首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PURPOSE: To compare findings with different magnetic resonance (MR) perfusion maps in acute ischemic stroke. MATERIALS AND METHODS: Combined diffusion-weighted (DW) and perfusion-weighted (PW) MR imaging was performed in 49 patients with acute (<24 hours) stroke, on the 1st and 2nd days and 1 week after stroke. Volumes of hypoperfused tissue on maps of relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and mean transit time (MTT) were compared with the volume of infarcted tissue at DW imaging. RESULTS: The mean infarct volume increased from 41 to 65 cm(3) between the 1st and 2nd days (P: <.001; n = 49). On the 1st day, all perfusion maps on average showed hypoperfusion lesions larger than the infarct at DW imaging (P: <.001; n = 49). MTT maps showed significantly (P: <.001) larger hypoperfusion lesions than did rCBF maps, which showed significantly (P: <.001) larger hypoperfusion lesions than did rCBV maps. The sizes of the initial perfusion-diffusion mismatches correlated significantly with the extent of infarct growth (0.479 < r < 0.657; P: 相似文献   

2.
OBJECTIVES: We sought to evaluate the accuracy of the perfusion computed tomography (PCT) deconvolution-based brain perfusion measurements and the lesions' (infarct and penumbra) volumetric with regard to arterial input function (AIF) selection in patients with acute stroke. MATERIALS AND METHODS: Eighteen consecutive patients with symptoms of acute stroke underwent PCT at admission. Follow-up magnetic resonance imaging was obtained in all patients after 3.6 +/- 1.7 days (range, 1.5-6 days). PCT maps were generated focusing on the anterior cerebral artery (ACA) and branches of the middle cerebral artery (MCA) ipsilateral and contralateral to the ischemic lesion as AIFs. Infarct, penumbra, and total ischemic lesion were delineated on cerebral blood flow (CBF) maps. CBF, cerebral blood volume (CBV), and mean transit time (MTT) were calculated in the ischemic regions as provided by the 3 different AIFs, the normality test was applied for the obtained parameters, and the values were correlated (Pearson's correlation coefficient). Volumes of the ischemic regions (as obtained by the different AIFs) also were correlated and compared (paired t test) to the follow-up infarct volume. RESULTS: The CBF and CBV values obtained by the different AIFs in the infarct, penumbra, and total ischemic lesion were significantly correlated (r=0.94-0.96, P相似文献   

3.
BACKGROUND AND PURPOSE: In spite of the advent of thrombolytic therapy, CT-perfusion imaging is currently not fully used for clinical decision-making and not included in published clinical guidelines for management of ischemic stroke. We investigated whether lesion volumes on cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) maps predict final infarct volume and whether all these parameters are needed for triage to intravenous recombinant tissue plasminogen activator (rtPA). We also investigated the effect of intravenous rtPA on affected brain by measuring salvaged tissue volume in patients receiving intravenous rtPA and in controls.MATERIALS AND METHODS: Forty-four patients receiving intravenous rtPA and 19 controls underwent CT perfusion (CTP) studies in the emergency department within 3 hours of stroke onset. Lesion volumes were measured on MTT, CBV, and CBF maps by region-of-interest analysis and were compared with follow-up CT volumes by correlation and regression analysis. The volume of salvaged tissue was determined as the difference between the initial MTT and follow-up CT lesion volumes and was compared between intravenous rtPA-treated patients and controls.RESULTS: No significant difference between the groups was observed in lesion volume assessed from the CTP maps (P > .08). Coefficients of determination for MTT, CBF, and CBV versus follow-up CT lesion volumes were 0.3, 0.3, 0.47, with intravenous rtPA; and 0.53, 0.55, and 0.81 without intravenous rtPA. Regression of MTT on CBF lesion volumes showed codependence (R2 = 0.98, P < .0001). Mean salvaged tissue volumes with intravenous rtPA were 21.8 ± 17.1 and 13.2 ± 13.5 mL in controls; these were significantly different by using nonparametric (P < .03) and Fisher exact tests (P < .04).CONCLUSIONS: Within 3 hours of stroke onset, CBV lesion volume does not necessarily represent dead tissue. MTT lesion volume alone can be used to identify the upper limit of the size of abnormally perfused brain. More brain is salvaged in patients with intravenous rtPA than in controls.

CT with physiologic imaging of cerebral perfusion (CTP) is routinely used at many centers around the world to assist in the triage of patients with acute stroke into various therapies, including intravenous thrombolysis with recombinant tissue plasminogen activator (rtPA). The use of CT in the triage process has been driven by the rapidity and wide availability of this imaging technique. Functional maps of cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) are readily constructed on a CT workstation and provide important information about the status of regional brain perfusion. Because giving intravenous rtPA is optimal within 3 hours of stroke ictus, it would be helpful to avoid spending time on those CTP parameters that do not provide critical information and to evaluate only those that directly impact the therapeutic decision.A key consideration in the assessment process of patients having acute stroke symptoms is how much affected brain tissue was already infarcted, how much is inevitably going to die, and how much could be potentially salvaged by therapy. It is this functional information that is being sought by using perfusion imaging and mapping of vascular physiology.1-5 In the literature, it has been shown that lesion volumes on physiologic maps constructed from initial perfusion imaging in patients assessed in the 6- to 72-hour time window predict the final infarct volume.6-9 Furthermore, several authors have shown that the volume of the initial CBV deficit approximates the final infarct size and likely represents already irreversibly infarcted tissue.10,11Because the development of infarction is a dynamic time-dependent process, interpretation of the maps may well vary with the time from ictus. It was our aim in this study to investigate whether the lesion volumes observed on CBV, CBF, and MTT CTP maps, obtained within 3 hours of ictus, also predicted the final infarct volume and whether all these parameters are needed for triage. In addition, we investigated the effect of intravenous rtPA on affected brain tissue by measuring the final salvaged tissue volume in patients receiving intravenous rtPA and in a control group not receiving thrombolytic therapy.  相似文献   

4.
Diffusion and perfusion weighted MRI have been widely used in ischaemic stroke. We studied 17 patients in whom ischaemic areas showed an ischaemic core, an area of infarct growth and hypoperfused but ultimately surviving tissue. Apparent diffusion coefficients (ADC) were measured on days 1, 2, and 8 in the three subregions and in contralateral control areas. Cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) were measured in these regions on day 1 perfusion maps. On day 1, the ischaemic core had very low ADC and CBF and increased MTT. The ADC in the ischaemic core gradually increased during the week. The area of infarct growth on day 1 had slightly but significantly decreased ADC (96% of control, P=0.028), moderately decreased CBF and increased MTT. On day 1 the hypoperfused but surviving tissue had slightly but significantly increased ADC (103% of control, P=0.001), mildly decreased CBF and increased CBV and MTT. The ADC of the area of infarct growth decreased to the same level as in the ischaemic core on days 2 and 8. That of surviving tissue was still above normal on day 2 (103% of control), but had returned to the normal level by day 8. Measurement of ADC combined with perfusion MRI may help distinguish different subregions in acutely hypoperfused brain.  相似文献   

5.
BACKGROUND AND PURPOSE: Our purpose was to determine whether cerebral perfusion functional CT (fCT), performed after endovascular middle cerebral artery (MCA) occlusion, can be used to predict final cerebral infarction extent in a primate model. METHODS: fCT with bolus tracking was performed before and 30 and 150 minutes after 3-hour digital subtraction angiography (DSA)-guided endovascular MCA occlusion in five baboons. Parametric cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) maps were constructed by voxel-by-voxel gamma variate fitting and used to determine lesion sizes. Animals were sacrificed 48 hours after the occlusion, and ex vivo MR imaging was performed. Lesion sizes on fCT and MR images were compared. RESULTS: Hypoperfusion was clearly identified on all images obtained after MCA occlusion. Thirty and 150 minutes after occlusion onset, respectively, mean lesion sizes were 737 mm(2) +/- 33 and 737 mm(2) +/- 44 for CBF, 722 mm(2) +/- 32 and 730 mm(2) +/- 43 for CBV, and 819 mm(2) +/- 14 and 847 mm(2) +/- 11 for MTT. Mean outcome infarct size on MR images was 733 mm(2) +/- 30. Measurements based on CBV and CBF (R(2) = 0.97 and 0.96, P <.001), but not MTT (R(2) = 0.40, P >.5), were highly correlated with final lesion size. CONCLUSION: An endovascular approach to MCA occlusion provides a minimally invasive, reproducible animal model for controlled studies of cerebral ischemia and infarction. Derived cerebral perfusion maps closely predict the 48-hour infarct size after 3-hour MCA occlusion.  相似文献   

6.
OBJECTIVES: To evaluate the feasibility of utilizing cerebral blood flow (CBF) index images, calculated automatically and quickly from dynamic perfusion imaging (DPI), to identify acute cerebral ischemia. We attempted to investigate (1) whether the CBF index has a threshold for assessing tissue outcome, (2) whether CBF index images can predict the resulting infracted area, and if so, (3) whether the predictive capacity of the CBF index image is comparable to the regional CBF (rCBF) image delivered from singular value decomposition (SVD) deconvolution methods, which are regarded as most accurate in predicting the final infarct area. METHODS: Diffusion-weighted images (DWI) and DPI were obtained in 17 patients within 12 hours of stroke onset and follow-up magnetic resonance imaging (MRI). On 3 DPI-delivered images, namely relative regional cerebral blood volume (rrCBV), uncorrected mean transit time (MTTu) and CBF index images, univariate discriminant analysis was done to estimate cut-off values to discriminate between infarcted and noninfarcted areas. Subsequently, correlations between the initial lesion volume of 3 images together with rCBF images delivered with SVD methods and the final infarct volume on follow-up T2-weighted MRI taken at the 8th to 20th day were determined. RESULTS: Among the 3 images, only the CBF index image was able reveal the threshold of the ischemic region. Lesion volume of CBF index images against follow-up infarct volume had the highest correlation (r = 0.995) to a linear fit and the slope was closest to 1.0 (0.91) among the 3 and had identical accuracy to the regression coefficient of rCBF images. CONCLUSIONS: CBF index images can predict final infarct volume. Evaluating CBF index images together with DWI can guide the initial assessment in the acute stage of cerebral ischemia.  相似文献   

7.
PURPOSE: To measure mean cerebral blood flow (CBF) in ischemic and nonischemic territories and in low-attenuation regions in patients with acute stroke by using deconvolution-derived hemodynamic imaging. MATERIALS AND METHODS: Twelve patients with acute middle cerebral artery stroke and 12 control patients were examined by using single-section computed tomography (CT) perfusion scanning. Analysis was performed with a deconvolution-based algorithm. Comparisons of mean CBF, cerebral blood volume (CBV), and mean transit time (MTT) were determined between hemispheres in all patients and between low- and normal-attenuation regions in patients with acute stroke. Two independent readers examined the images for extent of visually apparent regional perfusion abnormalities. The data were compared with extent of final infarct in seven patients with acute stroke who underwent follow-up CT or magnetic resonance imaging. RESULTS: Significant decreases in CBF (-50%, P =.001) were found in the affected hemispheres of patients with acute stroke. Significant changes in CBV (-26%, P =.03) and MTT (+111%, P =.004) were also seen. Significant alterations in perfusion were also seen in low- compared with normal-attenuation areas. Pearson correlation between readers for extent of CBF abnormality was 0.94 (P =.001). Intraobserver variation was 8.9% for CBF abnormalities. CONCLUSION: Deconvolution analysis of CT perfusion data is a promising method for evaluation of cerebral hemodynamics in patients with acute stroke.  相似文献   

8.
BACKGROUND AND PURPOSE: Identifying tissue at risk for infarction is an important goal of stroke imaging. This study was performed to determine whether pixel-based apparent diffusion coefficient (ADC) and signal intensity ratio are helpful diffusion-weighted (DW) imaging metrics to predict tissue at risk for infarction. METHODS: Twelve patients presenting with acute hemispheric strokes underwent DW imaging within 7 hours of symptom onset. Region of interest (ROI), pixel-based ADC, and signal intensity analyses were performed at initial DW imaging to assess area of infarct growth, final infarct area, and normal tissue. RESULTS: Pixel-based analysis was less accurate than ROI-based analysis for evaluating infarct growth or final infarct with ADC, ADC ratio, and signal intensity ratios. In pixel-based analysis, signal intensity ratios were better than ADCs or ADC ratios for identifying tissue at risk (accuracy, 67.4%) and for predicting final infarct (accuracy, 79.9%). Linear regression analysis demonstrated a strong correlation between lesion volume on quantitative DW images or ADC maps and final infarct volume (P < .001). When receiver operating characteristic (ROC) curves were used to determine optimal cutoffs for ADC and DW image values, the region of infarct growth was significantly correlated with only the mismatch between initial qualitative DW image and quantitative DW image signal intensity ratio (cutoff value, 1.19; R = 0.652; P = .022). CONCLUSION: Pixel-based thresholds applied to ADC or DW image signal intensity maps were not accurate prognostic measures of tissue at risk. Quantitative DW images or ADC maps may provide added information not obtained by visual inspection of the qualitative DW image map.  相似文献   

9.
PURPOSE: To demonstrate the feasibility of sequential diffusion-weighted (DW) and perfusion-weighted (PW) magnetic resonance imaging (MRI) of a recently developed porcine stroke model and to evaluate the evolution of cerebral perfusion and the apparent diffusion coefficient (ADC) over time. Materials and Methods In five pigs, DW imaging (DWI) and PW imaging (PWI) was carried out for 7 hours after stroke onset, starting 1 hour after middle cerebral artery occlusion (MCAO). RESULTS: The DWI lesion volume increased significantly with time, and final DWI lesion volume correlated well with lesion area on histological sections (r = 0.910). T2 changes could be recognized 3 hours after stroke onset. At 1 hour the ADC ratio (ischemic lesion/contralateral side) was reduced to 0.81 in the caudate-putamen and to 0.87 in the cortex, and the cerebral blood flow ratio was reduced to 0.40 in the caudate-putamen and 0.51 in the cortex. CONCLUSION: The level of flow reduction in the caudate-putamen and the cortex after 1 hour is in good correlation with human thresholds of irreversible and reversible ischemic damage, and accordingly, this model might be a model for mechanisms of infarct evolution and therapeutic intervention.  相似文献   

10.
PURPOSE: To compare predictors of infarct growth in hyperacute stroke from a retrospective review of various relative and quantitative parameters calculated at perfusion-weighted magnetic resonance (MR) imaging performed within 6 hours after ictus. MATERIALS AND METHODS: Fluid-attenuated inversion recovery and diffusion- and perfusion-weighted images were obtained in 66 patients. The initial infarct was delineated on diffusion-weighted images; the hemodynamic disturbance, on apparent mean transit time (MTT) maps; and the final infarct, on follow-up fluid-attenuated inversion recovery images. Relative (without and with deconvolution) and quantitative values of the bolus arrival time, time to peak (TTP), apparent MTT or MTT, cerebral blood volume (CBV), peak height, and cerebral blood flow (CBF) index or CBF were calculated for initial infarct, infarct growth (final minus initial infarct contour), viable hemodynamic disturbance (apparent MTT minus final infarct contour), and contralateral mirror regions. Univariate and multivariate analyses (receiver operating characteristic curves and discriminant analysis) were performed to compare the diagnostic performance of these parameters for predicting infarct growth. RESULTS: At univariate analysis, relative peak height and quantitative CBF were the best predictors of infarct growth; at multivariate analysis, a function of peak height and TTP for relative measurements and CBF alone for quantitative measurements. Quantitative and relative measurements (without or with deconvolution) worked equally well. A combined relative peak height or TTP threshold (<54% or >5.2 seconds, respectively) had a sensitivity of 71% and a specificity of 98%. A quantitative CBF threshold (<35 mL/min/100 g) had a sensitivity of 69% and a specificity of 85%. CONCLUSION: A combination of relative peak height and TTP measurements allowed the best prediction of infarct growth, which obviates more complex quantitative calculation.  相似文献   

11.
BACKGROUND AND PURPOSE: The volume of decreased cerebral blood flow (CBF) in acute stroke perfusion-weighted imaging frequently overestimates final infarct volume. We hypothesized that surviving tissue exists even in patients without recanalization and tried to determine perfusion thresholds from initial MR imaging. METHODS: Stroke MR imaging including MR angiography was carried out at days 0, 1, and 7 after stroke onset in 19 patients without recanalization at least until day 1. The following lesions were defined: L0 = diffusion restriction at day 0; LG1 = lesion growth until day 1; LG7 = lesion growth until day 7; ST7 = initially hypoperfused, but surviving tissue. These lesions were transferred on initial MR imaging within 4.7 hours and perfusion values at day 0 were determined. RESULTS: Median lesion volume L0 at day 0 was 18.2 mL and increased to 39.4 and 43.8 mL at days 1 and 7. Volume of decreased rCBF not progressing to infarction was 148.5 mL (ST7). Mean ST7 perfusion values were different from L0 and LG1, but only mean relative cerebral blood volume (rCBV) was different from LG7, discriminating survival against death of tissue. A threshold value of 0.82 CBV for death versus survival was determined with a sensitivity of 0.56 and specificity of 0.95. Carotid T occlusions showed the greatest potential of lesion growth. CONCLUSION: Even when vessel occlusion persists, hypoperfused tissue on MR imaging does not necessarily progress toward infarction. The most conclusive inferences can be drawn from CBV images. The site of arterial occlusion also determines progression to infarction.  相似文献   

12.
PURPOSE: To investigate the relationship between relative cerebral blood volume (CBV) measured with perfusion-weighted (PW) MR imaging and relative cerebral blood flow (CBF) measured with SPECT in acute ischemic stroke. MATERIAL AND METHODS: Fifteen patients who had acute unilateral middle cerebral artery occlusion underwent both PW MR imaging and 99mTc-HMPAO SPECT with an interval less than 20 min between the two examinations within 6 h after stroke onset. Lesion-to-contralateral relative CBV and CBF ratios measured in multiple regions of interest were compared to evaluate the relationship of the two parameters. RESULTS: An overall linear relationship was found between relative CBV and relative CBF ratios (R2 = 0.54, p < 0.0001). The two parameters correlated linearly to each other in regions with evolving infarction (R2 = 0.43, p<0.0001), but not in regions without evolving infarction (R2 = 0.001, p>0.05). Regions with evolving infarction had more severe hypoperfusion (mean relative CBF ratio, 0.38 +/- 0.22) than regions without (mean relative CBF ratio, 0.70+/-0.13) (p<0.0001). CONCLUSION: A significant linear relationship existed between relative CBV and relative CBF in acute ischemic stroke, although relative CBV did not change linearly to relative CBF in mild hypoperfusion. Relative CBV can be used as an alternative to relative CBF within 6 h after stroke onset, particularly in regions with severe hypoperfusion proceeding to infarction.  相似文献   

13.
BACKGROUND AND PURPOSE: Neuroimaging techniques have the potential to improve acute stroke treatment by selecting the appropriate patients for thrombolytic therapy. In this study, we examined changes in cerebral blood flow (CBF) and cerebral blood volume (CBV) in an animal model of middle cerebral artery occlusion and used these to identify the parameters that best differentiate between oligemic and infarct regions. MATERIALS AND METHODS: Permanent middle cerebral artery occlusion was performed in 17 New Zealand white rabbits. CT perfusion imaging was performed before (baseline), 10, and 30 minutes after the stroke, and then every 30 minutes up to 3 hours. After a final scan at 4 hours, the brain was removed, cut corresponding to CT sections, and stained with 2,3,5-triphenyltetrazolium chloride (TTC) to identify infarcted tissue. A logistic regression model with the 4-hour post-CBF and -CBV values as independent variables was used to determine the binary tissue outcome variable (oligemia or infarction). RESULTS: Infarcted regions were characterized by a significant decrease (P < .005) in both CBV and CBF, whereas oligemic (CBF < 25 mL . 100 g(-1) . min(-1), not infarcted) regions showed a significant decrease (P < .005) in CBF with maintenance of CBV at or near baseline values. From the perfusion parameters at the 4-hour time point, logistic regression by using CBV*CBF resulted in a sensitivity of 90.6% and a specificity of 93.3% for infarction. CONCLUSION: CBF and CBV values obtained from CT perfusion imaging can be used to distinguish between oligemic and infarct regions. This information could be used to assess the viability of ischemic brain tissue.  相似文献   

14.
Introduction  The purpose of this study is to compare the variability of PCT results obtained by automatic selection of the arterial input function (AIF), venous output function (VOF) and symmetry axis versus manual selection. Methods  Imaging data from 30 PCT studies obtained as part of standard clinical stroke care at our institution in patients with suspected acute hemispheric ischemic stroke were retrospectively reviewed. Two observers performed the post-processing of 30 CTP datasets. Each observer processed the data twice, the first time employing manual selection of AIF, VOF and symmetry axis, and a second time using automated selection of these same parameters, with the user being allowed to adjust them whenever deemed appropriate. The volumes of infarct core and of total perfusion defect were recorded. The cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT) and blood–brain barrier permeability (BBBP) values in standardized regions of interest were recorded. Interobserver variability was quantified using the Bland and Altman's approach. Results  Automated post-processing yielded lower coefficients of variation for the volume of the infarct core and the volume of the total perfusion defect (15.7% and 5.8%, respectively) compared to manual post-processing (31.0% and 12.2%, respectively). Automated post-processing yielded lower coefficients of variation for PCT values (11.3% for CBV, 9.7% for CBF, and 9.5% for MTT) compared to manual post-processing (23.7% for CBV, 32.8% for CBF, and 16.7% for MTT). Conclusion  Automated post-processing of PCT data improves interobserver agreement in measurements of CBV, CBF and MTT, as well as volume of infarct core and penumbra.  相似文献   

15.
A robust whole brain magnetic resonance (MR) bolus tracking technique based on indicator dilution theory, which could quantitatively calculate cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) on a regional basis, was developed and tested. T2*-weighted gradient-echo echoplanar imaging (EPI) volumes were acquired on 40 hyperacute stroke patients after gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) bolus injection. The thalamus, white matter (WM), infarcted area, penumbra, and mirror infarcted and penumbra regions were analyzed. The calculation of the arterial input function (AIF) needed for absolute quantification of CBF, CBV, and MTT was shown to be user independent. The CBF values (ml/min/100 g units) and CBV values (% units, in parentheses) for the thalamus, WM, infarct, mirror infarct, penumbra, and mirror penumbra (averaged over all patients) were 69.8 +/- 22.2 (9.0 +/- 3.0 SD); 28.1 +/- 6.9 (3.9 +/- 1.2); 34.4 +/- 22.4 (7.1 +/- 2.7); 60.3 +/- 20.7 (8.2 +/- 2.3); 50.2 +/- 17.5 (10.4 +/- 2.4); and 64.2 +/- 17.0 (9.5 +/- 2.3), respectively, and the corresponding MTT values (in seconds) were 8.0 +/- 2.1; 8.6 +/- 3.0; 16.1 +/- 8.9; 8.6 +/- 2.9; 13.3 +/- 3.5; and 9.4 +/- 3.2. The infarct and penumbra CBV values were not significantly different from their corresponding mirror values, whereas the CBF and MTT values were (P < 0.01). Quantitative measurements of CBF, CBV, and MTT were calculated on a regional basis on data acquired from hyperacute stroke patients, and the CBF and MTT values showed greater sensitivity to areas with perfusion defects than the CBV values. J. Magn. Reson. Imaging 2000;12:400-410.  相似文献   

16.
BACKGROUND AND PURPOSE: The mechanisms by which the glucocorticoid dexamethasone produces its therapeutic action in patients with intracranial tumors still remain unclear. The purpose of this study was to investigate whether dexamethasone affects cerebral perfusion and water molecule diffusion by using quantitative dynamic susceptibility contrast perfusion MR imaging (DSC-MR imaging) and diffusion tensor MR imaging (DT-MR imaging). METHODS: Ten consecutive patients with glioblastoma multiforme underwent DSC-MR imaging and DT-MR imaging before and 48-72 hours after dexamethasone treatment (16 mg/day). Cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and water mean diffusivity () were measured for enhancing tumor, nonenhancing peritumoral edematous brain, and normal-appearing contralateral white matter before and after steroid therapy. The percentage change in CBF, CBV, MTT, and for the 3 tissue types was calculated for each patient, a mean value obtained for the population, and the statistical significance determined by using a paired-samples Student t test. RESULTS: After dexamethasone treatment, there was no significant change in tumor CBF, CBV, or MTT. Edematous brain CBV and MTT were also unchanged. There was, however, an increase in edematous brain CBF (11.6%; P = .05). was reduced in both enhancing tumor (-5.8%; P = .001) and edematous brain (-6.0%; P < .001). There was no significant change in CBF, CBV, MTT, or for normal-appearing contralateral white matter after treatment. CONCLUSION: These data suggest that dexamethasone does not significantly affect tumor blood flow but may, by reducing peritumoral water content and local tissue pressure, subtly increase perfusion in the edematous brain.  相似文献   

17.
Usefulness of CT-perfusion in acute cerebral infarction   总被引:1,自引:0,他引:1  
CT-perfusion (CTP) examination was performed in 30 cases of acute cerebral infarction (ACI) caused by middle cerebral artery (MCA) occlusion. Data were analyzed using cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT). The results of the affected side were compared with those of the other side in terms of relative value and difference. A high correlation in relative value was found between CBF and CBV (r=0.81) and in both the relative (r=0.76) and difference (r=0.77) value between CBF and MTT. No correlation was seen between CBV and MTT. The time-density curve, along with CBF, CBV, and MTT, was classified into three patterns of ischemic brain damage: collateral, delayed, and flat patterns. In conclusion, CT-perfusion examination is useful for determining a treatment plan in ACI.  相似文献   

18.
BACKGROUND AND PURPOSE: The purpose of this study was to determine whether, in acute stroke patients treated with intra-arterial (IA) recanalization therapy, CT perfusion (CTP) can distinguish ischemic brain tissue destined to infarct from that which will survive. METHODS: Dynamic CTP was obtained in 14 patients within 8 hours of stroke onset, before IA therapy. Initial quantitative cerebral blood volume (CBV) and flow (CBF) values were visually segmented and normalized in the "infarct core" (region 1: reduced CBV and CBF, infarction on follow-up), "penumbra that infarcts" (region 2: normal CBV, reduced CBF, infarction on follow-up), and "penumbra that recovers" (region 3: normal CBV, reduced CBF, normal on follow-up). Normalization was accomplished by dividing the ischemic region of interest value by that of a corresponding, contralateral, uninvolved region, which resulted in CBV and CBF "ratios." Separate CBV and CBF values were obtained in gray matter (GM) and white matter (WM). RESULTS: Mean CBF ratios for regions 1, 2, and 3 were 0.19 +/- 0.06, 0.34 +/- 0.06, and 0.46 +/- 0.09, respectively (all P < .001). Mean CBV ratios for regions 1, 2, and 3 were similarly distinct (all P < .05). Absolute CBV and CBF values for regions 2 and 3 were not significantly different. All regions with CBF ratio <0.32, CBV ratio <0.68, CBF <12.7 mL/100 g/min, or CBV <2.2 mL/100 g infarcted. No region with CBF ratio >0.44 infarcted. GM versus WM CBF and CBV values were significantly different for region 2 compared with region 3 (P < .05). CONCLUSIONS: In acute stroke patients, quantitative CTP can distinguish ischemic tissue likely to infarct from that likely to survive.  相似文献   

19.
Diffusion-perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RApid processing of PerfusIon and Diffusion (RAPID) for unsupervised, fully automated processing of perfusion and diffusion data for the purpose of expedited routine clinical assessment. The RAPID system computes quantitative perfusion maps (cerebral blood volume, CBV; cerebral blood flow, CBF; mean transit time, MTT; and the time until the residue function reaches its peak, T(max)) using deconvolution of tissue and arterial signals. Diffusion-weighted imaging/perfusion-weighted imaging (DWI/PWI) mismatch is automatically determined using infarct core segmentation of ADC maps and perfusion deficits segmented from T(max) maps. The performance of RAPID was evaluated on 63 acute stroke cases, in which diffusion and perfusion lesion volumes were outlined by both a human reader and the RAPID system. The correlation of outlined lesion volumes obtained from both methods was r(2) = 0.99 for DWI and r(2) = 0.96 for PWI. For mismatch identification, RAPID showed 100% sensitivity and 91% specificity. The mismatch information is made available on the hospital's PACS within 5-7 min. Results indicate that the automated system is sufficiently accurate and fast enough to be used for routine care as well as in clinical trials.  相似文献   

20.

Introduction

The value of perfusion MRI for identifying the tissue at risk has been questioned. Our objective was to assess baseline perfusion-weighted imaging parameters within infarct progression areas.

Methods

Patients with anterior circulation stroke without early reperfusion were included from a prospective MRI database. Sequential MRI examinations were performed on admission, 2?C3?h (H2), 2?C3?days (D2), and between 15 and 30?days after the initial MRI. Maps of baseline time-to-peak (TTP), mean transit time (MTT), cerebral blood volume (CBV), and cerebral blood flow (CBF) were calculated. Lesion extension areas were defined as pixels showing de novo lesions between each MRI and were generated by subtracting successive lesion masks: V0, baseline diffusion-weighted imaging (DWI) lesion; V1, lesion extension between baseline and H2 DWI; V2, lesion extension from H2 to D2 DWI; and V3, lesion extension from D2 DWI to final FLAIR. Repeated measures analysis was used to compare hemodynamic parameters within the baseline diffusion lesion and subsequent lesion extension areas.

Results

Thirty-two patients were included. Baseline perfusion parameters were significantly more impaired within the acute DWI lesion compared to lesion extension areas (TTP, p?p?p?p?p?=?0.01) and TTP (p?=?0.01) was found within successive lesion growth areas.

Conclusion

A decreasing gradient of severity for TTP and MTT was observed within successive infarct growth areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号