首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this morphometric analysis of immunoreactive serotonin (5-HT) and tyrosine hydroxylase (TH) neurons in culture, 5-HT and the MAO inhibitor nialamide influenced the survival, cell body size and neurite outgrowth of embryonic day 14 (E14) 5-HT neurons after treatment from 1-3 days in vitro (DIV), but did not significantly affect E14 or E15 TH neurons of either the noradrenergic or dopaminergic phenotype. These treatments had minimal effects on 5-HT neurons derived from E15 embryos. The stimulatory effects of 5-HT on survival and somal growth of E14 5-HT neurons was in contrast to its inhibitory effects on neurite outgrowth, suggesting trophic and inhibitory autoregulation of different cellular compartments of developing 5-HT neurons. The decreased sensitivity of E15 5-HT neurons to these treatments, despite similar viability and growth of these neurons in control cultures, suggests the existence of a critical period for this regulation during the initial period of serotonergic neurogenesis when these neurons are forming the bilateral B4-9 raphe complex. The lack of significant effects of 5-HT on TH neurons suggests differential sensitivities of 5-HT and TH neurons to developmental regulation by this neurotransmitter.  相似文献   

2.
J Liu  J M Lauder 《Glia》1992,5(4):306-317
To test the hypothesis that glia mediate interactions between embryonic serotonergic (5-HT) neurons and dopamine neurons, we studied the effects of 5-HT in co-cultures of E14 raphe neurons of mesencephalic dopamine neurons and radial glia/astrocytes derived from the same (homotypic) or opposite (heterotypic) brain region using a dose (10(-5) M) that would produce 5-HT uptake into glial cells as well as activate 5-HT receptors. Morphometric analysis of 5-HT and tyrosine hydroxylase (TH) immunoreactive neurons revealed regional differences in the effects of 5-HT (and nialamide) on survival, cell soma size, and dendrite-like neurite outgrowth in neuronal-glial co-cultures. In general, 5-HT had more significant effects on both types of monoamine neuron when they were cultured with mesencephalic glia (GSN). Stimulatory effects of 5-HT on growth of TH neurons in GSN cultures suggest that developing raphe axons, which reach the mesencephalon during the early differentiation of these neurons, may enhance the influence of local glial-derived trophic factors. Likewise, the promotion of 5-HT neuronal survival in these cultures suggests that glial factors in the mesencephalon may contribute to the support of 5-HT neurons in addition to the influences of raphe glia. The inhibitory effects of 5-HT on neurite outgrowth by raphe neurons in GSN co-cultures indicates enhanced sensitivity of these neurons to the inhibitory effects of 5-HT in the presence of mesencephalic glia. The region-specific effects of 5-HT and nialamide in glial co-cultures suggest that raphe and mesencephalic glia may express different capacities for 5-HT uptake, receptors, and/or monoamine oxidase (MAO) activities. These characteristics could be important for the specificity of growth-regulatory influences of glial cells on the development of brain monoamine neurons.  相似文献   

3.
Interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) are cytokines with pleiotropic effects in the central nervous system (CNS), including an emerging role in neurodevelopment. This study measured the effects of cytokines on the survival of tyrosine hydroxylase (TH) immunoreactive dopamine neurons from the substantia nigra (SN), and 5-hydroxytryptamine (5-HT) immunoreactive serotonin neurons from the rostral raphe (RR), using cultures from embryonic day 14 (E14) rat brain. IL-1β, IL-6, and TNF-α were added to cell cultures at 1, 10 and 100 U/ml. After 3 days in vitro, TH and 5-HT neurons were counted. The survival of 5-HT neurons was significantly reduced by 20–30% at 10 U/ml of IL-6. IL-1β and TNF-α at doses of 1 and 10 U/ml appeared to have a similar effect on the survival of these neurons, but this effect was not statistically significant. Comparable non-significant reductions of survival also occurred for TH neurons at the lower doses of IL-6 and TNF-α. In separate experiments, SN and RR cultures were exposed to the cytokines at a higher dose (1000 U/ml), causing a significant 30–40% decrease in the survival of TH neurons, but little or no change in 5-HT neuronal survival. Taken together, these results show that IL-1β, IL-6, and TNF-α can affect developing monoamine neurons at physiologically relevant concentrations, and that high doses differentially inhibit the survival of TH and 5-HT neurons after short exposures.  相似文献   

4.
We report here that S-100 beta, a protein with neurotrophic activity on central nervous system neurons, stimulates neuritic outgrowth from cultures of dorsal root ganglia (DRG). S-100 beta elicited neurites from explant and dissociated cell cultures of embryonic chick DRG, and the extent of the response varied with the age of the embryo. Specificity was demonstrated by the observation that incubation of S-100 beta with antibodies directed against S-100 beta reduced the neurite outgrowth, whereas incubation of S-100 beta with normal rabbit serum had little effect. S-100 beta also stimulated the area of neuritic outgrowth from organotypic cultures of fetal rat DRG, showing that the activity of the protein is not restricted to a particular species or culture condition. A mutant S-100 beta lacking neurotrophic activity on cerebral cortex neurons was unable to effectively stimulate neurite outgrowth from DRG cultures. These studies suggest that S-100 beta may play a role in neuronal growth and/or maintenance in the peripheral nervous system.  相似文献   

5.
The influence of steroid hormones on the differentiation of catecholaminergic and serotonergic (5-HT) neurons was studied in dissociated cell cultures from embryonic day 14 (E14) rat diencephalon, mesencephalon and metencephalon treated for 6 days with 17 beta-estradiol (E), testosterone (T), 5 alpha-dihydrostestosterone (DHT), progesterone (P), dexamethasone (DEX), or E + T. The effects of these hormones on morphologic differentiation were determined by morphometric measurements of total length of neurites of immunocytochemically identified neurons in culture, which were stained with antisera against tyrosine hydroxylase (TH) or 5-HT. A significant increase in neurite length was observed in cultures of TH-immunoreactive (TH-IR) neurons from the mesencephalon treated with E, T, E + T, but not with P, DHT or DEX. Based on labeling with [3H]dopamine (DA) uptake and competition with specific inhibitors, these mesencephalic TH-IR cells appear to represent DA neurons of the A8-A10 groups (which includes the substantia nigra). No statistically significant effects of these steroids were observed on TH-IR neurons from the diencephalon (assumed to be precursors of the tuberoinfundibular and incertohypothalamic dopaminergic groups). The 5-HT neurons of the raphe nuclei (metencephalon) showed no statistically significant response to steroids. We conclude that during the early fetal period, sex steroids can affect the morphologic differentiation of mesencephalic DA neurons in vitro, indicating that these hormones are capable of selectively influencing the development of a specific population of monoamine neurons during this critical period.  相似文献   

6.
Insulin and the insulin-like growth factors (IGFs) may directly affect the development of the nervous system. NGF, IGF-II, and insulin's effects on neurite formation and neuronal survival were studied in peripheral ganglion cell cultures from chick embryos. Neurite outgrowth was enhanced in a dose-dependent manner by insulin and IGF-II in sympathetic cell cultures. The half-maximally effective concentration, ED50, was about 0.4-0.6 nM for both polypeptides, and concentrations as low as 10 pM were active. However, in sensory neurons the ED50 for neurite outgrowth was about 30 nM for insulin and 0.1 nM for IGF-II, suggesting that these factors may have selective effects in different neuronal tissues. Neither serum nor the presence of non-neuronal cells was required for the response in sympathetic neurons. The specific anti-NGF antiserum inhibited the neurite outgrowth response to NGF but not to insulin nor IGF-II. Insulin and IGF-II additionally supported survival of sensory and sympathetic neurons; however, insulin was not as efficacious as NGF. The combination of high concentrations of NGF and insulin was no better than NGF alone in supporting sympathetic cell survival, or neurite outgrowth. This indicates that insulin acts on the same, or a subpopulation, of NGF-responsive neurons. These results support the hypothesis that insulin and its homologs belong to a broad family of neuritogenic polypeptides.  相似文献   

7.
Nishi M  Kawata M  Azmitia EC 《Brain research》2000,868(1):113-118
Brain-derived neurotrophic factor (BDNF) and S100beta stimulate serotonergic neurons in fetal rat raphe primary cultures grown under serum-free conditions. BDNF (50 ng/ml) treatment for 3 h enhanced S100beta immunoreactivity in both raphe and hippocampal glial cells. Combined treatment with BDNF and S100beta for 3 days increased the soma area of 5-HT neurons, but not the neurite length. Our results suggest that BDNF and S100beta, which regulate different signal transduction cascades, interact to exert complimentary effects on neuronal maturation by acting sequentially, not concurrently.  相似文献   

8.
Expression of S-100 protein is related to neuronal damage in MPTP-treated mice   总被引:11,自引:0,他引:11  
S-100beta is a calcium-binding protein expressed at high levels in brain and is known as a marker of brain damage. However, little is known about the role of S-100beta protein during neuronal damage caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). To determine whether S-100beta protein is induced in glial cells after MPTP treatment, we investigated the expression of S-100 protein immunohistochemically, using MPTP-treated mice. We also examined the change of neurons and glial cells in mice after MPTP treatment. The present study shows that tyrosine hydroxylase (TH) immunoreactivity decreased gradually in the striatum and substantia nigra from 1 day after MPTP treatment. Thereafter, TH-immunopositive cells and fibers decreased in the striatum and substantia nigra at 3 days after MPTP treatment. In contrast, S-100-immunopositive cells and glial fibrillary acidic protein (GFAP)-immunopositive cells increased markedly in the striatum and substantia nigra at 3 days after MPTP treatment. Seven days after MPTP treatment, S-100-immunopositive cells decreased in the striatum and substantia nigra. However, the number of GFAP-immunopositive cells increased in these regions. In double-labeled immunostaining with anti-S-100 and anti-GFAP antibodies, S-100 immunoreactivity was observed only in the GFAP-positive astrocytes. These results provide evidence that astrocytic activation may play a role in the pathogenesis of MPTP-induced degeneration of dopaminergic neurons. Furthermore, the present study demonstrates that S-100 protein is expressed selectively by astrocytes, but not by microglia, after MPTP treatment. These results provide valuable information for the pathogenesis of the acute stage of Parkinson's disease.  相似文献   

9.
Dopaminergic neurons from the midbrain nuclei substantia nigra (SN; A9) and ventral tegmental area (VTA; A10) were investigated by tyrosine hydroxylase (TH) immunostaining in neonate rat brains exposed to 2,4-dichlorophenoxyacetic acid (2,4-D) through lactation. Dorsal raphe serotonin (5-HT) projections to SN and VTA were also studied by 5-HT transporter (5-HTT) immunostaining and results were quantified by image analysis. Twenty-five-day-old pups exposed to 2,4-D through mothers milk were used. Dams were intraperitoneally administered 70 or 100mg/kg/day of 2,4-D from the 9th to the 25th postpartum day. After 100mg/kg of 2,4-D exposure, a 25% diminution in the SN and a 33% diminution in the VTA neurons' TH immunostaining along with a significantly 5-HT fiber density diminution were observed. The present work supports previous reports which suggest that exposure to 2,4-D during development has multiple effects on CNS.  相似文献   

10.
Apomorphine (APO) has been shown to elevate the concentrations of serotonin (5-HT) and its major metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the mesostriatal but not the mesolimbic serotonergic systems. We have previously demonstrated that the serotonergic actions of APO were secondary to dopamine (DA) autoreceptor stimulation in the substantia nigra. Using picrotoxin as a pharmacological tool, we have presently found that these effects of APO were also indirectly mediated through gamma-aminobutyric acid (GABA) neurons. In examination of the exact anatomical locus of GABA neurons responsible for the observed effects of APO, the results indicate that bilateral lateral habenular lesions did not block the effects of APO on 5-HT neurons, while direct picrotoxin infusion to the dorsal raphe, at a dose having no significant influence by itself, antagonized APO's actions. Together with the anatomical, biochemical and histofluorescent findings, it is suggested that APO influences dorsal raphe 5-HT by stimulation of DA autoreceptors in the substantia nigra; therefore, inhibition of DA neuron activity and the nigro-raphe pathway. Normally, DA probably exerts an excitatory influence on gabaergic interneurons in the dorsal raphe, and these inhibitory interneurons then synapse on 5-HT neurons in the same area. Activation of 5-HT neurons were explained by a disinhibitory effect as a result of reduced release of GABA due to feedback inhibition of DA neuron firing following APO activation of DA autoreceptors in the substantia nigra. The striatal presynaptic and postsynaptic DA receptors, however, do not appear to mediate the above effects of APO.  相似文献   

11.
Previous reports from this laboratory have indicated that fetal rat striatal grafts have the major types of neuronal and glial components known to be involved in Huntington's chorea. In this study a number of major afferent and efferent innervations seen in normal striatum were examined in the striatal grafts and were compared with embryonic striatal afferents. First, using immunocytochemistry and histochemistry, the host serotonergic (5-HT), dopaminergic (DA, stained with anti-tyrosine hydroxylase (TH) antiserum), and acetylcholinesterase (AChE) fibers exhibited vigorous growth into the grafts implanted in neostriatum, lateral ventricle, globus pallidus or substantia nigra within a period of 6 and 10 weeks. Individual characteristic terminal patterns formed in striatal grafts: 5-HT fibers were diffused; TH fibers became heavily packed, and AChE fibers were patchy. This peculiar patternization of 5-HT and TH growth into striatal graft appeared to be a recapitulation of the normal 5-HT and TH ingrowth into striatum in the embryonic stage. However, a significantly slow (6 week) onset of adult 5-HT and TH ingrowth into the fetal graft was noted, as compared with that of normal embryonic development (5-6 days from the appearance of 5-HT and TH neurons). With the anterograde-transport marker Phaseolus vulgaris agglutinin leuca method, host cortical neurons also projected to the graft, but in limited numbers. Finally, with the retrograde-transport marker (horseradish peroxidase method, the grafts implanted in neostriatum were found incapable of sending fibers to a major, distal target, substantia nigra. In a current evaluation of striatal transplants, it is shown that major input to the graft can be achieved over time, but output to the distal nigra seems an unrealistic expectation. These data suggest that: (1) the fetal brain tissue was found to be a strong stimulant for sprouting or regeneration of adult nerve fibers; (2) a number of functional recoveries reported on the tested behavior paradigm in this grafting model could be due to the survival of striatal graft and the establishment of input circuitries; further, (3) the data illustrate the necessity of seeking a bridge from the striatal transplant to the host nigra. If a proper functional recovery in Huntington's chorea requires complete striatonigral circuitry, then such a bridge is worthy of a major investigation.  相似文献   

12.
The substantia nigra (SN) is one of the earliest targets of the 5-HT neurons of the raphe nuclei (RN). To test the hypothesis that embryonic 5-HT and catecholamine neurons may influence the differentiation of their target cells or source neurons, we have produced dissociated cell cultures from embryonic day 14 (E14) rat rhombencephalon (containing the serotonergic RN) and mesencephalon (containing the dopaminergic substantia nigra, SN). These cells were grown for 6 days in vitro, either as single cultures (RN or SN) or cocultures (RN + SN). Effects of coculture on the morphological development of neurons immunoreactive (IR) for 5-HT or tyrosine hydroxylase (TH) were studied by measuring a series of morphological parameters related to size of the cell body and dendritic field, as well as to the complexity of neurites within this field, using computer-assisted morphometry. Increases in a number of these parameters were found in cocultures compared to single cultures for both types of monoamine neurons, but a greater number of parameters were increased for TH-IR cells, including size of the cell body. Although this might suggest that there was a greater effect of coculture on the TH-IR (dopaminergic) cells of the SN than on the 5-HT-IR cells of the RN, we must consider the fact that a significant population of TH-IR cells were present in single RN cultures, which contributed to the total population of TH-IR cells in cocultures. Indeed, when morphometric parameters for TH-IR cells in RN and SN single cultures were compared, it was found that TH-IR cells from the RN were generally larger and more complex than those from the SN. Therefore, an analysis was made of which parameters were significantly increased for TH-IR cells in cocultures compared to single cultures from both SN and RN. This was the case for two parameters: cell body size and absolute field area, indicating that these increases were probably due to the effects of coculture itself rather than to contamination by the larger and more complex TH-IR cells from the RN. It is impossible to ascertain, however, whether this effect was on cells from the RN, SN, or both. Coculture effects on 5-HT-IR cells were easier to analyze, since no such cells were found in single cultures of SN.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Electrophysiological experiments have been performed in urethane anaesthetized rats to investigate the projections from the dorsal (DRN) and medial raphe nuclei (MRN) to the substantia nigra. The biochemical and behavioural effects following discrete electrolytic lesions in the dorsal and medial raphe have also been investigated.Stimulation of the DRN produced predominantly inhibition of spontaneous activity of single neurones in the substantia nigra though some neurones were also excited. Bilateral stimulation of the substantia nigra produced antidromic spikes in DRN and MRN neurones.Lesions of the DRN and MRN produced a significant reduction in substantia nigra 5-HT concentration. Additionally, DRN lesions reduced striatal 5-HT, while MRN lesions reduced hippocampal 5-HT. Both lesions increased substantia nigra HVA concentration but did not affect DA concentration. Neither DRN nor MRN lesions affected striatal HVA, although DA levels were significantly elevated after 14 days.Animals with DRN lesions explored more than controls or MRN-lesioned animals. However, this behaviour was transient and was not observed after 14 days. On the other hand, MRN-lesioned animals were significantly hyperactive.These observations suggest that the substantia nigra receives a direct monosynaptic inhibitory input from the DRN and MRN and that these pathways use 5-HT as a neurotransmitter serving to tonically inhibit dopaminergic neurones. While 5-HT and dopamine appear to be involved in the control of motor behaviour, the precise relationship between these serotoninergic and dopaminergic systems in this respect is unclear.  相似文献   

14.
The in vivo application of appropriate trophic factors may enhance regeneration of bulbospinal projections after spinal cord injury. Currently, little is known about the sensitivities of specific bulbospinal neuron populations to the many identified trophic factors. We devised novel in vitro assays to study trophic effects on the survival and neurite outgrowth of identified bulbospinal neurons. Carbocyanine dye crystals implanted into the cervical spinal cord of embryonic day (E)5 chick embryos retrogradely labeled developing bulbospinal neurons. On E8, dissociated cultures containing labeled bulbospinal neurons were prepared. Fibroblast growth factor (FGF)-2 (but not FGF-1) promoted the survival of bulbospinal neurons. FGF receptor expression was widespread in the E8 brainstem, but not detected in young bulbospinal neurons, suggesting that nonneuronal cells mediated the FGF-stimulated survival response. Astrocytes synthesize a variety of trophic factors, and astrocyte-conditioned medium (ACM) also promoted the survival of bulbospinal neurons. As might be expected, FGF-2 function blocking antibodies did not suppress ACM-promoted survival, nor did an ELISA detect FGF-2 in ACM. This suggests that nonneuronal cells synthesize other factors in response to exogenous FGF-2 which promote the survival of bulbospinal neurons. Focusing on vestibulospinal neurons, dissociated (survival assay) or explant (neurite outgrowth assay) cultures were prepared. FGF-2 promoted both survival and neurite outgrowth of identified vestibulospinal neurons. Interestingly, FGF-1 promoted neurite outgrowth but not survival; the converse was true of FGF-9. Thus, differential effects of specific growth factors on survival or neurite outgrowth of bulbospinal neurons were distinguished.  相似文献   

15.
We demonstrated intense serotonin (5-HT) 2A receptor immunoreactivity in the human ventral tegmental area (VTA) using by a recently raised antibody against 5-HT2A receptor. The substantia nigra (SN) neurons also showed 5-HT2A receptor immunoreactivity. Double immunohistochemistry of 5-HT2A receptor and tyrosine hydroxylase (TH) revealed many neurons doubly labeled by 5-HT2A receptor and TH in the VTA and SN. It is suggested that activity of human midbrain dopaminergic neurons might be strongly regulated via 5-HT2A receptors at the level of their originating nuclei.  相似文献   

16.
Serotonergic (5-HT) neurons of the CNS develop as two separate clusters, a rostral and a caudal group, within the brain stem raphe. We show here that the transforming growth factors -beta2 and -beta3 (TGF-beta) and the TGF-beta type II receptor are expressed in the embryonic rat raphe, when 5-HT neurons develop and differentiate. To investigate putative roles of TGF-betas in the regulation of 5-HT neuron development we have generated serum-free cultures isolated either from the rostral or the caudal embryonic rat raphe, respectively. In cultures from the caudal E14 raphe saturating concentrations (5 ng/ml) of TGF-beta2 and -beta3 augmented numbers of tryptophan hydroxylase (TpOH) -immunoreactive neurons and cells specifically taking up 5,7-dihydroxytryptamine (5,7-DHT) by about 1.7-fold over a period of 4 days. Treatment with TGF-betas also increased uptake of 3H-5HT uptake about 1.7-fold. Alterations in 5-HT neuron numbers were due to the induction of serotonergic markers rather than increased survival, as shown by the efficacy of delayed short-term treatments. Comparing rostral and caudal raphe cultures from different embryonic ages suggests that distinct effects of TGF-betas reflect the responsiveness of 5-HT neurons at different ages rather than of different origins.  相似文献   

17.
The neurotransmitter 5-HT alters growth cone motility and neurite elongation in neuron B19, isolated from the buccal ganglion of Helisoma trivolvis (Haydon et al., 1984). The effects of 5-HT are mediated by increases in intracellular calcium levels within the growth cones (Cohan et al., 1987). 5-HT causes a receptor-mediated depolarization of the membrane, which results in the opening of voltage-sensitive calcium channels. The resulting calcium influx decreases both the elongation rate and the total outgrowth of neurites. However, the mechanism(s) mediating these calcium-dependent changes is unclear. As many of the intracellular effects of calcium in eukaryotic cells are mediated by the calcium-binding protein calmodulin, we tested the involvement of such an interaction in the regulation of neurite outgrowth. In these experiments, a new, potent calmodulin antagonist with increased selectivity, CGS 9343B (CGS; Norman et al., 1987), was used to inhibit calmodulin activity during the application of 5-HT to neuron B19. The addition of 100 microM 5-HT to the culture medium resulted in a significant decrease in the rate of neurite elongation and total neurite outgrowth. Administration of CGS to the culture medium at a concentration (1.8 microM) equivalent to its IC50 for calmodulin inhibition completely blocked the inhibitory effects of 100 microM 5-HT, on both neurite elongation and total neurite outgrowth. CGS alone caused a slight decrease in elongation rate but had no significant effect on total outgrowth. CGS did not block 5-HT-induced electrical activity, indicating that it was not acting as a 5-HT receptor antagonist.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Prenatal exposure to ethanol is the cause of fetal alcohol syndrome, which is characterized by brain abnormalities and decreased mental capacity. In the current study, cultured neurons from embryonic rat cortices were used to study the reversal of ethanol toxicity on neuronal survival and neurite outgrowth. Ethanol treatment followed by treatment with estrogen and certain growth factors were used to assess the potential of these growth factors and estrogen to reverse the effects of ethanol damage. Cortical neurons from embryonic day (E) 16 rats were grown in defined medium with a glial plane at a distance of 1mm from the neurons. Ethanol (45 mM) was administered on day in vitro 1 (DIV 1) and DIV 4. Insulin-like growth factor-I (IGF-I, 10 ng/ml), insulin-like growth factor-II (IGF-II, 10 ng/ml), basic fibroblast growth factor (bFGF, 5 ng/ml), nerve growth factor (NGF, 100 ng/ml), and estrogen (Es, 10 ng/ml) were administered on DIV 4 and DIV 5. Cell viability was determined on DIV 6 using the intravital dyes fluorescein diacetate and propidium iodide. IGF-I and bFGF reduced ethanol's toxic effect on neuronal survival. Estrogen, bFGF, and NGF increased total neurite length after ethanol treatment. Although none of the treatments had a statistically significant effect on the mean number of primary neurites, all caused a statistically significant increase in the mean number of secondary neurites per cell (a measure of neuritic branching) relative to the ethanol treatment alone.  相似文献   

19.
Parkinson’s disease is characterized by selective and progressive loss of midbrain DAergic neurons (MDN) in the substantia nigra and degeneration of its nigrostriatal projections. Whereas the cellular pathophysiology has been closely linked to an activation of c-Jun N-terminal kinases (JNKs) and c-Jun, the involvement of JNKs in regenerative processes of the nigrostriatal pathway is controversially discussed. In our study, we utilized a mechanical scratch lesion paradigm of midbrain DAergic neurons in vitro and studied regenerative neuritic outgrowth. After a siRNA-mediated knockdown of each of the three JNK isoforms, we found that JNKs differentially regulate neurite regeneration. Knockdown of JNK3 resulted in the most prominent neurite outgrowth impairment. This effect was attenuated again by plasmid overexpression of JNK3. We also evaluated cell survival of the affected neurons at the scratch border. JNK3 was found to be also relevant for survival of MDN which were lesioned by the scratch. Our data suggest that JNK isoforms are involved in differential regulation of cell death and regeneration in MDN depending on their neurite integrity. JNK3 appears to be required for regeneration and survival in the case of an environment permissive for regeneration. Future therapeutic approaches for the DAergic system may thus require isoform specific targeting of these kinases.  相似文献   

20.
Nerve growth factor in medium conditioned by embryonic chicken heart cells   总被引:1,自引:0,他引:1  
The present report demonstrates that embryonic chicken heart cells in culture release different nerve growth promoting factors to their culture medium, one which is biologically and immunologically similar to mouse gland beta NGF. Serum-free heart cell conditioned medium thus promoted neurite outgrowth from sympathetic and ciliary ganglia and supported survival of dissociated ciliary neurons. The addition of affinity purified antibodies against mouse beta NGF does substantially but not completely inhibit the fibre outgrowth from sympathetic ganglia, but does not to any extent diminish the effects on the parasympathetic neurons. The chicken NGF recovered from polyacrylamide gels after electrophoresis greatly enhanced sympathetic fibre outgrowth, an activity completely suppressive by anti-beta NGF antibodies. We conclude that a chicken NGF is being produced by the embryonic heart cells in culture, and that this factor may be produced also in the embryo to fulfill a role in heart innervation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号