首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Numerous studies suggest that several long non‐coding RNAs (lncRNAs) play critical roles in bladder cancer development and progression. Long non‐coding RNA urothelial cancer‐associated 1 (lncRNA‐UCA1) is highly expressed in bladder cancer tissues and cells, and it has been shown to play an important role in regulating aggressive phenotypes of bladder cancer cells. However, little is known about the molecular mechanism of lncRNA‐UCA1‐mediated bladder cancer cell migration and invasion. Here, we show that overexpression of lncRNA‐UCA1 could induce EMT and increase the migratory and invasive abilities of bladder cancer cells. Mechanistically, lncRNA‐UCA1 induced EMT of bladder cancer cells by upregulating the expression levels of zinc finger E‐box binding homeobox 1 and 2 (ZEB1 and ZEB2), and regulated bladder cancer cell migration and invasion by tumor suppressive hsa‐miR‐145 and its target gene the actin‐binding protein fascin homologue 1 (FSCN1). Furthermore, we also observed a positive correlation between lncRNA‐UCA1 and ZEB1/2 expression, and a negative correlation between lncRNA‐UCA1 and hsa‐miR‐145 expression in bladder cancer specimens. Importantly, we found that lncRNA‐UCA1 repressed hsa‐miR‐145 expression to upregulate ZEB1/2, whereas the suppression of hsa‐miR‐145 could upregulate lncRNA‐UCA1 expression in bladder cancer cells. Moreover, the binding site for hsa‐miR‐145 within exons 2 and 3 of lncRNA‐UCA1 contributed to the reciprocal negative regulation of lncRNA‐UCA1 and hsa‐miR‐145. Taken together, our results identified that lncRNA‐UCA1 enhances bladder cancer cell migration and invasion in part through the hsa‐miR‐145/ZEB1/2/FSCN1 pathway. Therefore, lncRNA‐UCA1 might act as a promising therapeutic target for the invasion and metastasis of bladder cancer.  相似文献   

14.
Recently, the long non-coding RNA (lncRNA) H19 has been identified as an oncogenic gene in multiple cancer types and elevated expression of H19 was tightly linked to tumorigenesis and cancer progression. However, the molecular basis for this observation has not been characterized in colorectal cancer (CRC) especially during epithelial to mesenchymal transition (EMT) progression. In our studies, H19 was characterized as a novel regulator of EMT in CRC. We found that H19 was highly expressed in mesenchymal-like cancer cells and primary CRC tissues. Stable expression of H19 significantly promotes EMT progression and accelerates in vivo and in vitro tumor growth. Furthermore, by using bioinformatics study and RNA immunoprecipitation combined with luciferase reporter assays, we demonstrated that H19 functioned as a competing endogenous RNA (ceRNA) for miR-138 and miR-200a, antagonized their functions and led to the de-repression of their endogenous targets Vimentin, ZEB1, and ZEB2, all of which were core marker genes for mesenchymal cells. Taken together, these observations imply that the lncRNA H19 modulated the expression of multiple genes involved in EMT by acting as a competing endogenous RNA, which may build up the missing link between the regulatory miRNA network and EMT progression.  相似文献   

15.
16.
MicroRNAs (miRNAs) are involved in the epithelial-mesenchymal transition (EMT) process and are associated with metastasis in gastric cancer (GC). MiR-338-3p has been reported to be aberrantly expressed in GC. In the present study, we show that miR-338-3p inhibited the migration and invasion of GC cells in vitro. Knocking down miR-338-3p in GC cells led to mesenchymal-like changes. MiR-338-3p influenced the expression of the EMT-associated proteins by upregulating the epithelial marker E-cadherin and downregulating the mesenchymal markers, N-cadherin, fibronectin, and vimentin. In terms of mechanism, miR-338-3p directly targeted zinc finger E-box-binding protein 2 (ZEB2) and metastasis-associated in colon cancer-1 (MACC1). MiR-338-3p repressed the Met/Akt pathway after MACC1 inhibition. Reintroduction of ZEB2 and MACC1 reversed miR-338-3p-induced EMT suppression. Consistently, inverse correlations were also observed between the expression of miR-338-3p and ZEB2 or MACC1 in human GC tissue samples. In conclusion, miR-338-3p inhibited the EMT progression in GC cells by targeting ZEB2 and MACC1/Met/Akt signaling.  相似文献   

17.
18.
Retinoblastoma protein (RB) is one of the most important tumor suppressors and functions in multiple biological pathways that are deregulated during tumor initiation and progression. Epithelial-to-mesenchymal transition (EMT) is a reversible embryonic process by which epithelial cells lose cell-cell contact and polarity, and its aberrant activation can trigger tumor progression and metastasis. Previously, it has been shown that depletion of RB initiates EMT by downregulating the adhesion molecule E-cadherin. The evaluated article suggests that RB inactivation contributes to loss of cell cycle control and also leads to downregulation of the miR-200 family, thereby causing upregulation of ZEB expression and consequently EMT by downregulation of E-cadherin. RB inactivation could be a key event underlying the mesenchymal and aggressive phenotype of triple-negative breast cancer. Furthermore, exploring links between RB inactivation and EMT might reveal new therapeutic targets for triple-negative breast cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号