首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Objectives: Osteopontin (OPN) is an inflammatory cytokine inducer involved in cell proliferation and migration in inflammatory diseases or tumors. To investigate the function of OPN in astrocyte activation during brain injury, we compared OPN-deficient (OPN/KO) with wild-type (WT) mouse brains after stab wound injury and primary culture of astrocytes.

Methods: Primary cultures of astrocytes were prepared from either WT or OPN/KO postnatal mouse brains. Activation efficiency of astrocytes in primary culture was accessed using Western blotting by examining the protein levels of glial fibrillary acidic protein (GFAP) and tenascin-C (TN-C), which are markers for reactive astrocytes, following lipopolysaccharide (LPS) stimulation. Furthermore, the stab wound injury on the cerebral cortex as a brain traumatic injury model was used, and activation of astrocytes and microglial cells was investigated using immunofluorescent analysis on fixed brain sections.

Results: Primary cultures of astrocytes prepared from WT or OPN/KO postnatal mouse brains showed that only 25% of normal shaped astrocytes in a flask were produced in OPN/KO mice. The expression levels of both GFAP and TN-C were downregulated in the primary culture of astrocytes from OPN/KO mice compared with that from WT mice. By the immunofluorescent analysis on the injured brain sections, glial activation was attenuated in OPN/KO mice compared with WT mice.

Discussion: Our data suggest that OPN is essential for proper astrocytic generation in vitro culture prepared from mouse cerebral cortex. OPN is indispensable for astrocyte activation in the mouse brain injury model and in LPS stimulated primary culture.

Abbreviations: AQP4: aquaporin 4; BBB: blood brain barrier; BrdU: bromo-deoxy uridine; CNS: central nervous system; GFAP: glial fibllirary acidic protein; IgG: immunoglobulin G; LPS: lipopolysaccharide; OPN: osteopontin; OPN/KO: osteopontin-deficient; TN-C: tenascin-C  相似文献   

2.
Hemorrhage and edema accompany evolving brain tissue injury after ischemic stroke. In patients, these events have been associated with metalloproteinase (MMP)-9 in plasma. Both the causes and cellular sources of MMP-9 generation in this setting have not been defined. MMP-2 and MMP-9 in nonhuman primate tissue in regions of plasma leakage, and primary murine microglia and astrocytes, were assayed by immunocytochemistry, zymography, and real-time RT-PCR. Ischemia-related hemorrhage was associated with microglial activation in vivo, and with the leakage of plasma fibronectin and vitronectin into the surrounding tissue. In strict serum-depleted primary cultures, by zymography, pro-MMP-9 was generated by primary murine microglia when exposed to vitronectin and fibronectin. Protease secretion was enhanced by experimental ischemia (oxygen-glucose deprivation, OGD). Primary astrocytes, on each matrix, generated only pro-MMP-2, which decreased during OGD. Microglia-astrocyte contact enhanced pro-MMP-9 generation in a cell density-dependent manner under normoxia and OGD. Compatible with observations in a high quality model of focal cerebral ischemia, microglia, but not astrocytes, respond to vitronectin and fibronectin, found when plasma extravasates into the injured region. Astrocytes alone do not generate pro-MMP-9. These events explain the appearance of MMP-9 antigen in association with ischemia-induced cerebral hemorrhage and edema.  相似文献   

3.
目的探讨脑出血(ICH)后出血灶周脑组织MMP-9表达的动态变化,分析其与脑水肿的关系。方法健康雄性Sprauge-Dawley(SD)大鼠56只,分为正常组(8只)和手术组(48只),手术组选择出血后12、24、48、72、96、120h共6个时间点,每点各8只。在脑立体定向仪下采用自体动脉血注入尾状核法制备脑出血模型。用免疫组化法和RT-PCR法检测MMP-9的表达水平;用干湿重法测量脑含水量(BWC);用测定渗出脑血管外的EB量来评价BBB的通透性,电镜观察神经元形态变化。结果ICH灶周脑组织MMP-9的表达在48h达峰值,脑水肿于72h达峰值,两者呈正相关(r=0.698,P〈0.01)。电镜观察到血管周围水肿,神经元水肿。结论MMP9参与了ICH后灶周脑组织水肿的过程,诱导或加重脑水肿。  相似文献   

4.
An acute trauma to the CNS rapidly results in the upregulation of inflammatory cytokines that include interleukin-1 (IL-1). We report here that the levels of several matrix metalloproteinases (MMPs) are also elevated following a corticectomy trauma injury to the mouse CNS. The delayed upregulation of MMPs compared to that for IL-1 suggests the possibility that inflammatory cytokines regulate MMP production in CNS trauma. To resolve this, we developed a method to isolate and maintain highly enriched human fetal neurons or astrocytes in culture and examined the regulation by cytokines of the activity of a subgroup of MMPs, the gelatinases (MMP-2 and -9). While both neuronal and astrocytic cultures displayed comparable MMP-2 activity, as evidenced by gelatin zymography, levels of MMP-9 were proportionately higher in neurons compared to astrocytes. Of a variety of cytokines and growth factors tested in vitro, only IL-1beta was effective in increasing the neuronal expression of MMP-9. Finally, an IL-1 receptor antagonist attenuated the increase of neuronal MMP-9 in culture and abolished the injury-induced increase of MMP-9 in the mouse brain. These results implicate IL-1beta as a key regulator of neuronal MMP-9 in culture and of the elevation of MMP-9 that occurs following mouse CNS trauma.  相似文献   

5.
Matrix metalloproteinase-9 (MMP-9) participates in the disregulation of blood-brain barrier during hemorrhagic transformation, and exacerbates brain injury after cerebral ischemia. However, the consequences of long-term inhibition or deficiency of MMP-9 activity (which might affect normal collagen or matrix homeostasis) remains to be determined. The authors investigated how MMP-9 gene deficiency enhances hemorrhage and increases mortality and neurologic deficits in a collagenase-induced intracerebral hemorrhage (ICH) model in MMP-9-knockout mice. MMP-9-knockout and corresponding wild-type mice at 20 to 35 weeks were used to model an aged population (because advanced age is a significant risk factor in human ICH). Collagenase VII-S (0.5 microL, 0.075 U) was injected into the right basal ganglia in mice and mortality, neurologic deficits, brain edema, and hemorrhage size measured. In addition, MMP-9 activity, brain collagen content, blood coagulation, cerebral arterial structure, and expressions of several MMPs were examined. Increased hemorrhage and brain edema that correlated with higher mortality and neurologic deficits were found in MMP-9-knockout mice. No apparent structural changes were observed in cerebral arteries, even though brain collagen content was reduced in MMP-9-knockout mice. MMP-9-knockout mice did exhibit an enhanced expression of MMP-2 and MMP-3 in response to ICH. The results indicate that a deficiency of MMP-9 gene in mutant mice increases collagenase-induced hemorrhage and the resulting brain injury. The intriguing relationship between MMP-9 deficiency and collagenase-induced ICH may reflect the reduction in collagen content and an enhanced expression of MMP-2 and MMP-3.  相似文献   

6.
Acute hyperammonemia (HA) causes cerebral edema and brain damage in children with urea cycle disorders (UCDs) and in patients in acute liver failure. Chronic HA is associated with developmental delay and mental retardation in children with UCDs, and with neuropsychiatric symptoms in patients with chronic liver failure. Astrocytes are a major cellular target of hyperammonemic encephalopathy, and changes occurring in these cells are thought to be causally related to the brain edema of acute HA. To study the effect of HA on astrocytes in vivo, we crossed the Otc(spf) mouse, a mouse with the X-linked UCD ornithine transcarbamylase (OTC) deficiency, with the hGFAP-EGFP mouse, a mouse selectively expressing green fluorescent protein in astrocytes. We used FACS to purify astrocytes from the brains of hyperammonemic and healthy Otcspf/GFAP-EGFP mice. RNA isolated from these astrocytes was used in microarray expression analyses and qRT-PCR. When compared with healthy littermates, we observed a significant downregulation of the gap-junction channel connexin 43 (Cx43) the water channel aquaporin 4 (Aqp4) genes, and the astrocytic inward-rectifying potassium channel (Kir) genes Kir4.1 and Kir5.1 in hyperammonemic mice. Aqp4, Cx43, and Kir4.1/Kir5.1 are co-localized to astrocytic end-feet at the brain vasculature, where they regulate potassium and water transport. Since, NH4+ ions can permeate water and K+-channels, downregulation of these three channels may be a direct effect of elevated blood ammonia levels. Our results suggest that alterations in astrocyte-mediated water and potassium homeostasis in brain may be key to the development of the brain edema.  相似文献   

7.
Blood-brain barrier (BBB) opening is mediated by matrix metalloproteinases (MMPs) in neuroinflammation. We tested the hypothesis that MMP-3 plays a role in BBB damage, using MMP-3 knockout (KO) mice and lipopolysaccharide (LPS)-induced opening of the BBB. We found less disruption of the BBB after intracerebral LPS injection in MMP-3 KO mice than in wild type (P<0.0006). MMP-3 KO mice had less MMP-9 than WT mice but similar levels of activation. Moreover, MMP-9 mRNA levels were increased to a similar level in both the MMP-3 KO and WT, suggesting both endogenous and exogenous sources. Unbiased stereology showed increased neutrophil counts in the brains of MMP-3 WT compared to KO mice. Degradation of tight junction proteins, claudin-5 and occludin, and the basal lamina protein, laminin-alpha1, was less affected in the KO than in the WT. Our results provide the first in vivo evidence that MMP-3 attacks the basal lamina and tight junction proteins, opening the BBB, thereby facilitating neutrophil influx.  相似文献   

8.
We previously reported that aquaporin 4 (AQP4) has a neuroimmunological function via astrocytes and microglial cells involving osteopontin. AQP4 is a water channel localized in the endofoot of astrocytes in the brain, and its expression is upregulated after a stab wound to the mouse brain or the injection of methylmercury in common marmosets. In this study, the correlation between the expression of AQP4 and the expression of glial fibrillary acidic protein (GFAP) or tenascin‐C (TN‐C) in reactive astrocytes was examined in primary cultures and brain tissues of AQP4‐deficient mice (AQP4/KO). In the absence of a stab wound to the brain or of any stimulation of the cells, the expressions of both GFAP and TN‐C were lower in astrocytes from AQP4/KO mice than in those from wild‐type (WT) mice. High levels of GFAP and TN‐C expression were observed in activated astrocytes after a stab wound to the brain in WT mice; however, the expressions of GFAP and TN‐C were insignificant in AQP4/KO mice. Furthermore, lipopolysaccharide (LPS) stimulation activated primary culture of astrocytes and upregulated GFAP and TN‐C expression in cells from WT mice, whereas the expressions of GFAP and TN‐C were slightly upregulated in cells from AQP4/KO mice. Moreover, the stimulation of primary culture of astrocytes with LPS also upregulated inflammatory cytokines in cells from WT mice, whereas modest increases were observed in cells from AQP4/KO mice. These results suggest that AQP4 expression accelerates GFAP and TN‐C expression in activated astrocytes induced by a stab wound in the mouse brain and LPS‐stimulated primary culture of astrocytes. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
10.
T Mori  X Wang  A E Kline  C J Siao  C E Dixon  S E Tsirka  E H Lo 《Neuroreport》2001,12(18):4117-4120
Tissue plasminogen activator (tPA) may play a deleterious role after brain injury. Here, we compared the response to traumatic brain injury in tPA knockout (KO) and wildtype (WT) mice after controlled cortical impact. At 6 h after trauma, blood-brain barrier permeability was equally increased in all mice. However, by 24 h specific gravity measurements of brain edema were significantly worse in WT mice than in KO mice. At 1 and 2 days post-trauma, mice showed deficits in rotarod performance, but by day 7 all mice recovered motor function and there were no differences between WT and KO mice. At 7 days, cortical lesion volumes were significantly reduced in KO mice compared with WT mice. However, there were no significant differences in CA3 hippocampal neuron survival. These data suggest that tPA amplifies cortical brain damage and edema in this mouse model of traumatic brain injury.  相似文献   

11.
水通道蛋白-4在脑出血大鼠脑组织的分布   总被引:13,自引:5,他引:8  
目的 观察脑出血大鼠水通道蛋白-4(AQP4)在脑组织的分布变化及其在出血性脑水肿中的作用。方法 采用定量胶原酶注人大鼠尾状核建立脑出血模型,应用免疫组化法观察脑出血后不同时间大鼠脑组织AQP4的表达。结果 AQP4阳性细胞主要分布在脑出血血肿周围区和大脑皮质的星形胶质细胞、脑室周围、视上核和室旁核。脑出血后6h起,AQP4表达增强,出血后72h达高峰,出血1周后仍高于正常水平。结论 脑出血后,AQP4在与水代谢密切相关的部位表达明显增强,提示AQP4在出血性脑水肿的形成过程中起重要作用。  相似文献   

12.
Reperfusion damages the blood-brain barrier (BBB). Matrix metalloproteinases (MMPs) are associated with the opening of the BBB, but their cellular localization and activation mechanisms are uncertain. We used immunohistochemistry to determine the cellular localization of the MMPs in reperfused rat brain, and cell cultures to study their activation. Spontaneously hypertensive rats (SHR) had a 90 min middle cerebral artery occlusion (MCAO) followed by reperfusion for times from 3 h to 21 days. Frozen sections were immunostained with antibodies to gelatinase A (MMP-2), stromelysin-1 (MMP-3), and gelatinase B (MMP-9). Sham-operated control rats showed MMP-2 immunostaining in astrocytic processes next to blood vessels. After 3 h of the onset of reperfusion MMP-2 immunostaining increased in astrocytes. At 24 h immunoreactivity for MMP-3 and MMP-9 appeared. MMP-3 co-localized with activated microglia (Ox-42+) and ischemic neurons (NeuN+). MMP-9 immunostaining was seen at 48 h in endothelial cells, neutrophils, and neurons. At 5 and 21 days intense MMP-2 staining was seen in reactive astrocytes around the ischemic core. Studies of activation of the MMP were done in lipopolysaccharide (LPS)-stimulated astrocyte and microglia cultures. Stimulated astrocytes produced an activated form of MMP-2. When microglia were stimulated, they activated MMP-9. Immunostaining showed MMP-3 in cultures of enriched microglial cells. The hydroxymate-type, MMP inhibitor, BB-1101, blocked the activation of MMP-2 and MMP-9 by LPS in mixed glial cultures. We propose that MMP-2 is normally present in astrocytic end feet, and that during ischemia MMP-9 and MMP-3 are produced. MMP-3 in microglia/macrophages may be activating proMMP-9. Our results show that a differential expression of MMPs by astrocytes, microglia, and endothelial cells at the blood vessels is involved in the proteolytic disruption of the BBB.  相似文献   

13.
We investigated the levels and tissue localization of matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) in postmortem brain tissue from Parkinson's disease (PD) and age-matched control cases. Using zymography, we found reduced MMP-2 levels in PD cases in the substantia nigra as compared to controls; levels of MMP-2 were not significantly changed in the cortex and the hippocampus. MMP-9 levels were unchanged in the investigated brain regions. Immunohistochemically, MMP-2 was localized primarily in astrocytes and microglia cells, whereas MMP-9 was predominantly neuronal. Levels of TIMP-1, an endogenous tissue inhibitor of MMPs, were significantly elevated in the substantia nigra, but not in the cortex and hippocampus. TIMP-2 levels were unchanged in PD. To investigate whether increased TIMP-1 levels in the substantia nigra might be due to increased MMP-1 expression, we measured MMP-1 levels using Western blots. MMP-1 levels were unchanged in PD cases compared to controls. Together, these data show alterations of MMP-2 and TIMP-1 in the substantia nigra of PD, consistent with the possibility that alterations in MMPs/TIMPs may contribute to disease pathogenesis.  相似文献   

14.
Astrocyte swelling and brain edema are major complications of the acute form of hepatic encephalopathy (acute liver failure, ALF). While elevated brain ammonia level is a well-known etiological factor in ALF, the mechanism by which ammonia brings about astrocyte swelling is not well understood. We recently found that astrocyte cultures exposed to ammonia activated nuclear factor-κB (NF-κB), and that pharmacological inhibition of such activation led to a reduction in astrocyte swelling. Although these findings suggest the involvement of NF-κB in astrocyte swelling in vitro, it is not known whether NF-κB contributes to the development of brain edema in ALF in vivo. Furthermore, pharmacological agents used to inhibit NF-κB may have non-specific effects. Accordingly, we used transgenic (Tg) mice that have a functional inactivation of astrocytic NF-κB and examined whether these mice are resistant to ALF-associated brain edema. ALF was induced in mice by treatment with the hepatotoxin thioacetamide (TAA). Wild type (WT) mice treated with TAA showed a significant increase in brain water content (1.65%) along with prominent astrocyte swelling and spongiosis of the neuropil, consistent with the presence of cytotoxic edema. These changes were not observed in Tg mice treated with TAA. Additionally, WT mice with ALF showed an increase in inducible nitric oxide synthase (iNOS) immunoreactivity in astrocytes from WT mice treated with TAA (iNOS is known to be activated by NF-κB and to contribute to cell swelling). By contrast, Tg mice treated with TAA did not exhibit brain edema, histological changes nor an increase in iNOS immunoreactivity. We also examined astrocytes cultures derived from Tg mice to determine whether these cells exhibit a lesser degree of swelling and cytopathological changes following exposure to ammonia. Astrocyte cultures derived from Tg mice showed no cell swelling nor morphological abnormalities when exposed to ammonia for 24h. By contrast, ammonia significantly increased cell swelling (31.7%) in cultured astrocytes from WT mice and displayed cytological abnormalities. Moreover, we observed a lesser increment in iNOS and NADPH oxidase activity (the latter is also known to be activated by NF-κB and to contribute to astrocyte swelling) in astrocyte cultures from Tg mice treated with ammonia, as compared to ammonia-treated WT mice astrocytes. These findings strongly suggest that activation of NF-κB is a critical factor in the development of astrocyte swelling/brain edema in ALF.  相似文献   

15.
16.
CD47 is a cell surface glycoprotein that helps mediate neutrophil transmigration across blood vessels. The present study was performed to determine whether absence of the CD47 gene decreases focal ischemic brain damage. Mice were subjected to 90 min middle cerebral artery occlusion. CD47 knockout mice were compared against matching wildtype mice. CD47 expression was checked by Western blotting. Infarct volume and ischemic brain swelling were quantified with cresyl violet-stained brain sections at 24 and 72 h after ischemia. The tight junction protein claudin-5 was detected by imunohistochemistry. Two surrogate markers of neuroinflammation, brain levels of matrix metalloproteinase-9 (MMP-9) and infiltration of neutrophils, were assessed by immunohistochemistry. Western blots confirmed that CD47 was absent in knockout brains. Ischemia did not appear to upregulate total brain levels of CD47 in WT mice. In CD47 knockout mice, infarct volumes were reduced at 24 and 72 h after ischemia, and hemispheric swelling was decreased at 72 h. Loss of claudin-5 was observed in ischemic WT brain. This effect was ameliorated in CD47 knockout brains. Extravasation of neutrophils into the brain parenchyma was significantly reduced in CD47 knockout mice compared to wildtype mice. MMP-9 appeared to be upregulated in microvessels within ischemic brain. MMP-9 levels were markedly lower in CD47 knockout brains compared to wildtype brains. We conclude that CD47 is broadly involved in neuroinflammation, and this integrin-associated-protein plays a role in promoting MMP-9 upregulaton, neutrophil extravasation, brain swelling and progression of acute ischemic brain injury.  相似文献   

17.
18.
Traumatic brain injury (TBI) is accompanied by inflammatory infiltrates and CNS tissue response. The astrocytosis associated with TBI has been proposed to have both beneficial and detrimental effects on surviving neural tissue. We recently observed prominent astrocytic expression of YKL‐40/chitinase 3‐like protein 1 (CHI3L1) associated with severity of brain injury. The physiological role of CHI3L1 in the CNS is unknown; however, its distribution at the perimeter of contusions and temporal course of expression suggested that in TBI it might be an important component of the astrocytic response to modulate CNS inflammation. To address this hypothesis, we used serially sectioned brains to quantitatively compare the neuropathological outcomes of TBI produced by controlled cortical impact in wild type (WT) and chi3l1 knockout (KO) mice where the murine YKL‐40 homologue, breast regression protein 39 (BRP‐39/CHI3l1), had been homozygously disrupted. At 21 days post‐injury, chi3l1 KO mice displayed greater astrocytosis (increased GFAP staining) in the hemispheres ipsilateral and contralateral to impact compared with WT mice. Similarly, Iba1 expression as a measure of microglial/macrophage response was significantly increased in chi3l1 KO compared with WT in the hemisphere contralateral to impact. We conclude that astrocytic expression of CHI3L1 limits the extent of both astrocytic and microglial/macrophage facets of neuroinflammation and suggests a novel potential therapeutic target for modulating neuroinflammation.  相似文献   

19.
目的探讨局部亚低温对大鼠自体血注入法脑出血模型基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)mRNA及蛋白表达的影响以及局部亚低温减轻脑出血后水肿的可能机制。方法雄性Wistar大鼠240只,随机分为脑出血(ICH)组和脑出血加局部亚低温(ICH H)组。每组分为对照、脑出血后6h、24h、72h、5d、7d共6个亚组,ICH H组于注血后立即给以4h的局部亚低温治疗,各亚组分别进行血脑屏障(BBB)通透性、脑水含量的检测以及应用RT-PCR及Western印记对MMP-9进行测定。结果ICH组大鼠脑内注血后6h开始出现脑组织水含量(P<0.01)及BBB通透性(P<0.05)的显著增加,二者在72h达到高峰,然后逐渐消退,ICH组MMP-9蛋白表达量与脑含水量和血脑屏障通透性呈正相关(r=0.88和r=0.96),ICH组MMP-9 mRNA表达量也与脑含水量和血脑屏障通透性呈正相关(r=0.78和r=0.85)。ICH H组大鼠脑组织水含量、BBB通透性以及MMP-9蛋白的表达与ICH组各时间点相比较,明显降低,而MMP-9 mRNA的表达与ICH组相比仅有轻度下降。结论脑出血后MMP-9的变化与BBB通透性和脑水肿密切相关,局部亚低温可以抑制脑出血后MMP-9蛋白表达的增加以及脑水肿的形成。提示局部亚低温可能通过影响MMP-9的变化来抑制脑出血后的水肿形成。  相似文献   

20.
Hippocampal neuronal death following transient global ischemia in the mouse takes days to occur, providing a potential timeframe for therapeutic intervention. Since matrix metalloproteinase-3 (MMP-3) enhances inflammation and tissue inhibitor of metalloproteinases-3 (TIMP-3) promotes apoptosis in ischemia, we hypothesized that they are involved in neuronal death secondary to transient global ischemia. Timp-3 knockout (T3KO) and wild type (T3WT) mice underwent 30 min bilateral carotid artery occlusion (BCAO), which causes hippocampal neuronal death 7 days after reperfusion. Mice lacking the Timp-3 gene have significantly less astrocytosis, microglial reactivity, MMP-3 activity and neuronal cell death. In addition, T3KO mice had decreased tumor necrosis factor (TNF) receptor-1 (TNFR1) expression and increased TNF-α converting enzyme (TACE) activity. Mmp-3 KO mice with a similar BCAO showed significantly fewer microglial cells, reduced TNF-α expression, and less neuronal death than the Mmp-3 WT. To see if TIMP-3 and MMP-3 cell death pathways were independent, we blocked MMPs with the broad-spectrum MMP inhibitor, BB-94, on days 3 through 6 of reperfusion in T3WT and T3KO mice. BB-94 rescued hippocampal neurons at 7 days in both T3WT and T3KO mice, but significantly fewer neurons died in T3KO mice treated with BB-94. Our results indicate a novel additive role for TIMP-3 and MMP-3 in delayed neuronal death, and show that delayed treatment with MMP inhibitors can be used to reduce hippocampal death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号