首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
新型经皮传递胰岛素透明质酸微针制剂的制备及性能考察   总被引:1,自引:0,他引:1  
目的证明透明质酸微针制剂在药物经皮传递系统方面的应用前景。方法通过皮肤及微针的显微照片考察微针刺入皮肤的性能和在大鼠体内的溶解性能;用皮肤刺激性实验评价透明质酸微针的安全性;以人的离体皮肤为透皮释药模型,通过体外经皮通透实验考察微针对模型药物胰岛素经皮吸收的促进作用。结果微针能够均匀刺穿角质层,在皮肤表面产生与微针一致的阵列形状,在皮肤断面可观察到直至真皮层的通道;在大鼠体内使用1 h后,针体能够完全溶解,皮肤刺激性指数为1.7,属于轻度刺激性;体外经皮实验中,微针中的胰岛素能够以活性形式释放,与同剂量的溶液相比,微针对胰岛素的体外经皮吸收具有显著的促进作用,稳态通透速率达75.33×10-6U.cm-2.h-1。结论以透明质酸为基质制备的微针具有良好的皮肤刺入性、溶解性和轻度的刺激性,对于生物大分子类药物的经皮吸收有明显的促进作用,具有良好的开发前景。  相似文献   

2.
Microneedles for transdermal drug delivery   总被引:35,自引:0,他引:35  
The success of transdermal drug delivery has been severely limited by the inability of most drugs to enter the skin at therapeutically useful rates. Recently, the use of micron-scale needles in increasing skin permeability has been proposed and shown to dramatically increase transdermal delivery, especially for macromolecules. Using the tools of the microelectronics industry, microneedles have been fabricated with a range of sizes, shapes and materials. Most drug delivery studies have emphasized solid microneedles, which have been shown to increase skin permeability to a broad range of molecules and nanoparticles in vitro. In vivo studies have demonstrated delivery of oligonucleotides, reduction of blood glucose level by insulin, and induction of immune responses from protein and DNA vaccines. For these studies, needle arrays have been used to pierce holes into skin to increase transport by diffusion or iontophoresis or as drug carriers that release drug into the skin from a microneedle surface coating. Hollow microneedles have also been developed and shown to microinject insulin to diabetic rats. To address practical applications of microneedles, the ratio of microneedle fracture force to skin insertion force (i.e. margin of safety) was found to be optimal for needles with small tip radius and large wall thickness. Microneedles inserted into the skin of human subjects were reported as painless. Together, these results suggest that microneedles represent a promising technology to deliver therapeutic compounds into the skin for a range of possible applications.  相似文献   

3.
Despite the advantages of drug delivery through the skin, such as easy accessibility, convenience, prolonged therapy, avoidance of the liver first-pass metabolism and a large surface area, transdermal drug delivery is only used with a small subset of drugs because most compounds cannot cross the skin at therapeutically useful rates. Recently, a new concept was introduced known as microneedles and these could be pierced to effectively deliver drugs using micron-sized needles in a minimally invasive and painless manner. In this study, biocompatible polycarbonate (PC) microneedle arrays with various depths (200 and 500mum) and densities (45, 99 and 154ea/cm(2)) were fabricated using a micro-mechanical process. The skin permeability of a hydrophilic molecule, calcein (622.5D), was examined according to the delivery systems of microneedle, drug loading, depth of the PC microneedle, and density of the PC microneedle. The skin permeability of calcein was the highest when the calcein gel was applied to the skin with the 500mum-depth PC microneedle, simultaneously. In addition, the skin permeability of calcein was the highest when 0.1g of calcein gel was coupled to the 500mum-depth PC microneedle (154ea/cm(2)) as well as longer microneedles and larger density of microneedles. Taken together, this study suggests that a biocompatible PC microneedle might be a suitable tool for transdermal drug delivery system of hydrophilic molecules with the possible applications to macromolecules such as proteins and peptides.  相似文献   

4.
The purpose of this study was to develop novel dissolving microneedle arrays fabricated from hyaluronic acid (HA) as a material and to improve the transdermal permeability of relatively high molecular weight drugs. In this study, fluorescein isothiocyanate-labeled dextran with an average molecular weight of 4 kDa (FD4) was used as a model drug with a relatively high molecular weight. The microneedle arrays significantly increased transepidermal water loss (TEWL) and reduced transcutaneous electrical resistance (TER), indicating that they could puncture the skin and create drug permeation pathways successfully. Both TEWL and TER almost recovered to baseline levels in the microneedle array group, and relatively small pathways created by the microneedles rapidly recovered as compared with those created by a tape stripping treatment. These findings confirmed that the microneedle arrays were quite safe. Furthermore, we found that the transdermal permeability of FD4 using the microneedle arrays was much higher than that of the FD4 solution. Furthermore, we found that the microneedle arrays were much more effective for increasing the amount of FD4 accumulated in the skin.These findings indicated that using novel microneedle arrays fabricated from HA is a very useful and effective strategy to improve the transdermal delivery of drugs, especially relatively high molecular weight drugs without seriously damaging the skin.  相似文献   

5.
The outermost layer of skin, the epidermis, has developed formidable physical and immunological barrier properties that prevent infiltration of deleterious chemicals and pathogens. Consequently, transdermal delivery of medicaments is currently restricted to a limited number of low molecular weight drugs. As a corollary, there has been significant recent interest in providing strategies that disrupt or circumvent the principal physical barrier, the stratum corneum, for the efficient cutaneous delivery of macromolecular and nucleic acid based therapeutics. These strategies include: electrical methods, intradermal injection, follicular delivery, particle acceleration, laser ablation, radiofrequency ablation, microscission, and microneedles. The application of microfabricated microneedle arrays to skin creates transient pathways to enable transcutaneous delivery of drugs and macromolecules. Microneedle use is simple, pain-free, and causes no bleeding, with further advantages of convenient manufacture, distribution, and disposal. To date, microneedles have been shown to deliver drug, peptide, antigen, and DNA efficiently through skin. Robust and efficient microneedle designs and compositions can be inserted into the skin without fracture. Further progress in microneedle array design, microneedle application apparatus, and integrated formulation will confirm this methodology as a realistic clinical strategy for delivering a range of medicaments, including DNA, to and through skin.  相似文献   

6.
The birth of microneedles, an array of needles sufficiently long to penetrate epidermis but small enough to do not cause skin injury and pain feeling, has offered a highly promising solution for non-invasive delivery of protein and peptide drugs, a long-cherished desire over eighty years. However, the attempts to develop clinically feasible microneedle transdermal delivery methods encountered series of difficulties, for which a decade research efforts have yet to result in a single product. Microneedles may be incorporated into devices as skin pre-treatment tools, skin microinjectors as well as transdermal patches by their functions in drug delivery. They may also be categorized to insoluble solid microneedles, hollow microneedles, soluble/degradable solid microneedles and phase-transition microneedles by their structure and forming materials. This review article is aimed to update the progress and discuss the technical challenges raised in developing protein/peptide loaded microneedle patches.  相似文献   

7.
Though the skin permeation enhancement effect of chemical penetration enhancers has been studied extensively, their skin irritation potential has not been adequately investigated. The objective of this study was to evaluate the skin permeation enhancement effect and skin irritation of saturated fatty alcohols using melatonin as a model compound. A saturated solution of melatonin in a mixture of water and ethanol (40:60) containing 5% w/v of saturated fatty alcohol was used in the skin permeation studies using Franz diffusion cells. For skin irritation studies, 230 microl of fatty alcohol solution was applied on the dorsal surface of the hairless rats using Hill top chamber. The skin irritation was evaluated by visual scoring method and bioengineering methods such as measurement of transepidermal water loss (TEWL) and skin blood flow. The flux of melatonin across hairless rat skin was found to be dependent on the carbon chain length of the fatty alcohols, with decanol showing the maximum permeation of melatonin. All fatty alcohols increased the TEWL and skin blood flow significantly compared with the vehicle. The fatty alcohols (decanol, undecanol and lauryl alcohol), which showed greater permeation of melatonin, also produced greater TEWL, skin blood flow and erythema. Tridecanol and myristyl alcohol showed lower permeation enhancement effect but caused greater skin irritation. Octanol and nonanol may be the most useful enhancers for the transdermal delivery of melatonin considering their lower skin irritation and a reasonably good permeation enhancement effect. However, further studies are needed to ascertain their safety as skin penetration enhancers. Skin permeation and skin irritation in experimental animals such as rats are generally higher compared with human skin. Further studies in human volunteers using fatty alcohols at the concentrations of 5% or lower may provide useful information on the utility of these fatty alcohols as permeation enhancers.  相似文献   

8.
This article reports an in vitro study of microneedle-array-enhanced transdermal transport of model drug compounds dispersed in chitosan films. Each microneedle array has 400 out-of-plane, needle-shaped microstructures fabricated using micro-electro-mechanical systems (MEMS) technology to ensure adequate mechanical strength and high precision, and consistency. A nanometer coating on the microneedles ensured the biocompatibility that is important in the application of transdermal drug delivery. Model drugs selected to investigate skin permeation in vitro were calcein, a small molecule (molecular weight, 623 d) that has little skin penetration, and bovine serum albumin (BSA) (molecular weight, 66,000 d), a hydrophilic biological macromolecule. A Franz permeation cell was used to characterize the permeation rate of calcein and BSA through the rat skin. The transdermal transport behavior of BSA was investigated from solid films coated on the surface of microneedle arrays with various chitosan concentrations, film thicknesses, and BSA contents. The BSA permeation rate decreased with the increase of the chitosan concentration; the thicker the film, the slower the permeation rate. In addition, the permeation rate increased with the increase of BSA loading dose. A linear relationship existed between the permeation rate and the square root of the BSA loading dose. Results showed that the chitosan hydrophilic polymer film acts as a matrix that can regulate the BSA release rate. The controlled delivery of BSA can be achieved using the BSA-containing chitosan matrix film incorporated with the microneedle arrays. This will provide a possible way for the transdermal delivery of macromolecular therapeutic agents such as proteins and vaccines.  相似文献   

9.

Purpose

Design and evaluation of a novel laser-based method for micromoulding of microneedle arrays from polymeric materials under ambient conditions. The aim of this study was to optimise polymeric composition and assess the performance of microneedle devices that possess different geometries.

Methods

A range of microneedle geometries was engineered into silicone micromoulds, and their physicochemical features were subsequently characterised.

Results

Microneedles micromoulded from 20% w/w aqueous blends of the mucoadhesive copolymer Gantrez® AN-139 were surprisingly found to possess superior physical strength than those produced from commonly used pharma polymers. Gantrez® AN-139 microneedles, 600 ??m and 900 ??m in height, penetrated neonatal porcine skin with low application forces (>0.03 N per microneedle). When theophylline was loaded into 600 ??m microneedles, 83% of the incorporated drug was delivered across neonatal porcine skin over 24 h. Optical coherence tomography (OCT) showed that drug-free 600 ??m Gantrez® AN-139 microneedles punctured the stratum corneum barrier of human skin in vivo and extended approximately 460 µm into the skin. However, the entirety of the microneedle lengths was not inserted.

Conclusion

In this study, we have shown that a novel laser engineering method can be used in micromoulding of polymeric microneedle arrays. We are currently carrying out an extensive OCT-informed study investigating the influence of microneedle array geometry on skin penetration depth, with a view to enhanced transdermal drug delivery from optimised laser-engineered Gantrez® AN-139 microneedles.  相似文献   

10.
Transdermal Delivery of Insulin Using Microneedles in Vivo   总被引:10,自引:0,他引:10  
PURPOSE: The purpose of this study was to design and fabricate arrays of solid microneedles and insert them into the skin of diabetic hairless rats for transdermal delivery of insulin to lower blood glucose level. METHODS: Arrays containing 105 microneedles were laser-cut from stainless steel metal sheets and inserted into the skin of anesthetized hairless rats with streptozotocin-induced diabetes. During and after microneedle treatment, an insulin solution (100 or 500 U/ml) was placed in contact with the skin for 4 h. Microneedles were removed 10 s, 10 min, or 4 h after initiating transdermal insulin delivery. Blood glucose levels were measured electrochemically every 30 min. Plasma insulin concentration was determined by radioimmunoassay at the end of most experiments. RESULTS: Arrays of microneedles were fabricated and demonstrated to insert fully into hairless rat skin in vivo. Microneedles increased skin permeability to insulin, which rapidly and steadily reduced blood glucose levels to an extent similar to 0.05-0.5 U insulin injected subcutaneously. Plasma insulin concentrations were directly measured to be 0.5-7.4 ng/ml. Higher donor solution insulin concentration, shorter insertion time, and fewer repeated insertions resulted in larger drops in blood glucose level and larger plasma insulin concentrations. CONCLUSIONS: Solid metal microneedles are capable of increasing transdermal insulin delivery and lowering blood glucose levels by as much as 80% in diabetic hairless rats in vivo.  相似文献   

11.

Purpose

To investigate, for the first time, the influence of pharmacist intervention and the use of a patient information leaflet on self-application of hydrogel-forming microneedle arrays by human volunteers without the aid of an applicator device.

Methods

A patient information leaflet was drafted and pharmacist counselling strategy devised. Twenty human volunteers applied 11?×?11 arrays of 400 μm hydrogel-forming microneedle arrays to their own skin following the instructions provided. Skin barrier function disruption was assessed using transepidermal water loss measurements and optical coherence tomography and results compared to those obtained when more experienced researchers applied the microneedles to the volunteers or themselves.

Results

Volunteer self-application of the 400 μm microneedle design resulted in an approximately 30% increase in skin transepidermal water loss, which was not significantly different from that seen with self-application by the more experienced researchers or application to the volunteers. Use of optical coherence tomography showed that self-application of microneedles of the same density (400 μm, 600 μm and 900 μm) led to percentage penetration depths of approximately 75%, 70% and 60%, respectively, though the diameter of the micropores created remained quite constant at approximately 200 μm. Transepidermal water loss progressively increased with increasing height of the applied microneedles and this data, like that for penetration depth, was consistent, regardless of applicant.

Conclusion

We have shown that hydrogel-forming microneedle arrays can be successfully and reproducibly applied by human volunteers given appropriate instruction. If these outcomes were able to be extrapolated to the general patient population, then use of bespoke MN applicator devices may not be necessary, thus possibly enhancing patient compliance.  相似文献   

12.
Objectives One of the thrust areas in drug delivery research is transdermal drug delivery systems (TDDS) due to their characteristic advantages over oral and parenteral drug delivery systems. Researchers have focused their attention on the use of microneedles to overcome the barrier of the stratum corneum. Microneedles deliver the drug into the epidermis without disruption of nerve endings. Recent advances in the development of microneedles are discussed in this review for the benefit of young scientists and to promote research in the area. Key findings Microneedles are fabricated using a microelectromechanical system employing silicon, metals, polymers or polysaccharides. Solid coated microneedles can be used to pierce the superficial skin layer followed by delivery of the drug. Advances in microneedle research led to development of dissolvable/degradable and hollow microneedles to deliver drugs at a higher dose and to engineer drug release. Iontophoresis, sonophoresis and electrophoresis can be used to modify drug delivery when used in concern with hollow microneedles. Microneedles can be used to deliver macromolecules such as insulin, growth hormones, immunobiologicals, proteins and peptides. Microneedles containing ‘cosmeceuticals’ are currently available to treat acne, pigmentation, scars and wrinkles, as well as for skin tone improvement. Summary Literature survey and patents filled revealed that microneedle‐based drug delivery system can be explored as a potential tool for the delivery of a variety of macromolecules that are not effectively delivered by conventional transdermal techniques.  相似文献   

13.
Dissolvable microneedles offer an attractive delivery system for transdermal drug and vaccine delivery. They are most commonly formed by filling a microneedle mold with liquid formulation using vacuum or centrifugation to overcome the constraints of surface tension and solution viscosity. Here, we demonstrate a novel microneedle fabrication method employing an atomised spray technique that minimises the effects of the liquid surface tension and viscosity when filling molds. This spray method was successfully used to fabricate dissolvable microneedles (DMN) from a wide range of sugars (trehalose, fructose and raffinose) and polymeric materials (polyvinyl alcohol, polyvinylpyrrolidone, carboxymethylcellulose, hydroxypropylmethylcellulose and sodium alginate). Fabrication by spraying produced microneedles with amorphous content using single sugar compositions. These microneedles displayed sharp tips and had complete fidelity to the master silicon template. Using a method to quantify the consistency of DMN penetration into different skin layers, we demonstrate that the material of construction significantly influenced the extent of skin penetration. We demonstrate that this spraying method can be adapted to produce novel laminate-layered as well as horizontally-layered DMN arrays. To our knowledge, this is the first report documenting the use of an atomising spray, at ambient, mild processing conditions, to create dissolvable microneedle arrays that can possess novel, laminate layering.  相似文献   

14.
INTRODUCTION: Breaching the skin's stratum corneum barrier raises the possibility of the administration of vaccines, gene vectors, antibodies and even nanoparticles, all of which have at least their initial effect on populations of skin cells. AREAS COVERED: Intradermal vaccine delivery holds enormous potential for improved therapeutic outcomes for patients, particularly those in the developing world. Various vaccine-delivery strategies have been employed, which are discussed in this review. The importance of cutaneous immunobiology on the effect produced by microneedle-mediated intradermal vaccination is also discussed. EXPERT OPINION: Microneedle-mediated vaccines hold enormous potential for patient benefit. However, in order for microneedle vaccine strategies to fulfill their potential, the proportion of an immune response that is due to the local action of delivered vaccines on skin antigen-presenting cells, and what is due to a systemic effect from vaccines reaching the systemic circulation, must be determined. Moreover, industry will need to invest significantly in new equipment and instrumentation in order to mass-produce microneedle vaccines consistently. Finally, microneedles will need to demonstrate consistent dose delivery across patient groups and match this to reliable immune responses before they will replace tried-and-tested needle-and-syringe-based approaches.  相似文献   

15.
Microneedle mediated microporation has proved its potential to enhance the delivery of therapeutic drug molecules through skin over the last one decade. Several patents have been granted and cutting edge research is going on particularly for the delivery of biopharmaceuticals (macromolecules like protein or peptides). The technology involves use of micron sized needles made of diverse materials to form microchannels into the stratum corneum (or deeper), outermost barrier layer of the skin. These microchannels are deep enough to facilitate efficient drug delivery through disrupted stratum corneum but short enough to avoid bleeding or pain. So far, the microneedle technology has been explored for drug and vaccine delivery through transcutaneous route. However, the miniaturized nature of these microneedles and anticipated minimal invasiveness has led the scientists to explore and patent its possible use for several other applications.The use of this technology in combination with other enhancement techniques has also gained recent attention. This review article focuses on the latest developments in the field of microneedles as described in patent and research literature. Comprehensive review of several topics including device design/fabrication, formulation development, safety/regulatory issues, therapeutic applications and major challenges in the commercialization of microneedles as medical devices has been presented here.  相似文献   

16.
Dissolving microneedle patches offer promise as a simple, minimally invasive method of drug and vaccine delivery to the skin that avoids the need for hypodermic needles. However, it can be difficult to control the amount and localization of drug within microneedles. In this study, we developed novel microneedle designs to improve control of drug encapsulation and delivery using dissolving microneedles by (i) localizing drug in the microneedle tip, (ii) increasing the amount of drug loaded in microneedles while minimizing wastage, and (iii) inserting microneedles more fully into the skin. Localization of our model drug, sulforhodamine B in the microneedle tip by either casting a highly concentrated polymer solution as the needle matrix or incorporating an air bubble at the base of the microneedle achieved approximately 80% delivery within 10 min compared to 20% delivery achieved by the microneedles encapsulating nonlocalized drug. As another approach, a pedestal was introduced to elevate each microneedle for more complete insertion into the skin and to increase its drug loading capacity by threefold from 0.018 to 0.053 μL per needle. Altogether, these novel microneedle designs provide a new set of tools to fabricate dissolving polymer microneedles with improved control over drug encapsulation, loading, and delivery.  相似文献   

17.
Microinfusion Using Hollow Microneedles   总被引:3,自引:0,他引:3  
Purpose The aim of the study is to determine the effect of experimental parameters on microinfusion through hollow microneedles into skin to optimize drug delivery protocols and identify rate-limiting barriers to flow. Methods Glass microneedles were inserted to a depth of 720–1080 μm into human cadaver skin to microinfuse sulforhodamine solution at constant pressure. Flow rate was determined as a function of experimental parameters, such as microneedle insertion and retraction distance, infusion pressure, microneedle tip geometry, presence of hyaluronidase, and time. Results Single microneedles inserted into skin without retraction were able to infuse sulforhodamine solution into the skin at flow rates of 15–96 μl/h. Partial retraction of microneedles increased flow rate up to 11.6-fold. Infusion flow rate was also increased by greater insertion depth, larger infusion pressure, use of a beveled microneedle tip, and the presence of hyaluronidase such that flow rates ranging from 21 to 1130 μl/h were achieved. These effects can be explained by removing or overcoming the large flow resistance imposed by dense dermal tissue, compressed during microneedle insertion, which blocks flow from the needle tip. Conclusions By partially retracting microneedles after insertion and other methods to overcome flow resistance of dense dermal tissue, protocols can be designed for hollow microneedles to microinfuse fluid at therapeutically relevant rates.  相似文献   

18.
Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injection. However, the stratum corneum acts as a barrier that limits the penetration of substances through the skin. Recently, the use of micron-scale needles in increasing skin permeability has been proposed and shown to dramatically increase transdermal delivery. Microneedles have been fabricated with a range of sizes, shapes, and materials. Most in vitro drug delivery studies have shown these needles to increase skin permeability to a broad range of drugs that differ in molecular size and weight. In vivo studies have demonstrated satisfactory release of oligonucleotides and insulin and the induction of immune responses from protein and DNA vaccines. Microneedles inserted into the skin of human subjects were reported to be painless. For all these reasons, microneedles are a promising technology to deliver drugs into the skin. This review presents the main findings concerning the use of microneedles in transdermal drug delivery. It also covers types of microneedles, their advantages and disadvantages, enhancement mechanisms, and trends in transdermal drug delivery.  相似文献   

19.

Purpose

To fabricate microneedle arrays directly off a photomask using a simple photolithographical approach and evaluate their potential for delivering collagen.

Methods

A simple photolithographical approach was developed by using photomask consisting of embedded micro-lenses that govern microneedle geometry in a mould free process. Microneedle length was controlled by use of simple glass scaffolds as well as addition of backing layer. The fabricated arrays were tested for their mechanical properties by using a force gauge as well as insertion into human skin with trypan blue staining. Microneedle arrays were then evaluated for the delivery of fluorescent collagen, which was evaluated using a confocal laser scanning microscope.

Results

Microneedles with sharp tips ranging between 41.5?±?8.4 μm and 71.6?±?13.7 μm as well as of two different lengths of 1336?±?193 μm and 957?±?171 μm were fabricated by using the photomasks. The microneedles were robust and resisted fracture forces up to 25 N. They were also shown to penetrate cadaver human skin samples with ease; especially microneedle arrays with shorter length of 957 μm penetrated up to 72% of needles. The needles were shown to enhance permeation of collagen through cadaver rat skin, as compared to passive diffusion of collagen.

Conclusions

A simple and mould free approach of fabricating polymeric microneedle array is proposed. The fabricated microneedle arrays enhance collagen permeation through skin.  相似文献   

20.
To reduce the effort required to penetrate the skin and optimize drug release profiles, bioceramic microneedle arrays with higher-aspect-ratio needles and a flexible and self-swelling substrate have been developed. Swelling of the substrate can assist in separating it from the needles and leave them in the skin as a drug depot. The preparation procedures for this bioceramic microneedle are described in the paper. Clonidine hydrochloride, the model drug, was released in a controlled manner by the microneedle device in vitro. Results showed that the microneedle array with a flexible and self-swelling substrate released the drug content faster than the array with a rigid substrate. Disintegration of the needle material and diffusion of the drug molecules are believed as the main control mechanisms of the drug release from these microneedle arrays. Ex vivo skin penetration showed that they can effectively penetrate the stratum corneum without an extra device. This work represents a progression in the improvement of bioceramic microneedles for transdermal drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号