in 89 endometrial cancer tissue specimens and in 12 endometrial cancer cell lines by PCR and direct sequencing.

Results:

We detected two AKT1 (E17K) mutations in the tissue samples (2 out of 89) and no mutations in the cell lines. These two AKT1 mutant tumours do not possess any mutations in PIK3CA, PTEN and K-Ras.

Interpretation:

Our results and earlier reports suggest that AKT1 mutations might be mutually exclusive with other PI3K–AKT-activating alterations, although PIK3CA mutations frequently coexist with other alterations (such as HER2, K-Ras and PTEN) in several types of tumours.  相似文献   

17.

Background:

An effective cancer therapeutic must selectively target tumours with minimal systemic toxicity. Expression of a cytotoxic protein using Salmonella typhimurium would enable spatial and temporal control of delivery because these bacteria preferentially target tumours over normal tissue.

Methods:

We engineered non-pathogenic S. typhimurium to secrete murine TNF-related apoptosis-inducing ligand (TRAIL) under the control of the prokaryotic radiation-inducible RecA promoter. The response of the RecA promoter to radiation was measured using fluorometry and immunoblotting. TRAIL toxicity was determined using flow cytometry and by measuring caspase-3 activation. A syngeneic murine tumour model was used to determine bacterial accumulation and the response to expressed TRAIL.

Results:

After irradiation, engineered S. typhimurium secreted TRAIL, which caused caspase-3-mediated apoptosis and death in 4T1 mammary carcinoma cells in culture. Systemic injection of Salmonella and induction of TRAIL expression using 2 Gy γ-irradiation caused a significant delay in mammary tumour growth and reduced the risk of death by 76% when compared with irradiated controls. Repeated dosing with TRAIL-bearing Salmonella in conjunction with radiation improved the 30-day survival from 0 to 100%.

Conclusion:

These results show the pre-clinical utility of S. typhimurium as a TRAIL expression vector that effectively reduces tumour growth and extends host survival.  相似文献   

18.
19.

Background:

Renal cell carcinoma (RCC) is highly resistant to chemotherapy because of a high apoptotic threshold. Recent evidences suggest that GSK-3β positively regulates human pancreatic cancer and leukaemia cell survival in part through regulation of nuclear factor (NF-κB)-mediated expression of anti-apoptotic molecules. Our objectives were to determine the expression pattern of GSK-3β and to assess the anti-cancer effect of GSK-3β inhibition in RCC.

Methods:

Immunohistochemistry and nuclear/cytosolic fractionation were performed to determine the expression pattern of GSK-3β in human RCCs. We used small molecule inhibitor, RNA interference, western blotting, quantitative RT–PCR, BrDU incorporation and MTS assays to study the effect of GSK-3β inactivation on renal cancer cell proliferation and survival.

Results:

We detected aberrant nuclear accumulation of GSK-3β in RCC cell lines and in 68 out of 74 (91.89%) human RCCs. We found that pharmacological inhibition of GSK-3 led to a decrease in proliferation and survival of renal cancer cells. We observed that inhibition of GSK-3 results in decreased expression of NF-κB target genes Bcl-2 and XIAP and a subsequent increase in renal cancer cell apoptosis. Moreover, we show that GSK-3 inhibitor and Docetaxel synergistically suppress proliferation and survival of renal cancer cells.

Conclusions:

Our results show nuclear accumulation of GSK-3β as a new marker of human RCC, identify that GSK-3 positively regulates RCC cell survival and proliferation and suggest inhibition of GSK-3 as a new promising approach in the treatment of human renal cancer.  相似文献   

20.

Background:

It is becoming increasingly recognised that opioids are responsible for tumour growth. However, the effects of opioids on tumour growth have been controversial.

Methods:

The effects of κ-opioid receptor (KOR) agonist on the growth of non-small cell lung cancer (NSCLC) cells were assessed by a cell proliferation assay. Western blotting was performed to ascertain the mechanism by which treatment with KOR agonist suppresses tumour growth.

Results:

Addition of the selective KOR agonist U50,488H to gefitinib-sensitive (HCC827) and gefitinib-resistant (H1975) NSCLC cells produced a concentration-dependent decrease in their growth. These effects were abolished by co-treatment with the selective KOR antagonist nor-BNI. Furthermore, the growth-inhibitory effect of gefitinib in HCC827 cells was further enhanced by co-treatment with U50,488H. With regard to the inhibition of tumour growth, the addition of U50, 488H to H1975 cells produced a concentration-dependent decrease in phosphorylated-glycogen synthase kinase 3β (p-GSK3β).

Conclusion:

The present results showed that stimulation of KOR reduces the growth of gefitinib-resistant NSCLC cells through the activation of GSK3β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号